-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets.py
46 lines (31 loc) · 1.41 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import pandas as pd
from sklearn.datasets import load_diabetes
def load_benchmarkdata(data_desc):
if data_desc == "diabetes":
return load_diabetes_dataset()
elif data_desc == "german":
return load_german_dataset()
else:
raise ValueError(f"Unknown data set '{data_desc}'")
def load_diabetes_dataset():
X, y = load_diabetes(return_X_y=True)
poisoned_samples_ratio = .1
y_sensitive = (X[:, 1] == X[0, 1]).astype(int) # Use 'sex' as the sensitive attribute (Note: All variables have been mean centered and scaled by the dataset provider)
X = np.delete(X, [1], 1) # Remove sensitive attribute from data
y = (y >= 150).astype(int) # Convert into binary classification problem
return X, y, y_sensitive, poisoned_samples_ratio
# Note .csv files were downloaded from https://github.com/algofairness/fairness-comparison/tree/master/fairness/data/preprocessed
# Paper: https://arxiv.org/abs/1802.04422
def load_german_dataset():
# Load data
df = pd.read_csv("data/german_numerical_binsensitive.csv")
# Extract label and sensitive attribute
y = df["credit"].to_numpy().flatten().astype(int) - 1
y_sensitive = df["sex"].to_numpy().flatten()
# Remove other columns and create final data set
del df["credit"]
del df["sex"]
X = df.to_numpy()
poisoned_samples_ratio = .4
return X, y, y_sensitive, poisoned_samples_ratio