-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwoGK.m
50 lines (44 loc) · 1.15 KB
/
twoGK.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
function [DER1,x]=twoGK(A,sigma,d,x)
% twoGK plots two overlapped Gaussian Kernels
% and the derivative of the function of the their sum
%
%
% SYNOPSIS [DER1,x]=twoGK(A,sigma,d,x)
%
%
% INPUT A : the ratio between the two kernels
% sigma : sigma
% d : distance between the centers
% x : x argument (ex.'x=-7:0.1:11;')
%
% OUTPUT DER1 : the first derivative of their sum
% x : x argument
%
% DEPENDENCES twoGK uses { }
% twoGK is used by { }
%
% Alexandre Matov, January 7th, 2003
if nargin==0
A=1.5;
sigma=.5;
d=5.3;
x=-7:0.1:11;
end
GK1=A*exp(-x.^2/2*sigma^2)/sqrt(2*pi*sigma^2);
GK2=exp(-(x-d).^2/2*sigma^2)/sqrt(2*pi*sigma^2);
GK3=exp(-(x-d+.6).^2/2*sigma^2)/sqrt(2*pi*sigma^2);
I1=GK1+GK2;
I2=GK1+GK3;
plot(x,I1)
hold on;
plot(x,GK1,'--');
plot(x,GK2,'--');
hold off;
figure,plot(x,I2)
hold on;
plot(x,GK1,'--');
plot(x,GK3,'--');
hold off;
DER1=-A*exp(-x.^2/(2*sigma^2)).*x/(sigma^3*sqrt(2*pi))-exp(-(x-d).^2/(2*sigma^2)).*(x-d)/(sigma^3*sqrt(2*pi));
DER1=DER1*2;
figure,plot(x,DER1);