-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
106 lines (87 loc) · 2.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding: utf-8 -*-
from flask import Flask, request
import pandas as pd
import numpy as np
import pickle
import flasgger
from flasgger import Swagger
app = Flask(__name__)
Swagger(app)
pickle_in_classifier = open('Classifier.pkl','rb')
pickle_in_standardScalar = open('StandardScalar.pkl', 'rb')
classifier = pickle.load(pickle_in_classifier)
sc = pickle.load(pickle_in_standardScalar)
@app.route('/')
def welcome():
return "Diabetes Prediction Api"
@app.route('/predict')
def predict_note_authentication():
"""Let's Authenticate the Banks Note
This is using docstrings for specifications.
---
parameters:
- name: Pregnancies
in: query
type: number
required: true
- name: Glucose
in: query
type: number
required: true
- name: BloodPressure
in: query
type: number
required: true
- name: SkinThickness
in: query
type: number
required: true
- name: Insulin
in: query
type: number
required: true
- name: BMI
in: query
type: number
required: true
- name: DiabetesPedigreeFunction
in: query
type: number
required: true
- name: Age
in: query
type: number
required: true
responses:
200:
description: The output values
"""
Pregnancies = request.args.get('Pregnancies')
Glucose = request.args.get('Glucose')
BloodPressure = request.args.get('BloodPressure')
SkinThickness = request.args.get('SkinThickness')
Insulin = request.args.get('Insulin')
BMI = request.args.get('BMI')
DiabetesPedigreeFunction = request.args.get('DiabetesPedigreeFunction')
Age = request.args.get('Age')
X = [
[
Pregnancies,
Glucose,
BloodPressure,
SkinThickness,
Insulin,
BMI,
DiabetesPedigreeFunction,
Age,
]
]
X = sc.transform(X)
prediction = classifier.predict(X)
if prediction == 0:
return "You are not Diabetic! Have a Chocolate 😉"
else:
return "You are Diabetic! Please take care😥"
return "Unexpected Response Something went wrong..."
if __name__ == '__main__':
app.run()