-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy path_pkgdown.yml
199 lines (199 loc) · 4.88 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
title: mice
url: https://amices.org/mice
template:
bootstrap: 5
params:
bootswatch: lumen
reference:
- title: "Missing data exploration"
desc: >
Functions to count and explore the structure of the missing data.
contents:
- md.pattern
- md.pairs
- cc
- cci
- ic
- ici
- mcar
- ncc
- nic
- nimp
- fico
- flux
- fluxplot
- title: "Main imputation functions"
desc: >
The workflow of multiple imputation is: multiply-impute the data,
apply the complete-data model to each imputed data set, and pool
the results to get to the final inference. The main functions
for imputing the data are:
contents:
- mice
- mice.mids
- parlmice
- futuremice
- title: "Elementary imputation functions"
desc: >
The elementary imputation function is the workhorse that creates
the actual imputations. Elementary functions are called through
the `method` argument of `mice` function.
Each function imputes one or more columns in the data. There
are also `mice.impute.xxx` functions outside the `mice`
package.
contents:
- starts_with("mice.impute")
- title: "Imputation model helpers"
desc: >
Specification of the imputation models can be made more
convenient using the following set of helpers.
contents:
- quickpred
- squeeze
- make.blocks
- make.blots
- make.formulas
- make.method
- make.post
- make.predictorMatrix
- make.visitSequence
- make.where
- construct.blocks
- name.blocks
- name.formulas
- title: "Plots comparing observed to imputed/amputed data"
desc: >
These plots contrast the observed data with the
imputed/amputed data, usually with a blue/red distinction.
contents:
- bwplot.mids
- densityplot.mids
- plot.mids
- stripplot.mids
- xyplot.mids
- title: "Repeated analyses and combining analytic estimates"
desc: >
Multiple imputation creates m > 1 completed data sets, fits
the model of interest to each of these, and combines the
analytic estimates. The following functions
assist in executing the analysis and pooling steps:
contents:
- with.mids
- pool
- pool.r.squared
- pool.scalar
- nelsonaalen
- pool.compare
- anova.mira
- fix.coef
- D1
- D2
- D3
- title: "Data manipulation"
desc: >
The multiply-imputed data can be combined in various ways,
and exported into other formats.
contents:
- complete
- as.mids
- as.mira
- as.mitml.result
- cbind.mids
- rbind.mids
- ibind
- filter.mids
- mids2mplus
- mids2spss
- title: "Class descriptions"
desc: >
The data created at the various analytic phases are stored
as list objects of a specific class. The most important classes
and class-test functions are:
contents:
- mids-class
- mira-class
- is.mids
- is.mipo
- is.mira
- is.mitml.result
- title: "Extraction functions"
desc: >
Helpers to extract and print information from objects of
specific classes.
contents:
- convergence
- getfit
- getqbar
- glance.mipo
- print.mids
- print.mira
- print.mice.anova
- print.mice.anova.summary
- summary.mira
- summary.mids
- summary.mice.anova
- tidy.mipo
- title: "Low-level imputation functions"
desc: >
Several functions are dedicated to common low-level operations
to generate the imputations:
contents:
- estimice
- norm.draw
- .norm.draw
- .pmm.match
- title: "Multivariate amputation"
desc: >
Amputation is the inverse of imputation, starting with a
complete dataset, and creating missing data pattern according
to the posited missing data mechanism. Amputation is
useful for simulation studies.
contents:
- ampute
- bwplot.mads
- xyplot.mads
- is.mads
- mads-class
- print.mads
- summary.mads
- title: "Datasets"
desc: "Built-in datasets"
contents:
- boys
- brandsma
- employee
- fdd
- fdgs
- leiden85
- mammalsleep
- mnar_demo_data
- nhanes
- nhanes2
- pattern
- popmis
- pops
- potthoffroy
- selfreport
- tbc
- toenail
- toenail2
- walking
- windspeed
- title: "Miscellaneous functions"
desc: "Miscellaneous functions"
contents:
- appendbreak
- extractBS
- glm.mids
- lm.mids
- matchindex
- mdc
- mice.theme
- supports.transparent
- version
articles:
- title: "General"
navbar: ~
contents:
- overview
- oldfriends