-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_perf.py
408 lines (327 loc) · 13.3 KB
/
test_perf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#!/usr/bin/env python
"""
Copyright (C) 2021 Antonio Tejada
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
See
http://tungwaiyip.info/blog/2009/07/16/ctype_performance_benchmark
https://stackoverflow.com/questions/51384157/cprofile-adds-significant-overhead-when-calling-numba-jit-functions
https://github.com/numba/numba/blob/0.39.0/numba/_dispatcher.c#L490-L585
https://github.com/numba/numba/blob/0.39.0/numba/_dispatcher.c#L286-L344
"""
import ctypes
import functools
import gc
import os
import string
import sys
import time
# numba initializes llvmlite when numba is first imported, set any llvmlite
# options before numba is imported
# (some llvm options can be changed after the fact, but eg asm syntax is not one
# of them)
# llvm options accept single or double dash indistinctly
import llvmlite.binding as llvm
#llvm.set_option('', '--x86-asm-syntax=intel')
#os.environ['NUMBA_ENABLE_AVX'] = "0"
#os.environ['NUMBA_NUM_THREADS'] = "1"
#os.environ['NUMBA_DUMP_ASSEMBLY'] = "1"
#os.environ['NUMBA_DUMP_OPTIMIZED'] = "1"
# XXX Enabling this disables dumping assembly, there's no corresponding config
# option
#os.environ['NUMBA_DISABLE_ERROR_MESSAGE_HIGHLIGHTING'] = "1"
#os.environ['NUMBA_DEBUG_TYPEINFER'] = "1"
import numpy as np
import numba as nb
#nb.config.DUMP_ASSEMBLY = 1
#nb.config.DUMP_OPTIMIZED = 1
#nb.config.ANNOTATE = 1
#nb.config.HTML="numbatest.html"
import pyrr
# Add the parent dir to syspath to be able to import epycc
epycc_dirpath = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(epycc_dirpath)
import epycc
def get_numba_elf(fn):
# See https://stackoverflow.com/questions/42138764/marshaling-object-code-for-a-numba-function
# can get assembler via
# objdump.exe -d nb_transform_vectors.elf > nb_transform_vectors.s
cres = fn.overloads.values()[0] # 0: first and only type signature
elfbytes = cres.library._compiled_object
return elfbytes
def tuplize(lst, count = None):
"""
Convert any non-tuple aggregate (ctypes pointer, python list, numpy array,
etc) of float-ish (float, np.float32, ctypes.c_float) to tuple
"""
if (count is None):
count = len(lst)
# This has to be safe wrt:
# - ctypes pointers which don't have len and don't have iters, so they need
# to be iterated via index and knowing the count
# - np.float32 which have __getitem__ so could be confused with lists if
# checked against __getitem__ in order to call tuplize() again
return tuple(
tuplize(lst[i]) if not isinstance(lst[i], (float, np.float32, ctypes.c_float))
else lst[i] for i in xrange(count))
def nblistize(lst):
nblist = nb.typed.List()
for i in lst:
if (isinstance(i, list)):
nblist.append(nblistize(i))
else:
nblist.append(i)
return nblist
s = """
float dot_prod_vector(float v[4], float w[4])
{
float res = 0.0f;
for (int i = 0; i < 4; ++i)
{
res += v[i] * w[i];
}
return res;
}
void transform_vector(float mat[4][4], float in[4], float out[4])
{
for (int i = 0; i < 4; ++i)
{
out[i] = dot_prod_vector(mat[i], in);
}
}
void transform_vectors(float matrix[4][4], float in[][4], float out[][4], int count) {
for (int i = 0; i < count; ++i)
{
transform_vector(matrix, in[i], out[i]);
}
}
void transform_vectors_empty(float matrix[4][4], float in[][4], float out[][4], int count) {
return;
}
void empty() {
}
"""
def dot_prod(v, w):
return sum([vi * wi for vi, wi in zip(v, w)])
def transform_vector(mat, v):
return [dot_prod(row, v) for row in mat]
def transform_vectors(mat, vs, vsout):
vsout[:] = [transform_vector(mat, v) for v in vs]
def pyrr_transform_vectors(pmat, pvs, pvsout):
# XXX pyrr apply_to_vector can't take list of vectors despite the docs
# saying so, need to do it manually in Python
# see https://github.com/adamlwgriffiths/Pyrr/issues/106
for i in xrange(len(pvs)):
pvsout[i] = pyrr.matrix44.apply_to_vector(pmat, pvs[i])
@nb.njit
def nb_dot_prod(v, w):
# Numba cannot determine the type of sum, switch to loop
# return np.sum([vi * wi for vi, wi in zip(v, w)])
# This needs to be specified as float32 so the result is accumulated in
# float32, even if the arguments are already float32
res = np.float32(0)
for vi, wi in zip(v, w):
res += vi * wi
return res
@nb.njit
def nb_transform_vector(mat, v, vout):
# Numba errors out with
# "Direct iteration is not supported for arrays with dimension > 1"
# Need to use array indexing instead of element traversing
for i in xrange(len(mat)):
vout[i] = nb_dot_prod(mat[i], v)
@nb.njit
def nb_transform_vectors(mat, vs, vsout):
# Numba errors out with
# "Direct iteration is not supported for arrays with dimension > 1"
# Need to use array indexing instead of element traversing
# To get really good performance, don't let numba generate python lists and
# pass arrays for source and destination
for i in xrange(len(vs)):
nb_transform_vector(mat, vs[i], vsout[i])
@nb.njit
def nb_transform_vectors_empty(mat, vs, vsout):
pass
@nb.njit
def nb_empty():
pass
def nested_list_to_ctype_array(l, item_ctype):
def get_ctype(l):
if (isinstance(l, (tuple, list))):
return get_ctype(l[0]) * len(l)
else:
return item_ctype
def deep_copy(l, arr):
if (isinstance(l[0], (tuple, list))):
for i in xrange(len(l)):
deep_copy(l[i], arr[i])
else:
for i in xrange(len(l)):
arr[i] = l[i]
list_ctype = get_ctype(l)
arr = list_ctype()
deep_copy(l, arr)
return arr
def epycc_transform_vectors_numpy(cfunc, npmatrix, npvectors, npvectors_out, count):
cmatrix = npmatrix.ctypes.data_as(cfunc.argtypes[0])
cvectors = npvectors.ctypes.data_as(cfunc.argtypes[1])
cvectors_out = npvectors_out.ctypes.data_as(cfunc.argtypes[2])
ccount = cfunc.argtypes[3](i)
cfunc(cmatrix, cvectors, cvectors_out, ccount)
count = 1000
#count = 5
step = 50
# Use small counts to do a single count visual validation of the result to verify
# results are calculated properly, otherwise do performance testing
do_validation_only = (count <= 10)
vectors = [
[1.0 * _, 2.0 * _, 3.0 * _, 4.0 * _ ] for _ in xrange(count)
]
vectors_out = [
[5.0, 6.0, 7.0, 8.0 ] for _ in xrange(count)
]
matrix = [
[ 0.0, 1.0, 0.0, 0.0 ],
[ 1.0, 0.0, 0.0, 0.0 ],
[ 0.0, 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 0.0, 1.0 ],
]
def python_empty():
pass
def timeit(fn, args = tuple(), reps = 5):
times = []
gc_enabled = gc.isenabled()
# Warm up the function in case it's jitted, etc
fn(*args)
num_calls = 10
# Python exec needs the locals as a new dict if they are going to be
# modified, make a copy
d = dict(locals())
g = globals()
calibrate = False
while (True):
code = """
t = time.clock
start_time = t()
%s
elapsed_time = t()
elapsed_time = elapsed_time - start_time
""" % (string.join(["fn(*args)"] * num_calls, ";"))
ast = compile(code, os.path.basename(__file__), 'exec')
# Add function calls until the elapsed time is over a threshold
elapsed_time = None
if (not calibrate):
break
gc.disable()
exec(ast, g, d)
if (gc_enabled):
gc.enable()
elapsed_time = d['elapsed_time']
#print elapsed_time, num_calls
# time.clock() accuracy is a bit better than 1us, from 9.33e-7s
# to 4.66e-7s on this machine (depending on cpu frequency)
if (elapsed_time > 1e-6):
break
num_calls *= 2
if (calibrate):
# Store the calibration result
times.append(elapsed_time / num_calls)
# Iterate
gc.disable()
for _ in xrange(reps - len(times)):
exec(ast, g, d)
elapsed_time = d['elapsed_time']
times.append(elapsed_time / num_calls)
if (gc_enabled):
gc.enable()
return times
lib = epycc.epycc_compile(s)
start = 1
if (do_validation_only):
start = count
for i in xrange(start, count + 1, step):
npmatrix = np.array(matrix, np.float32)
npvectors = np.array(vectors[:i], np.float32)
npvectors_out = np.array(vectors_out[:i], np.float32)
lmatrix = npmatrix.tolist()
lvectors = npvectors.tolist()
lvectors_out = npvectors_out.tolist()
pmatrix = pyrr.Matrix44(matrix)
pvectors = [pyrr.Vector4([_ for _ in v]) for v in vectors[:i]]
pvectors_out = [pyrr.Vector4([_ for _ in v]) for v in vectors_out[:i]]
cfunc = lib.__raw_transform_vectors_empty
cmatrix = npmatrix.ctypes.data_as(cfunc.argtypes[0])
cvectors = npvectors.ctypes.data_as(cfunc.argtypes[1])
cvectors_out = npvectors_out.ctypes.data_as(cfunc.argtypes[2])
ccount = cfunc.argtypes[3](i)
# Numba deprecates reflected lists so the closest to not using numpy
# parameters is using numba.typed.list or tuples
tmatrix = tuplize(npmatrix.tolist())
tvectors = tuplize(npvectors.tolist())
# Output parameter can't be tuple since it can't be modified, use a numba
# typed list instead
nbvectors_out = nblistize(npvectors_out.tolist())
l = [str(i)]
header = ["params"]
# Note timeit takes care of doing a dummy call before measuring so
# numba's jit is warmed up
for name, fn, args, res in [
("numba empty no params", nb_empty, [], None),
("python empty no params", python_empty, [], None),
("epycc empty no params", lib.empty, [], None),
("numba tuple params only", nb_transform_vectors_empty, (tmatrix, tvectors, nbvectors_out), None),
("epycc tuple params only", lib.transform_vectors_empty, (tmatrix, tvectors, lvectors_out, i), None),
("epycc list params only", lib.transform_vectors_empty, (lmatrix, lvectors, lvectors_out, i), None),
("numba numpy params only", nb_transform_vectors_empty, (npmatrix, npvectors, npvectors_out), None),
("epycc numpy params only", epycc_transform_vectors_numpy, (lib.__raw_transform_vectors_empty, npmatrix, npvectors, npvectors_out, count), None),
("epycc ctypes params only", lib.__raw_transform_vectors_empty, (cmatrix, cvectors, cvectors_out, ccount), None),
("numba tuple", nb_transform_vectors, (tmatrix, tvectors, nbvectors_out), nbvectors_out),
("epycc tuple", lib.transform_vectors, (tmatrix, tvectors, lvectors_out, i), lvectors_out),
("epycc list", lib.transform_vectors, (lmatrix, lvectors, lvectors_out, i), lvectors_out),
("numba numpy", nb_transform_vectors, (npmatrix, npvectors, npvectors_out), npvectors_out ),
("epycc numpy", epycc_transform_vectors_numpy, (lib.__raw_transform_vectors, npmatrix, npvectors, npvectors_out, count), npvectors_out),
("epycc ctypes", lib.__raw_transform_vectors, (cmatrix, cvectors, cvectors_out, ccount), cvectors_out),
("numpy", np.dot, (npvectors, npmatrix.T, npvectors_out), npvectors_out),
("python", transform_vectors, (lmatrix, lvectors, lvectors_out), lvectors_out),
("pyrr", pyrr_transform_vectors, (pmatrix, pvectors, pvectors_out), pvectors_out),
]:
if (do_validation_only):
if (res is not None):
# Initialize all outs because they may be shared across fns and
# the result could carry over hiding if this fn doesn't work
# XXX There should be a better way of doing this than
# replicating the initialization above for every fn
npvectors_out = np.array(vectors_out[:i], np.float32)
lvectors_out = npvectors_out.tolist()
pvectors_out = [pyrr.Vector4([_ for _ in v]) for v in vectors[:i]]
cvectors_out = npvectors_out.ctypes.data_as(cfunc.argtypes[2])
fn(*args)
print name
if (fn == epycc_transform_vectors_numpy):
print tuplize(args[2], count)
elif (fn == np.dot):
print tuplize(args[0], count)
else:
print tuplize(args[1], count)
print tuplize(res, count)
else:
if (i == 1):
header.append(name)
times = timeit(fn, args)
# pick the lowest time
l.append("%f" % (min(times) * 1e6))
if (not do_validation_only):
if (i == 1):
print string.join(header, ",")
print string.join(l, ",")
sys.stdout.flush()
# XXX Test numba vectorize
# XXX Use numba's CPUDispatcher? see https://stackoverflow.com/questions/51384157/cprofile-adds-significant-overhead-when-calling-numba-jit-functions