-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
408 lines (333 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""
File used to train the networks.
"""
import os
import csv
import pprint
import random
import logging
import argparse
import pickle
from tqdm import tqdm
from sklearn import metrics
import numpy as np
import torch
import torch.optim as optim
import torch.utils.data
from qm9_dataset import QM9Dataset, qm9_collate_batch
from ddi_dataset import ddi_collate_paired_batch, \
PolypharmacyDataset, ddi_collate_batch
from utils.file_utils import setup_running_directories, \
save_experiment_settings
from utils.functional_utils import combine
from utils.qm9_utils import build_qm9_dataset, build_knn_qm9_dataset, \
qm9_train_epoch, qm9_valid_epoch
from utils.ddi_utils import ddi_train_epoch, ddi_valid_epoch
def post_parse_args(opt):
# Set the random seed manually for reproducibility.
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(opt.seed)
if not hasattr(opt, 'exp_prefix'):
opt.exp_prefix = opt.memo + '-cv_{}_{}'.format(opt.fold_i, opt.n_fold)
if opt.debug:
opt.exp_prefix = 'dbg-{}'.format(opt.exp_prefix)
if not hasattr(opt, 'global_step'):
opt.global_step = 0
opt.best_model_pkl = os.path.join(opt.model_dir, opt.exp_prefix + '.pth')
opt.result_csv_file = os.path.join(opt.result_dir, opt.exp_prefix + '.csv')
print(opt.best_model_pkl)
print(opt.result_csv_file)
print(opt.model_dir)
return opt
def prepare_qm9_dataloaders(opt):
train_loader = torch.utils.data.DataLoader(
QM9Dataset(
graph_dict = opt.graph_dict,
pairs_dataset = opt.train_dataset),
num_workers = 2,
batch_size = opt.batch_size,
collate_fn = qm9_collate_batch,
shuffle = True)
valid_loader = torch.utils.data.DataLoader(
QM9Dataset(
graph_dict=opt.graph_dict,
pairs_dataset = opt.valid_dataset),
num_workers = 2,
batch_size = opt.batch_size,
collate_fn = qm9_collate_batch)
return train_loader, valid_loader
def prepare_ddi_dataloaders(opt):
train_loader = torch.utils.data.DataLoader(
PolypharmacyDataset(
drug_structure_dict= opt.graph_dict,
se_idx_dict = opt.side_effect_idx_dict,
se_pos_dps = opt.train_dataset['pos'],
#TODO: inspect why I'm not just fetching opt.train_dataset['neg']
negative_sampling=True,
negative_sample_ratio=opt.train_neg_pos_ratio,
paired_input=True,
n_max_batch_se=10),
num_workers=2,
batch_size=opt.batch_size,
collate_fn=ddi_collate_paired_batch,
shuffle=True)
valid_loader = torch.utils.data.DataLoader(
PolypharmacyDataset(
drug_structure_dict = opt.graph_dict,
se_idx_dict = opt.side_effect_idx_dict,
se_pos_dps = opt.valid_dataset['pos'],
se_neg_dps = opt.valid_dataset['neg'],
n_max_batch_se=1),
num_workers=2,
batch_size=opt.batch_size,
collate_fn=lambda x: ddi_collate_batch(x, return_label=True))
return train_loader, valid_loader
def train_epoch(model, data_train, optimizer, averaged_model, device, opt):
if opt.dataset == "qm9":
return qm9_train_epoch(model, data_train, optimizer, averaged_model, device, opt)
else:
return ddi_train_epoch(model, data_train, optimizer, averaged_model, device, opt)
def valid_epoch(model, data_valid, device, opt):
if opt.dataset == "qm9":
return qm9_valid_epoch(model, data_valid, device, opt)
else:
return ddi_valid_epoch(model, data_valid, device, opt)
def train(model, datasets, device, opt):
data_train, data_valid = datasets
optimizer = optim.Adam(
model.parameters(), lr=opt.learning_rate, weight_decay=opt.l2_lambda)
with open(opt.result_csv_file, 'w') as csv_file:
csv_writer = csv.writer(csv_file)
if opt.dataset == "decagon":
csv_writer.writerow(['train_loss', 'auroc_valid'])
if opt.dataset == "qm9":
csv_writer.writerow(['train_loss', 'auroc_valid', 'individual_maes'])
ddi_best_valid_perf = 0
qm9_best_valid_perf = 10
waited_epoch = 0
averaged_model = model.state_dict()
for epoch_i in range(opt.n_epochs):
print()
print('Epoch ', epoch_i)
# ============= Training Phase =============
train_loss, elapse, averaged_model = \
train_epoch(model, data_train, optimizer, averaged_model, device, opt)
logging.info(' Loss: %5f, used time: %f min', train_loss, elapse)
# ============= Validation Phase =============
# Load the averaged model weight for validation
updated_model = model.state_dict() # validation start
model.load_state_dict(averaged_model)
valid_perf, elapse = valid_epoch(model, data_valid, device, opt)
# AUROC is in fact MAE for QM9
valid_auroc = valid_perf['auroc']
if opt.dataset == "qm9":
individual_maes = valid_perf['individual_maes']
logging.info(' Validation: %5f, used time: %f min', valid_auroc, elapse)
#print_performance_table({k: v for k, v in valid_perf.items() if k != 'threshold'})
# Load back the trained weight
model.load_state_dict(updated_model) # validation end
# early stopping
if (opt.dataset == "decagon" and valid_auroc > ddi_best_valid_perf) \
or (opt.dataset == "qm9" and valid_auroc < qm9_best_valid_perf):
logging.info(' --> Better validation result!')
waited_epoch = 0
torch.save(
{'global_step': opt.global_step,
'model':averaged_model,
'threshold': valid_perf['threshold']},
opt.best_model_pkl)
else:
if waited_epoch < opt.patience:
waited_epoch += 1
logging.info(' --> Observing ... (%d/%d)', waited_epoch, opt.patience)
else:
logging.info(' --> Saturated. Break the training process.')
break
# ============= Bookkeeping Phase =============
# Keep the validation record
if opt.dataset == "decagon":
ddi_best_valid_perf = max(valid_auroc, ddi_best_valid_perf)
if opt.dataset == "qm9":
qm9_best_valid_perf = min(valid_auroc, qm9_best_valid_perf)
# Keep all metrics in file
with open(opt.result_csv_file, 'a') as csv_file:
csv_writer = csv.writer(csv_file)
if opt.dataset == "decagon":
csv_writer.writerow([train_loss, valid_auroc])
if opt.dataset == "qm9":
csv_writer.writerow([train_loss, valid_auroc, individual_maes])
def main():
parser = argparse.ArgumentParser()
parser.add_argument('dataset', metavar='D', type=str.lower,
choices=['qm9', 'decagon'],
help='Name of dataset to used for training [QM9,DECAGON]')
# Directory to resume training from
parser.add_argument('--trained_setting_pkl', default=None,
help='Load trained model from setting pkl')
# Directory containing precomputed training data split.
parser.add_argument('input_data_path', default=None,
help="Input data path, e.g. ./data/decagon/ "
"or ./data/qm9/dsgdb9nsd/")
parser.add_argument('-f', '--fold', default='1/10', type=str,
help="Which fold to test on, format x/total")
parser.add_argument('--qm9_pairing_repetitions', default = 1, type=int,
help="How many times to pair each molecule with a random molecule")
parser.add_argument('--qm9_output_feat', default=12, type=int,
help="How many features need to be predicted for qm9")
# Dirs
parser.add_argument('--model_dir', default='./exp_trained')
parser.add_argument('--result_dir', default='./exp_results')
parser.add_argument('--setting_dir', default='./exp_settings')
parser.add_argument('-mm', '--memo', help='Memo for experiment', default='default')
parser.add_argument('-b', '--batch_size', type=int, default=128)
parser.add_argument('-d_h', '--d_hid', type=int, default=32)
parser.add_argument('-d_readout', '--d_readout', type=int, default=32)
parser.add_argument('-d_a', '--d_atom_feat', type=int, default=3)
parser.add_argument('-n_p', '--n_prop_step', type=int, default=3)
parser.add_argument('-n_h', '--n_attention_head', type=int, default=1)
parser.add_argument('-score', '--score_fn', default='trans', const='trans',
nargs='?', choices=['trans', 'factor'])
parser.add_argument('-dbg', '--debug', action='store_true')
parser.add_argument('-e', '--n_epochs', type=int, default=10000)
parser.add_argument('-lr', '--learning_rate', type=float, default=1e-3)
parser.add_argument('-l2', '--l2_lambda', type=float, default=0)
parser.add_argument('-drop', '--dropout', type=float, default=0.1)
parser.add_argument('--patience', type=int, default=32)
parser.add_argument('--seed', type=int, default=1337)
parser.add_argument('-nr', '--train_neg_pos_ratio', type=int, default=1)
parser.add_argument('-tr', '--transR', action='store_true')
parser.add_argument('-th', '--transH', action='store_true')
parser.add_argument('--qm9_normalise', default="scaled",
help="How to normalise qm9 data e.g. scaled or standardised")
parser.add_argument('--qm9_knn', action='store_true',
help="Whether to use k-NN for pairing, by default it's random")
# If mpnn is true, then first pairing happens with itself
# for repetitions=1, this is mpnn-like.
parser.add_argument('--mpnn', action='store_true')
opt = parser.parse_args()
assert opt.batch_size % opt.qm9_pairing_repetitions == 0
opt.fold_i, opt.n_fold = map(int, opt.fold.split('/'))
assert 0 < opt.fold_i <= opt.n_fold
is_resume_training = opt.trained_setting_pkl is not None
if is_resume_training:
logging.info('Resume training from', opt.trained_setting_pkl)
opt = np.load(open(opt.trained_setting_pkl, 'rb'), allow_pickle=True).item()
else:
opt = post_parse_args(opt)
setup_running_directories(opt)
# save the dataset split in setting dictionary
pprint.pprint(vars(opt))
# save the setting
logging.info('Related data will be saved with prefix: %s', opt.exp_prefix)
assert os.path.exists(opt.input_data_path + "folds/")
# code which is common for ddi and qm9. take care(P0) if adding other datasets
data_opt = np.load(open(opt.input_data_path + "input_data.npy",'rb'),allow_pickle=True).item()
opt.n_atom_type = data_opt.n_atom_type
opt.n_bond_type = data_opt.n_bond_type
opt.graph_dict = data_opt.graph_dict
print(len(opt.graph_dict))
opt.n_side_effect = None
if "qm9" in opt.dataset:
opt.train_graph_dict = pickle.load(open(opt.input_data_path + "folds/" + "train_graphs.npy", "rb"))
opt.train_labels_dict = pickle.load(open(opt.input_data_path + "folds/" + "train_labels.npy", "rb"))
opt.valid_graph_dict = pickle.load(open(opt.input_data_path + "folds/" + "valid_graphs.npy", "rb"))
opt.valid_labels_dict = pickle.load(open(opt.input_data_path + "folds/" + "valid_labels.npy", "rb"))
if not hasattr(opt, 'mpnn'):
opt.mpnn = False
if not hasattr(opt, 'qm9_knn'):
opt.qm9_knn = False
if opt.qm9_knn:
opt.z_dict = pickle.load(open(opt.input_data_path + "drug.z1.pickle", "rb"))
opt.train_dataset = build_knn_qm9_dataset(
z_dict = opt.z_dict,
graph_dict=opt.train_graph_dict,
train_dict=opt.train_graph_dict,
graph_labels=opt.train_labels_dict,
train_labels=opt.train_labels_dict,
repetitions=opt.qm9_pairing_repetitions,
self_pair=opt.mpnn,
is_train=True)
# valid molecule is first in the pair
opt.valid_dataset = build_knn_qm9_dataset(
z_dict= opt.z_dict,
graph_dict=opt.valid_graph_dict,
train_dict=opt.train_graph_dict,
graph_labels=opt.valid_labels_dict,
train_labels=opt.train_labels_dict,
repetitions=opt.qm9_pairing_repetitions,
self_pair=opt.mpnn,
is_train=False)
else:
opt.train_dataset = build_qm9_dataset(graph_dict1=opt.train_graph_dict,
graph_dict2=opt.train_graph_dict,
labels_dict1=opt.train_labels_dict,
labels_dict2=opt.train_labels_dict,
repetitions=opt.qm9_pairing_repetitions,
self_pair = opt.mpnn)
# valid molecule is first in the pair
opt.valid_dataset = build_qm9_dataset(graph_dict1=opt.valid_graph_dict,
graph_dict2=opt.train_graph_dict,
labels_dict1=opt.valid_labels_dict,
labels_dict2=opt.train_labels_dict,
repetitions=opt.qm9_pairing_repetitions,
self_pair = opt.mpnn)
dataloaders = prepare_qm9_dataloaders(opt)
if "decagon" in opt.dataset:
opt.n_side_effect = data_opt.n_side_effect
opt.side_effects = data_opt.side_effects
opt.side_effect_idx_dict = data_opt.side_effect_idx_dict
# 'pos'/'neg' will point to a dictionary where
# each se points to a list of drug-drug pairs.
opt.train_dataset = {'pos': {}, 'neg': {}}
opt.test_dataset = pickle.load(open(opt.input_data_path + "folds/" + str(opt.fold_i) + "fold.npy", "rb"))
if opt.fold_i == 1:
valid_fold = 2
else:
valid_fold = 1
opt.valid_dataset = pickle.load(open(opt.input_data_path + "folds/" + str(valid_fold) + "fold.npy", "rb"))
for i in range(valid_fold+1, opt.n_fold+1):
if i != opt.fold_i:
dataset = pickle.load(open(opt.input_data_path + "folds/" + str(i) + "fold.npy", "rb"))
opt.train_dataset['pos'] = combine(opt.train_dataset['pos'], dataset['pos'])
opt.train_dataset['neg'] = combine(opt.train_dataset['neg'], dataset['neg'])
assert data_opt.n_side_effect == len(opt.side_effects)
dataloaders = prepare_ddi_dataloaders(opt)
save_experiment_settings(opt)
# build model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
print("using cuda")
else:
print("on cpu")
if opt.transR:
from model_r import DrugDrugInteractionNetworkR as DrugDrugInteractionNetwork
elif opt.transH:
from model_h import DrugDrugInteractionNetworkH as DrugDrugInteractionNetwork
else:
from model import DrugDrugInteractionNetwork
model = DrugDrugInteractionNetwork(
n_side_effect=opt.n_side_effect,
n_atom_type=100,
n_bond_type=20,
d_node=opt.d_hid,
d_edge=opt.d_hid,
d_atom_feat=3,
d_hid=opt.d_hid,
d_readout=opt.d_readout,
n_head=opt.n_attention_head,
n_prop_step=opt.n_prop_step,
dropout=opt.dropout,
score_fn=opt.score_fn).to(device)
if is_resume_training:
trained_state = torch.load(opt.best_model_pkl)
opt.global_step = trained_state['global_step']
logging.info(
'Load trained model @ step %d from file: %s',
opt.global_step, opt.best_model_pkl)
model.load_state_dict(trained_state['model'])
train(model, dataloaders, device, opt)
if __name__ == "__main__":
main()