From 18cd68720e71619ca11da4be05e2362798d4b905 Mon Sep 17 00:00:00 2001 From: Slobodan Ilic Date: Mon, 11 Sep 2023 17:20:51 +0200 Subject: [PATCH] Add examples for MapArray.from_arrays --- python/pyarrow/array.pxi | 73 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 73 insertions(+) diff --git a/python/pyarrow/array.pxi b/python/pyarrow/array.pxi index e26b1ad3291b5..1d7501f81e2b4 100644 --- a/python/pyarrow/array.pxi +++ b/python/pyarrow/array.pxi @@ -2358,11 +2358,84 @@ cdef class MapArray(ListArray): offsets : array-like or sequence (int32 type) keys : array-like or sequence (any type) items : array-like or sequence (any type) + mask : pyarrow.Array[bool] (optional) + Indicate which values are null (True) or not null (False). pool : MemoryPool Returns ------- map_array : MapArray + + Examples + -------- + First construct a rectangular model of the data. The total of 5 respondents + answered the question "How much did you like the movie x?". The value -1 + means that the values is missing. + + >>> movies_rectangular = np.ma.masked_array([ + >>> [10, -1, -1], + >>> [8, 4, 5], + >>> [-1, 10, 3], + >>> [-1, -1, -1], + >>> [-1, -1, -1] + >>> ], + >>> [ + >>> [False, True, True], + >>> [False, False, False], + >>> [True, False, False], + >>> [True, True, True], + >>> [True, True, True], + >>> ]) + + To represent the same data with the MapArray and from_arrays, the data is + formed like this: + + >>> offsets = [ + >>> 0, # -- row 1 start + >>> 1, # -- row 2 start + >>> 4, # -- row 3 start + >>> 6, # -- row 4 start + >>> 6, # -- row 5 start + >>> 6, # -- row 5 end + >>> ] + >>> movies = [ + >>> "Dark Knight", # ---------------------------------- row 1 + >>> "Dark Knight", "Meet the Parents", "Superman", # -- row 2 + >>> "Meet the Parents", "Superman", # ----------------- row 3 + >>> ] + >>> likings = [ + >>> 10, # -------- row 1 + >>> 8, 4, 9, # --- row 2 + >>> 10, 5 # ------ row 3 + >>> ] + >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() + 0 [(Dark Knight, 10)] + 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... + 2 [(Meet the Parents, 10), (Superman, 5)] + 3 [] + 4 [] + dtype: object + + If the data in the empty rows needs to be marked as missing, it's possible + to do so by modifying the offsets argument, so that we specify `None` as + the starting positions of the rows we want marked as missing. The end row + offset still has to refer to the existing value from keys (and values): + + >>> offsets = [ + >>> 0, # ----- row 1 start + >>> 1, # ----- row 2 start + >>> 4, # ----- row 3 start + >>> None, # -- row 4 start + >>> None, # -- row 5 start + >>> 6, # ----- row 5 end + >>> ] + >>> pa.MapArray.from_arrays(offsets, movies, likings).to_pandas() + 0 [(Dark Knight, 10)] + 1 [(Dark Knight, 8), (Meet the Parents, 4), (Sup... + 2 [(Meet the Parents, 10), (Superman, 5)] + 3 None + 4 None + dtype: object """ cdef: Array _offsets, _keys, _items