-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKthPermutationSequenceUsingRecursion.java
73 lines (59 loc) · 1.43 KB
/
KthPermutationSequenceUsingRecursion.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
/*
The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note:
Given n will be between 1 and 9 inclusive.
Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3
Output: "213"
Example 2:
Input: n = 4, k = 9
Output: "2314"
*/
class Solution {
int K = 0;
int targetK = 0;
String str = null;
public String getPermutation(int n, int k) {
targetK = k;
K = 0;
KComb(new HashSet<>(),"",n);
return str;
}
private boolean KComb(HashSet<Integer> set,String s,int n){
if(set.size() == n){
K++;
if(K == targetK){
str = new String(s);
return true;
}
else{
return false;
}
}
for(int i=1; i<=n; i++){
if(set.contains(i)){
continue;
}
else{
set.add(i);
boolean flag = KComb(set, s + "" + i, n);
if(flag == true){
return true;
}
else{
set.remove(Integer.valueOf(i));
}
}
}
return false;
}
}