-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_targets.R
175 lines (170 loc) · 5.77 KB
/
_targets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
library(targets)
source("R/describing_generic_data.R")
source("R/wrangling_dingo.R")
source("R/wrangling_generic_graphs.R")
source("R/wrangling_huttlin.R")
source("R/wrangling_llinas.R")
source("R/wrangling_shared_MUC_orthologs.R")
# Set target-specific options such as packages.
tar_option_set(
packages = c("dplyr", "huge", "iDINGO", "igraph", "tidyr", "tidygraph", "ggraph")
)
# End this file with a list of target objects.
list(
# Wrangling Huttlin
# This source file was downloaded from thebiogrid.org
# It includes all known, published protein interactions in Homo sapiens
tar_target(
name = human_biogrid_file,
"data/BIOGRID-ORGANISM-Homo_sapiens-4.4.207.tab3.txt",
format = "file"
),
tar_target(
name = human_biogrid_raw,
command = readr::read_delim(human_biogrid_file)
),
tar_target(
name = huttlin,
command = extract_huttlin_from_human_biogrid(human_biogrid_raw)
),
tar_target(
name = huttlin_nodes,
command = assemble_huttlin_nodes(huttlin)
),
tar_target(
name = huttlin_edges,
command = assemble_huttlin_edges(huttlin)
),
tar_target(
name = huttlin_graph,
command = assemble_huttlin_graph(huttlin_nodes, huttlin_edges)
),
tar_target(
name = huttlin_293T_comms,
command = find_huttlin_293T_comms(huttlin_graph)
),
tar_target(
name = huttlin_293T_comms_filtered_to_eprs_stat5b,
command = wrangle_huttlin_293T_comms_filtered_to_eprs_stat5b(huttlin_293T_comms)
),
# tar_target(
# name = eprs_stat5b_comms,
# command = find_communities(huttlin_293T_comms_filtered_to_eprs_stat5b)
# ),
# Wrangling Park
#
# This source file comes from:
# Comparative proteomic analysis of malformed umbilical cords from somatic cell
# nuclear transfer-derived piglets: implications for early postnatal death;
# By Park et al. 2009;
# https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-10-511#Sec19
# The table represents proteins differentially expressed between piglets with
# and without malformed umbilical cords;
# I manually modified the table by adding 2 columns using Expasy's SWISS-Model as a ref:
# One column was for the proteins official symbol,
# The second column was for the SWISS-PROT id of the human ortholog of each piglet protein;
tar_target(
name = park_diff_expressed_proteins_file,
"data/park_et_al_2009_diff_expressed_proteins.csv",
format = "file"
),
tar_target(
name = park_diff_expressed_proteins_raw,
command = readr::read_csv(park_diff_expressed_proteins_file)
),
# Wrangling Shared Orthologs between Huttlin and Park
tar_target(
name = huttlin_orthologs_shared_w_park,
command = id_huttlin_orthologs_shared_w_park(huttlin_nodes, park_diff_expressed_proteins_raw)
),
tar_target(
name = MUC_huttlin_graph,
command = localize_MUC_huttlin_graph(huttlin_orthologs_shared_w_park, huttlin_graph)
),
# Wrangling Llinas
tar_target(
name = llinas_treatments_raw_file,
"data/llinas_2021_metabolomics.csv",
format = "file"
),
tar_target(
name = llinas_treatments_raw,
command = readr::read_csv(llinas_treatments_raw_file)
),
tar_target(
name = transposed_llinas_treatments_raw,
command = transpose_llinas_raw(llinas_treatments_raw)
),
tar_target(
name = llinas_treatments_modified_file,
"data/expanded_transposed_llinas_2021.csv",
format = "file"
),
tar_target(
name = llinas_treatments_modified,
command = readr::read_csv(llinas_treatments_modified_file)
),
tar_target(
name = llinas_treatments_pre_ggm,
command = wrangle_llinas_pre_ggm(llinas_treatments_modified)
),
tar_target(
name = llinas_treatments_ggm,
command = huge(llinas_treatments_pre_ggm, method = "glasso", cov.output=TRUE)
),
tar_target(
name = llinas_treatments_ggm_ric,
command = huge.select(llinas_treatments_ggm, criterion = "ric")
),
tar_target(
name = llinas_treatments_ggm_stars,
command = huge.select(llinas_treatments_ggm, criterion = "stars")
),
# tar_target(
# name = llinas_ggm_ebic,
# command = huge.select(llinas_ggm, criterion = "ebic")
# ),
# tar_target(
# name = llinas_pcor_matrix,
# command = corpcor::cor2pcor(cov2cor(llinas_treatments_ggm_ric$opt.cov))
# ),
tar_target(
name = llinas_metabolites_file,
"data/llinas_2021_metabolites.csv",
format = "file"
),
tar_target(
name = llinas_metabolite_nodes,
command = readr::read_csv(llinas_metabolites_file)
),
tar_target(
name = llinas_metabolite_graph,
command = assemble_llinas_metabolite_graph(llinas_metabolite_nodes, llinas_treatments_ggm_ric)
),
tar_target(
name = parasitized_llinas_pre_dingo,
command = wrangle_parasitized_llinas_pre_dingo(llinas_treatments_modified)
),
tar_target(
name = parasitized_llinas_dingo,
command =
iDINGO::dingo(
dat = parasitized_llinas_pre_dingo[,-1],
x = parasitized_llinas_pre_dingo$any_treatment,
cores = 4,
B = 10
)
),
tar_target(
name = parasitized_llinas_dingo_df,
command = convert_parasitized_llinas_dingo_to_df(parasitized_llinas_dingo)
),
tar_target(
name = parasitized_llinas_dingo_graph,
command =
assemble_parasitized_llinas_dingo_graph(
llinas_metabolite_nodes,
parasitized_llinas_dingo_df
)
)
)