-
Notifications
You must be signed in to change notification settings - Fork 0
/
treexpr.c
1164 lines (1035 loc) · 30.3 KB
/
treexpr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* treexpr.c - Tree expression language source file
+ Copyright (C) 2005 Dell, Inc.
+ Authors: David Barksdale <[email protected]>
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-- Syntax --
Expr ::= Term | Expr "|" Term
Term ::= Factor | Term Factor
Factor ::= Symbol | Symbol "*" | "~" | "(" Expr ")" | "(" Expr ")" "*"
| Symbol "->" Expr | Symbol ":" String | Symbol Attrs | Symbol Attrs "->" Expr
Attrs ::= "<" Attr* ">"
Attr ::= Symbol | Symbol "=" String
Symbol ::= any alphanumeric string with '_' and '-'
String ::= quoted string (skips over \")
-- Semantics --
A tree can be thought of as a hierarchical list, each element of the list can have a list of
children. Consider the following tree:
html
/ \
head body
/ / \
title h1 p
root list: html
list of html's children: head body
list of head's children: title
list of body's children: h1 p
list of h1's chlidren: ~ (where ~ denotes the empty list)
list of p's children: ~
By the same token, a tree expression can be thought of as a hierarchical regular expression,
each symbol in the expression can have a child expression. The "->" operator binds a child
expression to a symbol in the parent expression. If a symbol has no child expression it is
equivalent to having a child expression that matches everything. In other words the children
of a symbol are ignored if there is no child expression. It can also be said that "->" adds
a restriction to the symbol on it's left-hand side: the symbol will only be matched if the
symbol's children match the child expression. Other restriction operators are discussed later to
improve matching of HTML. Consider the following expressions:
These match the tree above:
html - matches the root list and ignores html's children
html -> head body - also matches html's children and ignores head and body's children
html -> (head -> title) body - also matches head's children and ignores title's children
html -> (head -> title -> ~) body - also matches title's children
html -> (head -> title -> ~) (body -> h1 p) - also matches body's children
html -> (head -> title -> ~) (body -> (h1 -> ~) (p -> ~)) - matches the tree exactly
These do not match the tree above:
body - does not match root list
html -> body - matches root list but does not match html's children (must match all)
html -> body head - matches root list but html's children are out of order
Note the grouping around "->". In the second expression "->" binds the symbol "html" to the
expression "head body". In the third expression we want the symbol "head" to be bound to the
expression "title" and not "title body" so we must group them together using parenthesis.
Tree expressions use the alternation "|" and closure "*" operators from reqular expressions.
Consider the following expressions:
html* - matches the root list because it consists of zero or more "html" symbols
html | xml - matches the root list because it consists of "html" or "xml"
html -> (head -> title | title meta) body - matches
In addition to the "~" special symbol there is "." which matches any symbol:
html -> .* - matches the root list and html's children because html has zero or more
html -> .* (body -> .* p .*) .* - matches a tree that has "html" at the root, html has
atleast one child named "body", and body has atleast
one child named "p".
-- Extra restriction operators for HTML matching --
The ":" operator binds a regular expression to a symbol, the symbol matches only if it's
contents matches the regular expression. In HTML the only tags that have contents are "text"
and "comment". So most of the time it will be used like:
p -> text:"ab*c" - matches the HTML '<p>abbbbbc</p>'
The "<", "=", and ">" operators are used together to bind a symbol to an attribute list,
the symbol matches only if every attribute matches an attribute of the HTML tag. An attribute
restriction is a list of name and value pairs. A name without a value is matched only if it
appears in the HTML without a value. Consider the following:
table <bgcolor="blue"> - matches the HTML '<table bgcolor="blue">'
and also the HTML '<table bgcolor="blue" border="1">'
foo <bar> - matches the HTML '<foo bar>' but not '<foo bar="">' or '<foo bar="baz">'
foo <bar> | foo <bar=".*"> - matches all three
It is possible to combine the attribute restriction operators with the "->" operator (for example
option <selected> -> text:"blue"), but it is not possible to combine the content restriction
operator with the "->" operator (for example text:"blue" -> br) because "text" and "comment"
symbols never have children.
-- Extracting values from an HTML page --
This section has been up for debate because it can be very confusing. The way we extract strings
from the tree expressions is from the contents and attribute rescrictions. These restrictions
contain regular expressions that match against some of the data contained in an HTML page. Most
regular expression libraries allow you to use something called back references where each
parenthasized sub-expression is given a number and the string matching that sub-expression can be
referenced later. For example the expression "foo" has no sub-expressions, the expression "fo(o*)"
has one sub-expression, namely "o*". When "fo(o*)" is matched against "fooo", the fist
sub-expression references the string "oo". The sub-expressions are numbered by the position of
their open parenthesis. For example "(b(a)(r))" has three sub-expressions, 1. "b(a)(r)" 2. "a"
3. "r". If a sub-expression matches multiple strings then the last match is what is referenced.
For example "(ab|ac)*" matches "ababac" and the string referenced will be "ac".
A tree expression can have several regular expressions embedded in it. In order to find a specific
sub-expression they are numbered in the order they appear in the tree expression. For example:
form -> input<value="([0-9]+)"> text:"."
input<value="([0-9]+)"> text:"."
input<value="([0-9]+)"> text:"."
input<value="([0-9]+)"> input
has four sub-expressions. This tree expression would match against an HTML form that might be used
for changing an IP address:
<form method="POST" action="/cgi-bin/setip">
<input type="text" name="first" value="192"> .
<input type="text" name="second" value="168"> .
<input type="text" name="third" value="1"> .
<input type="text" name="fourth" value="42"> <input type="submit" value="Set IP">
</form>
In this case the extracted values will be:
1: "192"
2: "168"
3: "1"
4: "42"
It's simple to specify a method for combining the strings together to form a usefull output.
For example something like "\1.\2.\3.\4" would produce "192.168.1.42".
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <libxml/tree.h>
#include <sys/types.h>
#include "regex.h"
#include "treexpr.h"
#ifdef _WINDOWS
#define strcasecmp stricmp
#endif
// allocator that never returns NULL, cheap hack to make code shorter
void *zalloc( size_t size )
{
void *p;
do { p = calloc( size, 1 );
} while( p == NULL );
return p;
}
// builds a machine that matches a symbol
struct machine *symbol( char *name )
{
struct machine *m;
struct state *start, *final;
struct trans *tr;
// alloc stuff
m = zalloc( sizeof( struct machine ));
start = zalloc( sizeof( struct state ));
final = zalloc( sizeof( struct state ));
tr = zalloc( sizeof( struct trans ));
// insert transition
tr->name = name;
tr->st = final;
start->tr = tr;
// maintain linked list
start->next = final;
// finish machine
m->start = start;
m->final = final;
return m;
}
// builds a machine that matches the empty string
struct machine *epsilon( void )
{
struct machine *m;
struct state *start, *final;
struct epsilon *cat;
// alloc stuff
m = zalloc( sizeof( struct machine ));
start = zalloc( sizeof( struct state ));
final = zalloc( sizeof( struct state ));
cat = zalloc( sizeof( struct epsilon ));
// insert epsilon transition
cat->st = final;
start->ep = cat;
// maintain liked list
start->next = final;
// finish machine
m->start = start;
m->final = final;
return m;
}
// builds a machine that matches nothing (not used at present, but here for completeness)
struct machine *null( void )
{
struct machine *m;
struct state *start, *final;
// alloc stuff
m = zalloc( sizeof( struct machine ));
start = zalloc( sizeof( struct state ));
final = zalloc( sizeof( struct state ));
// maintain linked list
start->next = final;
// finish machine
m->start = start;
m->final = final;
return m;
}
// concatanates two machines
struct machine *concat( struct machine *a, struct machine *b )
{
struct epsilon *cat;
if( a == NULL || b == NULL )
return NULL;
// alloc stuff
cat = zalloc( sizeof( struct epsilon ));
// insert epsilon transition
cat->st = b->start;
cat->next = a->final->ep;
a->final->ep = cat;
// maintain linked list
a->final->next = b->start;
// use machine 'a' as our new machine and free 'b'
a->final = b->final;
free( b );
return a;
}
// alternates two machines (spike)
struct machine *alternate( struct machine *a, struct machine *b )
{
struct state *start, *final;
struct epsilon *s1, *s2, *f1, *f2;
if( a == NULL || b == NULL )
return NULL;
// alloc stuff
start = zalloc( sizeof( struct state ));
final = zalloc( sizeof( struct state ));
s1 = zalloc( sizeof( struct epsilon ));
s2 = zalloc( sizeof( struct epsilon ));
f1 = zalloc( sizeof( struct epsilon ));
f2 = zalloc( sizeof( struct epsilon ));
// insert epsilon transitions from our new start state
// to the start states of the two machines
s1->st = a->start;
s2->st = b->start;
s1->next = s2;
start->ep = s1;
// insert epsilon transitions from the final states of the
// new machines to our new final state
f1->st = final;
f2->st = final;
f1->next = a->final->ep;
a->final->ep = f1;
f2->next = b->final->ep;
b->final->ep = f2;
// maintain linked list
start->next = a->start;
a->final->next = b->start;
b->final->next = final;
// use machine 'a' as our new machine and free 'b'
a->start = start;
a->final = final;
free( b );
return a;
}
// creates the closure of a machine (splat)
struct machine *closure( struct machine *a )
{
struct state *start, *final;
struct epsilon *s1, *s2, *f1, *f2;
if( a == NULL )
return NULL;
// alloc stuff
start = zalloc( sizeof( struct state ));
final = zalloc( sizeof( struct state ));
s1 = zalloc( sizeof( struct epsilon ));
s2 = zalloc( sizeof( struct epsilon ));
f1 = zalloc( sizeof( struct epsilon ));
f2 = zalloc( sizeof( struct epsilon ));
// insert epsilon transitions from our new start state to
// the machine's start state and to our new final state
s1->st = final;
s2->st = a->start;
s1->next = s2;
start->ep = s1;
// insert epsilon transitions from the machine's final state
// to the machine's start state and our new final state
f1->st = a->start;
f2->st = final;
f1->next = f2;
f2->next = a->final->ep;
a->final->ep = f1;
// maintain linked list
start->next = a->start;
a->final->next = final;
// use 'a' as our new machine
a->start = start;
a->final = final;
return a;
}
void free_machine( struct machine *m );
// free each state in a linked list
void free_states( struct state *sl )
{
struct trans *tr;
struct epsilon *ep, *epn;
struct state *next;
struct attribute *at, *atn;
for( ; sl != NULL; sl = next )
{
next = sl->next;
// free each transition off this state
tr = sl->tr;
if( tr != NULL )
{
// free all the junk that can hang off of a transition
free_machine( tr->ptr );
free( tr->name );
if( tr->re.re_magic != 0 )
notbuiltin_regfree( &tr->re );
for( at = tr->attrs; at != NULL; at = atn )
{
atn = at->next;
free( at->name );
if( at->re.re_magic != 0 )
notbuiltin_regfree( &at->re );
free( at );
}
free( tr );
}
// free each epsilon transition (easy)
for( ep = sl->ep; ep != NULL; ep = epn )
{
epn = ep->next;
free( ep );
}
// finally free the state
free( sl );
}
}
void free_machine( struct machine *m )
{
int i;
if( m == NULL )
return;
// free every state in the machine
free_states( m->start );
// if we have an E function free it
if( m->E != NULL )
{
for( i = 0; i < m->states; i++ )
free( m->E[i] );
free( m->E );
}
// free bitmasks
if( m->cur_state != NULL )
free( m->cur_state );
if( m->next_state != NULL )
free( m->next_state );
// finally free the machine
free( m );
}
/*
* Tokenizer
*/
struct token
{
int t;
char *name;
};
#define T_EOL ( -2 ) // not really paid attention to
#define T_ERROR ( -1 ) // tokenizing error, look at token->error and token->buf
#define T_SYMBOL ( 0 ) // symbol
#define T_SQUIGGLE ( 1 ) // ~
#define T_WAX ( 2 ) // (
#define T_WANE ( 3 ) // )
#define T_SPIKE ( 4 ) // |
#define T_SPLAT ( 5 ) // *
#define T_PTR ( 6 ) // ->
#define T_TWOSPOT ( 7 ) // :
#define T_ANGLE ( 8 ) // <
#define T_RIGHTANGLE ( 9 ) // >
#define T_HALFMESH ( 10 ) // =
#define T_STRING ( 11 ) // quoted string
// parse the next token in a string and return a pointer into the string were we stoped
const char *get_tok( const char *str, struct token *tk )
{
static char *name;
const char *p;
int i, len = 0;
if( str == NULL )
{
tk->t = T_ERROR;
return NULL;
}
// skip whitespace
for( p = str; *p != 0 && isspace( *p ); p++ );
switch( *p )
{
case 0:
tk->t = T_EOL;
return p;
case '~':
tk->t = T_SQUIGGLE;
return p + 1;
case '(':
tk->t = T_WAX;
return p + 1;
case ')':
tk->t = T_WANE;
return p + 1;
case '|':
tk->t = T_SPIKE;
return p + 1;
case '*':
tk->t = T_SPLAT;
return p + 1;
case '-':
if( p[1] == '>' )
{
tk->t = T_PTR;
return p + 2;
}
tk->t = T_ERROR;
return p;
case ':':
tk->t = T_TWOSPOT;
return p + 1;
case '<':
tk->t = T_ANGLE;
return p + 1;
case '>':
tk->t = T_RIGHTANGLE;
return p + 1;
case '=':
tk->t = T_HALFMESH;
return p + 1;
case '\"':
p++;
len = 16;
name = zalloc( len );
for( i = 0; p[i] != 0 && p[i] != '\"'; i++ )
{
if( i + 1 >= len )
name = realloc( name, len *= 2 );
if( p[i] == '\\' && p[i + 1] == '\"' && i < 254 )
{
name[i] = p[i];
i++;
}
name[i] = p[i];
}
name[i] = 0;
tk->t = p[i] == 0 ? T_ERROR : T_STRING;
tk->name = name;
return p + i + ( p[i] == '\"' ? 1 : 0 );
case '.':
name = zalloc( 2 );
name[0] = '.';
name[1] = 0;
tk->t = T_SYMBOL;
tk->name = name;
return p + 1;
default:
len = 16;
name = zalloc( len );
for( i = 0; isalnum( p[i] ) || p[i] == '_' || p[i] == '-'; i++ )
{
if( i + 1 >= len )
name = realloc( name, len *= 2 );
name[i] = p[i];
}
name[i] = 0;
tk->t = i > 0 ? T_SYMBOL : T_ERROR;
tk->name = name;
return p + i;
}
}
const char *parse_treexpr( const char *expr, struct machine **m );
// parses an attribute construction: <foo="bar" baz="quux" quuux>
// the opening angle has already been consumed
const char *parse_attrs( const char *expr, struct attribute **a )
{
struct token tk;
struct attribute *prev = NULL, *attr;
const char *next;
// build a list of attributes in order
for( next = get_tok( expr, &tk ); tk.t == T_SYMBOL; )
{
// fist we grab the name
attr = zalloc( sizeof( struct attribute ));
if( prev == NULL )
prev = *a = attr;
else
prev = prev->next = attr;
attr->name = tk.name;
// check for optional =
next = get_tok( next, &tk );
if( tk.t != T_HALFMESH )
continue;
// grab regex and compile it
next = get_tok( next, &tk );
if( tk.t != T_STRING )
return NULL;
if( notbuiltin_regcomp( &attr->re, tk.name, REG_EXTENDED
| REG_ICASE ) != 0 )
{
notbuiltin_regfree( &attr->re );
attr->re.re_magic = 0;
return NULL;
}
free( tk.name );
next = get_tok( next, &tk );
}
if( tk.t == T_RIGHTANGLE )
return next;
return NULL;
}
// parse a tree expression "factor"
// a factor is what I'm calling the operands to concatenation
// so it's either a symbol (with optional restrictions), a parenthasized expression
// or a factor with a *
// this does not allow foolishness like "foo**" (equivalent to "foo*") or "~*" (equivalent to "~")
// even though they are technically valid
const char *parse_factor( const char *expr, struct machine **m )
{
struct token tk;
struct machine *r;
const char *next, *cur;
// this token should either be a symbol, a ~, or a (
cur = get_tok( expr, &tk );
if( tk.t == T_ERROR )
{
*m = zalloc( sizeof( struct machine ));
( *m )->error = "Tokenizing error";
( *m )->buf = expr;
return NULL;
}
if( tk.t == T_SYMBOL )
{
// build a machine to match the symbol
*m = symbol( tk.name );
next = get_tok( cur, &tk );
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
// if there's a * build the closure
if( tk.t == T_SPLAT )
{
*m = closure( *m );
return next;
}
// if there's a -> then parse the expression on the rhs and add it as a restriction
if( tk.t == T_PTR )
{
next = parse_treexpr( next, &r );
( *m )->start->tr->ptr = r;
if( next == NULL )
{
( *m )->error = r->error;
( *m )->buf = r->buf;
return NULL;
}
return next;
}
// if there's a : then compile the regex and add it as a restriction
if( tk.t == T_TWOSPOT )
{
cur = next;
next = get_tok( cur, &tk );
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
if( tk.t != T_STRING )
{
( *m )->error = "Expecting a \"-delimited string";
( *m )->buf = cur;
return NULL;
}
if( notbuiltin_regcomp( &( *m )->start->tr->re, tk.name,
REG_EXTENDED | REG_ICASE ) != 0 )
{
notbuiltin_regfree( &( *m )->start->tr->re );
( *m )->start->tr->re.re_magic = 0;
( *m )->error = "Error parsing regular expression";
( *m )->buf = cur;
}
free( tk.name );
return next;
}
// if there's a < then parse attributes and add it as a restriction
if( tk.t == T_ANGLE )
{
next = parse_attrs( next, &( *m )->start->tr->attrs );
if( next == NULL )
{
( *m )->error = "Expecting attribute list, ie <name=\"value\" name2=\"value2\">";
( *m )->buf = cur;
return NULL;
}
cur = next;
// we also allow a -> restriction in this case
next = get_tok( cur, &tk );
if( tk.t == T_PTR )
{
next = parse_treexpr( next, &r );
( *m )->start->tr->ptr = r;
if( next == NULL )
{
( *m )->error = r->error;
( *m )->buf = r->buf;
return NULL;
}
return next;
}
return cur;
}
return cur;
}
if( tk.t == T_SQUIGGLE )
{
// build epsilon machine
*m = epsilon( );
return cur;
}
if( tk.t == T_WAX )
{
// parse expression
cur = parse_treexpr( cur, m );
if( cur == NULL )
return NULL;
// make sure we end in )
next = get_tok( cur, &tk );
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
if( tk.t != T_WANE )
{
( *m )->error = "Expected ')'";
( *m )->buf = cur;
return NULL;
}
// check for * and build closure
cur = next;
next = get_tok( cur, &tk );
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
if( tk.t == T_SPLAT )
{
*m = closure( *m );
return next;
}
return cur;
}
// invalid symbol
*m = zalloc( sizeof( struct machine ));
( *m )->error = "Expected symbol or '~' or '('";
( *m )->buf = expr;
return NULL;
}
// parse a tree expression "term"
// a term is what I'm calling the operands to alternation
// a term is either a factor, or a list of factors concatenated together
const char *parse_term( const char *expr, struct machine **m )
{
struct token tk;
struct machine *r;
const char *cur;
// grab the first factor
cur = parse_factor( expr, m );
if( cur == NULL )
return NULL;
// grab zero or more factors
for( get_tok( cur, &tk ); tk.t == T_SYMBOL || tk.t == T_WAX || tk.t == T_SQUIGGLE;
get_tok( cur, &tk ))
{
cur = parse_factor( cur, &r );
if( cur == NULL )
{
( *m )->error = r->error;
( *m )->buf = r->buf;
free_machine( r );
return NULL;
}
// concatenate the factors
*m = concat( *m, r );
}
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
return cur;
}
// parse a tree expression
// an expression is just a term or a list of terms seperated by |
// this looks almost exactly like parse_term()
const char *parse_treexpr( const char *expr, struct machine **m )
{
struct token tk;
const char *next, *cur;
struct machine *r;
// grab the first term
cur = parse_term( expr, m );
if( cur == NULL )
return NULL;
// grab zero or more terms
for( next = get_tok( cur, &tk ); tk.t == T_SPIKE; next = get_tok( cur, &tk ))
{
cur = parse_term( next, &r );
if( cur == NULL )
{
( *m )->error = r->error;
( *m )->buf = r->buf;
free_machine( r );
return NULL;
}
// combine the terms using alternation
*m = alternate( *m, r );
}
if( tk.t == T_ERROR )
{
( *m )->error = "Tokenizing error";
( *m )->buf = cur;
return NULL;
}
return cur;
}
// process a regex restriction (basically just executes the regex)
int regex_process( struct trans *tr, char *content )
{
if( content == NULL )
return 0;
if( notbuiltin_regexec( &tr->re, content, RESUBR, tr->match, 0 ) == 0 )
{
tr->str = content;
return 1;
}
tr->str = NULL;
return 0;
}
// process an attribute restriction
// it's important that we don't save the matches for all regexes until we know all of them
// match. otherwise if you were trying to match <foo="bar" bar="baz"> and you had a list like
// <foo="bar" bar="baz"> (both regexes match)
// <foo="barr" bar="quux"> (the first one matches and overwrites the previous match for foo)
// then you would be left with foo="barr" bar="baz" as your matches
int attrs_process( struct trans *tr, struct _xmlAttr *properties )
{
struct attribute *attr;
struct _xmlAttr *cur;
regmatch_t match[RESUBR];
// first pass makes sure each attribute matches
for( attr = tr->attrs; attr != NULL; attr = attr->next )
{
for( cur = properties; cur != NULL; cur = cur->next )
{
if( strcasecmp( attr->name, (char *)cur->name ) == 0 )
{
// if there's no value it will only match if we didn't specify a regex
if( cur->children == NULL )
{
if( attr->re.re_magic == 0 )
break;
return 0;
}
// otherwise the regex has to match the value
if( notbuiltin_regexec( &attr->re,
(char *)cur->children->content, RESUBR,
match, 0 ) == 0 )
break;
else
attr->str = NULL;
return 0;
}
}
if( cur == NULL )
return 0;
}
// second pass saves the matches
for( attr = tr->attrs; attr != NULL; attr = attr->next )
{
for( cur = properties; cur != NULL; cur = cur->next )
{
if( strcasecmp( attr->name, (char *)cur->name ) == 0 )
{
// if there's no value it will only match if we didn't specify a regex
if( cur->children == NULL )
{
if( attr->re.re_magic == 0 )
break;
return 0;
}
// otherwise the regex has to match the value
if( notbuiltin_regexec( &attr->re,
(char *)cur->children->content, RESUBR,
attr->match, 0 ) == 0 )
{
attr->str = (char *)cur->children->content;
break;
}
else
attr->str = NULL;
return 0;
}
}
if( cur == NULL )
return 0;
}
return 1;
}
// some handy macros:
// number of bits in type pointed to by x
#define B( x ) (sizeof(*(x))*8)
// number of elements in array pointed to by x in order to contain n bits
#define N( x, n ) (((n)+B(x)-1)/B(x))
// test bit b of array pointed to by x
#define TEST_BIT( x, b ) (((x)[(b)/B(x)]>>((b)%B(x)))&1)
// set bit b of array pointed to by x
#define SET_BIT( x, b ) ((x)[(b)/B(x)]|=1<<((b)%B(x)))
// compute the disjunction of two bitfields of n bits
#define OR( x, y, n ) {unsigned int _i;for(_i=0;_i<N(x,n);(x)[_i]|=(y)[_i],_i++);}
// applies a machine to an xml tree
// returns true iff the machine accepts
// all matches to regexes are contained within the machine
int tree_process( struct machine *m, xmlNodePtr node )
{
int *e, done;
struct state *cur, *cur2;
struct trans *tr;
struct epsilon *ep;
if( m == NULL )
return 1;
if( m->E == NULL )
{
// Generate E function
// the E function is an array of bitmasks indexed by state number
// the bitmask represents the states you can reach by epsilon transitions
// number states
m->states = 0;
for( cur = m->start; cur != NULL; cur = cur->next )
cur->num = m->states++;
// fill E
m->E = zalloc( sizeof( *m->E ) * m->states );
for( cur = m->start; cur != NULL; cur = cur->next )
{
e = m->E[cur->num] = zalloc( N( *m->E, m->states ) * sizeof( **m->E ));
// we can reach ourself
SET_BIT( e, cur->num );
// try to add new states until an iteration of this loop makes no progress
done = 0;
while( !done )
{
done = 1;
// for each state that is already in the bitmask, add states you can reach
// by epsilon transitions
for( cur2 = m->start; cur2 != NULL; cur2 = cur2->next )
if( TEST_BIT( e, cur2->num ))
for( ep = cur2->ep; ep != NULL; ep = ep->next )
if( !TEST_BIT( e, ep->st->num ))
{
SET_BIT( e, ep->st->num );
done = 0;
}
}
}
}
// allocate current state and next state bitmasks
if( m->cur_state == NULL )
m->cur_state = zalloc( N( m->cur_state, m->states ) * sizeof( *m->cur_state ));
if( m->next_state == NULL )
m->next_state = zalloc( N( m->next_state, m->states ) * sizeof( *m->next_state ));
// our inital current state is E(start)
memset( m->cur_state, 0, N( m->cur_state, m->states ) * sizeof( *m->cur_state ));
OR( m->cur_state, m->E[m->start->num], m->states );
// main loop, terminate when we run out of input or when there's no states in the cur_state bitmask
while( node != NULL )
{
unsigned int i;
int sum = 0;