-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkdtree.py
401 lines (371 loc) · 11.2 KB
/
kdtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
''' Code written and submitted by:
Anuj Rai (M.Tech AI)
Roll No: 2019AIM1003
for CS509 PG Software Lab Mini Project Phase-B (Range Query and deletion in KD-Tress)
Assumptions: The points are loaded into program from the text file(.txt) named as 'DataSet.txt'. Also, every spatial data point has unique id. '''
import copy
from time import time
axis=["X","Y","Z"]
# Structure of Root Node of tree
class RootNode:
def __init__(self,region):
self.left=None
self.right=None
self.region=region
# Structure of Internal node with its field
class InternalNode:
def __init__(self):
self.left = None
self.right = None
self.axis=-1
self.val=-1
self.parent=None
self.childtype=" "
#Structure of Leaf Node
class LeafNode:
def __init__(self,key):
self.val=key
self.parent=None
self.left=None
self.right=None
self.childtype=" "
#Function that return region bounded by point set i.e. max and min points in their dimensions
def region(point_set,n):
mn=[]
mx=[]
for i in (1,n):
mn.append(min(x[i] for x in point_set))
mx.append(max(x[i] for x in point_set))
return [mn,mx]
#Function to find if two regions overlap
def TestIntersect(Reg1,Reg2):
l=len(Reg1[0])
for i in range(0,l):
if Reg1[0][i]>Reg2[1][i] or Reg1[1][i]<Reg2[0][i]:
return False
return True
#Function to find if region1 is inside region 2
def Inside(Reg1,Reg2):
l=len(Reg1[0])
for i in range(0,l):
if Reg1[0][i]<Reg2[0][i] or Reg1[1][i]>Reg2[1][i]:
return False
return True
#Function that returns the axis with maximum spread along all dimensions
def stretch(point_set,n):
mx=0
d=0
for i in (1,n):
xmax=max(x[i] for x in point_set)
xmin=min(x[i] for x in point_set)
if xmax-xmin>mx:
mx=xmax-xmin
d=i;
return d
#Function that returns split points and index of node with median point along axis of maximum spread
def median_index(point_set,n):
sort_list=sorted(point_set, key = lambda x: x[n])
l=len(sort_list)
if l%2==1:
k=l//2+1
else:
k=l//2
p=k
while k<l and sort_list[k-1][n]==sort_list[k][n]:
k=k+1
if k==l:
k=l-1
while k>1 and sort_list[k-1][n]==sort_list[k][n]:
k=k-1
return sort_list[:k],sort_list[k:],sort_list[k-1][n]
#Function that makes tree with the set of points according to value of alpha
def make_tree(tree,point_set,dim,alpha):
#print (point_set)
axis=stretch(point_set,dim)
a,b,c=median_index(point_set,axis)
tree.axis=axis
tree.val=c
#print (a,"----",b,"\n")
if len(a)<=alpha:
P=LeafNode(a)
P.childtype="L"
tree.left=P
tree.left.parent=tree
else:
A=InternalNode();
A.childtype="L"
tree.left=A
make_tree(A,a,dim,alpha)
tree.left.parent=tree
if len(b)<=alpha:
Q=LeafNode(b)
Q.childtype="R"
tree.right=Q
tree.right.parent=tree
else:
B=InternalNode();
B.childtype="R"
tree.right=B
make_tree(B,b,dim,alpha)
tree.right.parent=tree
#Function that prints the information stored at given node for all kind of nodes
def detail(tree,dim):
if isinstance(tree,RootNode):
print ("Root "+str(axis[tree.axis-1])+"="+str(tree.val)+" Region ",tree.region)
elif isinstance(tree,InternalNode):
print ("Internal "+str(axis[tree.axis-1])+"="+str(tree.val)+" Child-Type "+tree.childtype)
else:
print( "Leaf Child-Type "+tree.childtype+" Points =",tree.val)
#Function that returns height of tree
def height(Node):
if Node==None:
return 0
elif isinstance(Node,LeafNode):
return 1
else:
lh=height(Node.left)
rh=height(Node.right)
return max(lh,rh)+1
#Function that prints nodes at given level
def PrintLevel(Node , level,dim):
if level == 1 :
detail(Node,dim)
elif level > 1 :
if Node.left!=None:
PrintLevel(Node.left , level-1,dim)
if Node.right!=None:
PrintLevel(Node.right , level-1,dim)
#Function to visualise the tree according to levels
def Visualize(root,dim):
h = height(root)
for i in range(1, h+1):
print ("Level ",i)
PrintLevel(root, i,dim)
print("\n")
#Function to return common area between two regions. Returns none if they donot intersect
def common_area(Reg1,Reg2):
Reg3=[[],[]]
l=len(Reg1[0])
for i in range(0,l):
Reg3[1].append(min(Reg1[1][i],Reg2[1][i]))
Reg3[0].append(max(Reg1[0][i],Reg2[0][i]))
for i in range(0,l):
if Reg3[0][i]>Reg3[1][i]:
return None
return Reg3
#Function that returns Found if any point is present in given leaf node
def leaf_search(tree,pnt):
P=copy.deepcopy(tree.val)
#print (detail(P))
for j in P:
del j[0]
for j in P:
if j==pnt:
return "Found"
return "Not Found"
#Function that tells if a given point lies inside a region bounded by given points
def PointInside(a,b):
for l1,l2 in zip(a,b[0]):
if l1<l2:
return "No"
for l1,l2 in zip(a,b[1]):
if l1>l2:
return "No"
return "Yes"
#Function to implement naive range query
def NaiveRangeQuery(point_set,Region):
P=copy.deepcopy(point_set)
ind=[]
cnt=-1
for j in P:
del j[0]
for j in P:
cnt=cnt+1
if PointInside(j,Region)=="Yes":
ind.append(cnt)
return ind
#Function to search if given point is present in the KD-tree
def search_tree(tree,pnt,regn):
if PointInside(pnt,regn)=="No":
return "Not Found"
reg=copy.deepcopy(regn)
if isinstance(tree,RootNode) or isinstance(tree,InternalNode):
if(pnt[tree.axis-1]<=tree.val):
reg[1][tree.axis-1]=tree.val
if isinstance(tree.left,LeafNode) and PointInside(pnt,reg)=="Yes":
return leaf_search(tree.left,pnt)
else:
return search_tree(tree.left,pnt,reg)
else:
reg[0][tree.axis-1]=tree.val
if isinstance(tree.right,LeafNode) and PointInside(pnt,reg)=="Yes":
return leaf_search(tree.right,pnt)
else:
return search_tree(tree.right,pnt,reg)
#Function that inserts a point(ID,coordinates) in a tree
def insert_record(tree,pnt,alpha):
if isinstance(tree,RootNode) :
if PointInside(pnt,tree.region)=="No":
for i in range(1,len(pnt)):
tree.region[0][i-1]=min(pnt[i],tree.region[0][i-1])
tree.region[1][i-1]=max(pnt[i],tree.region[1][i-1])
if(pnt[tree.axis]<=tree.val):
insert_record(tree.left,pnt,alpha)
else:
insert_record(tree.right,pnt,alpha)
elif isinstance(tree,InternalNode):
if(pnt[tree.axis]<=tree.val):
insert_record(tree.left,pnt,alpha)
else :
insert_record(tree.right,pnt,alpha)
else:
k=tree.val
tree.val.append(pnt)
if len(k)>alpha:
R=InternalNode()
if tree.childtype=="L":
tree.parent.left=R
R.childtype="L"
else:
tree.parent.right=R
R.childtype="L"
R.parent=tree.parent
make_tree(R,tree.val,2,alpha)
#Function that loads a list of points from a text file
def load_points():
fil=open("DataSet.txt","r+")
n=fil.readlines()
points=[]
for i in n:
points.append(list(map(int,i.split())))
fil.close()
return points
#Function to delete from leaf node
def delete_from_leaf(tree,pnt):
P=copy.deepcopy(tree.val)
#print (detail(P))
flag=0
for j in P:
del j[0]
cnt=-1
for j in P:
cnt=cnt+1
if j==pnt:
flag=1
tree.val.pop(cnt)
if len(tree.val)==0:
if tree.childtype=="L":
if tree.parent.childtype=="L":
tree.parent.parent.left=tree.parent.right
tree.parent.right.childtype="L"
else:
tree.parent.parent.right=tree.parent.right
else:
if tree.parent.childtype=="L":
tree.parent.parent.left=tree.parent.left
else:
tree.parent.parent.right=tree.parent.left
tree.parent.left.childtype="R"
break
if flag==0:
print("Not Found")
else:
print("Deleted point ",pnt)
#Function to delete a node
def delete_point(tree,pnt,regn):
if PointInside(pnt,regn)=="No":
return "Not Found"
reg=copy.deepcopy(regn)
if isinstance(tree,RootNode) or isinstance(tree,InternalNode):
if(pnt[tree.axis-1]<=tree.val):
reg[1][tree.axis-1]=tree.val
if isinstance(tree.left,LeafNode) and PointInside(pnt,reg)=="Yes":
return delete_from_leaf(tree.left,pnt)
else:
return delete_point(tree.left,pnt,reg)
else:
reg[0][tree.axis-1]=tree.val
if isinstance(tree.right,LeafNode) and PointInside(pnt,reg)=="Yes":
return delete_from_leaf(tree.right,pnt)
else:
return delete_point(tree.right,pnt,reg)
#Function that inserts a given point in already built tree
def insertion(kd_tree,alpha,dim):
pnt = list(map(int, input("Enter point ").split()) )
insert_record(kd_tree,pnt,alpha)
#Visualize(kd_tree,dim)
#Function that searches for a point in tree
def point_search(kd_tree):
pnt = list(map(int, input("Enter point for search: ").split()) )
print(search_tree(kd_tree,pnt,kd_tree.region))
#Function for deletion
def deletion(kd_tree):
pnt = list(map(int, input("Enter point ").split()) )
delete_point(kd_tree,pnt,kd_tree.region)
#Function to insert points in output list of range query
def push_all(tree,stk,Reg):
if isinstance(tree,LeafNode):
k=copy.deepcopy(tree.val)
for i in NaiveRangeQuery(k,Reg):
stk.append(tree.val[i])
else:
if tree.left!=None:
push_all(tree.left,stk,Reg)
if tree.right!=None:
push_all(tree.right,stk,Reg)
#Fucntion for range query
def range_query(stk,tree,Reg1,Reg2):
if TestIntersect(Reg1,Reg2):
if Inside(Reg1,Reg2):
push_all(tree,stk,Reg2)
elif isinstance(tree,LeafNode):
push_all(tree,stk,Reg2)
else:
Reg3=copy.deepcopy(Reg1)
Reg4=copy.deepcopy(Reg1)
Reg3[1][tree.axis-1]=tree.val
Reg4[0][tree.axis-1]=tree.val
if tree.left!=None:
range_query(stk,tree.left,Reg3,Reg2)
if tree.right!=None:
range_query(stk,tree.right,Reg4,Reg2)
#Function to execute range query
def exec_range_query(kd_tree):
Reg=[]
pnt = list(map(int, input("Enter minima of region ").split()) )
Reg.append(pnt)
pnt = list(map(int, input("Enter maxima of region ").split()) )
Reg.append(pnt)
stk=[]
#t1=time()
range_query(stk,kd_tree,kd_tree.region,Reg)
if len(stk)>0:
print (stk)
else:
print ("No point found")
#t2=time()
#R.append(t2-t1)
#Driver function for all the operations: Bulk loading, point search and insertion
def main():
points=load_points()
dimension=len(points[0])-1
alpha=int(input("Enter alpha : "))
Reg=region(points,dimension)
kd_tree=RootNode(Reg);
make_tree(kd_tree,points,dimension,alpha)
print ("KD-tree Bulk-Loading complete")
ip=1
while ip!=6:
ip=int(input("\n 1.Visualize \n 2.Search\n 3.Insertion of point\n 4.Delete\n 5.Range Query\n 6.Exit\n"))
if ip==1:
Visualize(kd_tree, dimension)
elif ip==3:
insertion(kd_tree,alpha,dimension)
elif ip==2:
point_search(kd_tree)
elif ip==4:
deletion(kd_tree)
elif ip==5:
exec_range_query(kd_tree)
if __name__== "__main__":
main()