-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgradient_data_shapley.py
84 lines (68 loc) · 3.53 KB
/
gradient_data_shapley.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from joblib import Parallel, delayed
import numpy as np
import tensorflow as tf
from scoring.dnn import get_model
from scoring.groupfair_scoring import GroupFairCfScoringApprox
from scoring.globalcost_scoring import CostRecourseScoringApprox
from scoring.accuracy_scoring import AccuracyScoringApprox
class GradientDataShapleyInfluenceScore():
def __init__(self, X_train, y_train, y_sensitive_train,
X_test, y_test, y_test_sensitive,
n_iter: int = 100, n_train_itr: int = 50,
n_jobs: int = 1, cf_approx: str = "logits",
scoring_desc: str = "globalrecourse"):
self.n_jobs = n_jobs
self.scoring_desc = scoring_desc
self.cf_approx = cf_approx
self.X_train = X_train
self.y_train = y_train
self.y_sensitive_train = y_sensitive_train
self.X_test = X_test
self.y_test = y_test
self.y_test_sensitive = y_test_sensitive
self.n_iter = n_iter
self.n_train_itr = n_train_itr
def compute_influence_scores(self, use_log_reg=False, eval_on_train_set=False) -> np.ndarray:
n_samples = self.X_train.shape[0]
def __run_step(n_iter):
my_model = get_model((self.X_train.shape[1],), logreg=use_log_reg)
X_eval, y_eval, y_sensitive_eval = self.X_test, self.y_test, self.y_test_sensitive
if eval_on_train_set is True:
X_eval, y_eval, y_sensitive_eval = self.X_train, self.y_train, self.y_sensitive_train
if self.scoring_desc == "groupfaircf":
scoring = GroupFairCfScoringApprox(my_model, X_eval, y_sensitive_eval,
cf_approx=self.cf_approx)
elif self.scoring_desc == "accuracy":
scoring = AccuracyScoringApprox(my_model, X_eval, y_eval)
elif self.scoring_desc == "globalrecourse":
scoring = CostRecourseScoringApprox(my_model, X_eval, cf_approx=self.cf_approx)
else:
raise ValueError()
phi = np.zeros(n_samples)
for _ in range(n_iter):
cur_score = scoring.compute_score()
perm = np.random.permutation(n_samples)
for idx in perm: # Each sample individually
# Compute gradients
with tf.GradientTape() as tape:
logits = my_model.model(self.X_train[idx, :].reshape(1, -1), training=True)
loss_value = my_model.loss_fn(self.y_train[idx].reshape(1, -1), logits)
grads = tape.gradient(loss_value, my_model.model.trainable_variables)
# Apply gradients
my_model.optimizer.apply_gradients(zip(grads,
my_model.model.trainable_variables))
# Evaluate influence of current sample
new_score = scoring.compute_score()
phi[idx] += new_score - cur_score
cur_score = new_score
return phi
if self.n_jobs == -1 or self.n_jobs > 1:
v = Parallel(n_jobs=self.n_jobs)(delayed(__run_step)(self.n_train_itr)
for _ in range(self.n_iter))
else:
v = []
for _ in range(self.n_iter):
v_t = __run_step(self.n_train_itr)
v.append(v_t)
rolling_var = [np.var(v[:n], axis=0) for n in range(2, len(v))]
return np.mean(v, axis=0), rolling_var