Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

训练 xlvector的ocr和另一个类似的车牌识别始终精度为0,但作者训练是可以达到八九十精度的,新版mxnet有bug吗 #3529

Closed
hopef opened this issue Oct 15, 2016 · 15 comments

Comments

@hopef
Copy link

hopef commented Oct 15, 2016

一个是验证码ocr识别,作者文章介绍相当详细,表示可以达到98%:
https://github.com/xlvector/learning-dl/tree/master/mxnet/ocr

另一个是车牌识别,类似的,作者说达到了81%:
https://github.com/hopef/end-to-end-for-chinese-plate-recognition

可是我完整的跑下来,却两个案例始终是0,为什么啊,感觉是不是mxnet新版有bug啊

@winstywang
Copy link
Contributor

You have to provide more details to diagnose the issues.

@winstywang
Copy link
Contributor

@xlvector

@hopef
Copy link
Author

hopef commented Oct 16, 2016

非常感谢您的答复,我是在windows下win10 x64系统python跑的,测试了20160531_win2012_x64_gpu、20160419_win2012_x64_gpu、20160321_win2012_x64_gpu(该版本少了transpose symbol)共3个版本,下载自:https://github.com/dmlc/mxnet/releases 已经编译好的包包,使用GPU均完整跑完上面说的案例,以及使用CPU跑完xlvector的ocr案例,最终结果精度都是0(有时会是0.000110)

之所以怀疑是否windows版本的mxnet有bug,是因为我看博客上其他人也遇到类似的问题(连接找不到了),正准备去在ubuntu上测试看的,因为他们说成功的好像都是在linux下。

我还测试调大了数据量,比如从10万调整到了100万,学习率从0.001到0.01,以及batch_size从8调整到260等等,测试无数次没有一次成的,基本都是突然到0.003,然后慢慢掉回到0,我确认过期间产生的图片是正常的,一切看似都正常。同时我测试mxnet里面的案例比如nmist的结果也是正常,到底是什么缘故呢,谢谢!

以下是我刚刚跑的输出,代码一个没动,即使我无论怎么修改参数,结果也都类似:
Q:\Anaconda2\python.exe E:/dl/mxNet/workspace/my-ocr/cnn_ocr.py
2016-10-16 13:54:42,421 Start training with [gpu(0)]
2016-10-16 13:55:04,963 Epoch[0] Batch [50] Speed: 35.61 samples/sec Train-Accuracy=0.000000
2016-10-16 13:55:15,674 Epoch[0] Batch [100] Speed: 37.34 samples/sec Train-Accuracy=0.000000
2016-10-16 13:55:26,388 Epoch[0] Batch [150] Speed: 37.33 samples/sec Train-Accuracy=0.000000
2016-10-16 13:55:38,168 Epoch[0] Batch [200] Speed: 33.96 samples/sec Train-Accuracy=0.000000
2016-10-16 13:55:49,072 Epoch[0] Batch [250] Speed: 36.68 samples/sec Train-Accuracy=0.000000
2016-10-16 13:55:59,647 Epoch[0] Batch [300] Speed: 37.83 samples/sec Train-Accuracy=0.000000
2016-10-16 13:56:10,292 Epoch[0] Batch [350] Speed: 37.58 samples/sec Train-Accuracy=0.000000
2016-10-16 13:56:20,934 Epoch[0] Batch [400] Speed: 37.59 samples/sec Train-Accuracy=0.000000
2016-10-16 13:56:31,569 Epoch[0] Batch [450] Speed: 37.61 samples/sec Train-Accuracy=0.000000
2016-10-16 13:56:42,137 Epoch[0] Batch [500] Speed: 37.85 samples/sec Train-Accuracy=0.000000
2016-10-16 13:56:53,062 Epoch[0] Batch [550] Speed: 36.61 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:04,056 Epoch[0] Batch [600] Speed: 36.38 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:15,740 Epoch[0] Batch [650] Speed: 34.24 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:27,072 Epoch[0] Batch [700] Speed: 35.30 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:37,792 Epoch[0] Batch [750] Speed: 37.32 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:48,529 Epoch[0] Batch [800] Speed: 37.25 samples/sec Train-Accuracy=0.000000
2016-10-16 13:57:59,082 Epoch[0] Batch [850] Speed: 37.90 samples/sec Train-Accuracy=0.000000
2016-10-16 13:58:09,960 Epoch[0] Batch [900] Speed: 36.77 samples/sec Train-Accuracy=0.000000
2016-10-16 13:58:20,871 Epoch[0] Batch [950] Speed: 36.66 samples/sec Train-Accuracy=0.000000
2016-10-16 13:58:32,723 Epoch[0] Batch [1000] Speed: 33.75 samples/sec Train-Accuracy=0.000000
2016-10-16 13:58:44,013 Epoch[0] Batch [1050] Speed: 35.43 samples/sec Train-Accuracy=0.000000
2016-10-16 13:58:55,960 Epoch[0] Batch [1100] Speed: 33.48 samples/sec Train-Accuracy=0.000114
2016-10-16 13:59:07,135 Epoch[0] Batch [1150] Speed: 35.79 samples/sec Train-Accuracy=0.000109
2016-10-16 13:59:18,184 Epoch[0] Batch [1200] Speed: 36.22 samples/sec Train-Accuracy=0.000104
2016-10-16 13:59:29,164 Epoch[0] Batch [1250] Speed: 36.43 samples/sec Train-Accuracy=0.000100
2016-10-16 13:59:40,292 Epoch[0] Batch [1300] Speed: 35.96 samples/sec Train-Accuracy=0.000096
2016-10-16 13:59:51,341 Epoch[0] Batch [1350] Speed: 36.21 samples/sec Train-Accuracy=0.000093
2016-10-16 14:00:02,417 Epoch[0] Batch [1400] Speed: 36.11 samples/sec Train-Accuracy=0.000089
2016-10-16 14:00:13,599 Epoch[0] Batch [1450] Speed: 35.77 samples/sec Train-Accuracy=0.000086
2016-10-16 14:00:24,845 Epoch[0] Batch [1500] Speed: 35.57 samples/sec Train-Accuracy=0.000083
2016-10-16 14:00:35,529 Epoch[0] Batch [1550] Speed: 37.44 samples/sec Train-Accuracy=0.000081
2016-10-16 14:00:46,765 Epoch[0] Batch [1600] Speed: 35.60 samples/sec Train-Accuracy=0.000078
2016-10-16 14:00:58,673 Epoch[0] Batch [1650] Speed: 33.59 samples/sec Train-Accuracy=0.000076
2016-10-16 14:01:09,602 Epoch[0] Batch [1700] Speed: 36.60 samples/sec Train-Accuracy=0.000074
2016-10-16 14:01:20,693 Epoch[0] Batch [1750] Speed: 36.07 samples/sec Train-Accuracy=0.000071
2016-10-16 14:01:31,543 Epoch[0] Batch [1800] Speed: 36.86 samples/sec Train-Accuracy=0.000069
2016-10-16 14:01:42,374 Epoch[0] Batch [1850] Speed: 36.93 samples/sec Train-Accuracy=0.000068
2016-10-16 14:01:53,767 Epoch[0] Batch [1900] Speed: 35.11 samples/sec Train-Accuracy=0.000066
2016-10-16 14:02:04,687 Epoch[0] Batch [1950] Speed: 36.63 samples/sec Train-Accuracy=0.000064
2016-10-16 14:02:15,611 Epoch[0] Batch [2000] Speed: 36.62 samples/sec Train-Accuracy=0.000063
2016-10-16 14:02:26,907 Epoch[0] Batch [2050] Speed: 35.41 samples/sec Train-Accuracy=0.000061
2016-10-16 14:02:38,559 Epoch[0] Batch [2100] Speed: 34.34 samples/sec Train-Accuracy=0.000060
2016-10-16 14:02:50,102 Epoch[0] Batch [2150] Speed: 34.65 samples/sec Train-Accuracy=0.000058
2016-10-16 14:03:00,940 Epoch[0] Batch [2200] Speed: 36.91 samples/sec Train-Accuracy=0.000057
2016-10-16 14:03:12,061 Epoch[0] Batch [2250] Speed: 35.97 samples/sec Train-Accuracy=0.000056
2016-10-16 14:03:23,259 Epoch[0] Batch [2300] Speed: 35.72 samples/sec Train-Accuracy=0.000054
2016-10-16 14:03:34,193 Epoch[0] Batch [2350] Speed: 36.59 samples/sec Train-Accuracy=0.000053
2016-10-16 14:03:45,267 Epoch[0] Batch [2400] Speed: 36.12 samples/sec Train-Accuracy=0.000052
2016-10-16 14:03:56,384 Epoch[0] Batch [2450] Speed: 35.98 samples/sec Train-Accuracy=0.000051
2016-10-16 14:04:07,927 Epoch[0] Batch [2500] Speed: 34.66 samples/sec Train-Accuracy=0.000050
2016-10-16 14:04:18,779 Epoch[0] Batch [2550] Speed: 36.86 samples/sec Train-Accuracy=0.000049
2016-10-16 14:04:29,766 Epoch[0] Batch [2600] Speed: 36.41 samples/sec Train-Accuracy=0.000048
2016-10-16 14:04:40,654 Epoch[0] Batch [2650] Speed: 36.73 samples/sec Train-Accuracy=0.000094
2016-10-16 14:04:51,398 Epoch[0] Batch [2700] Speed: 37.23 samples/sec Train-Accuracy=0.000093
2016-10-16 14:05:03,102 Epoch[0] Batch [2750] Speed: 34.17 samples/sec Train-Accuracy=0.000091
2016-10-16 14:05:15,450 Epoch[0] Batch [2800] Speed: 32.39 samples/sec Train-Accuracy=0.000089
2016-10-16 14:05:26,835 Epoch[0] Batch [2850] Speed: 35.14 samples/sec Train-Accuracy=0.000088
2016-10-16 14:05:37,698 Epoch[0] Batch [2900] Speed: 36.82 samples/sec Train-Accuracy=0.000086
2016-10-16 14:05:48,759 Epoch[0] Batch [2950] Speed: 36.17 samples/sec Train-Accuracy=0.000085
2016-10-16 14:05:59,470 Epoch[0] Batch [3000] Speed: 37.34 samples/sec Train-Accuracy=0.000083
2016-10-16 14:06:10,187 Epoch[0] Batch [3050] Speed: 37.33 samples/sec Train-Accuracy=0.000082
2016-10-16 14:06:20,894 Epoch[0] Batch [3100] Speed: 37.36 samples/sec Train-Accuracy=0.000081
2016-10-16 14:06:31,592 Epoch[0] Batch [3150] Speed: 37.39 samples/sec Train-Accuracy=0.000079
2016-10-16 14:06:42,555 Epoch[0] Batch [3200] Speed: 36.49 samples/sec Train-Accuracy=0.000117
2016-10-16 14:06:53,131 Epoch[0] Batch [3250] Speed: 37.83 samples/sec Train-Accuracy=0.000115
2016-10-16 14:07:03,947 Epoch[0] Batch [3300] Speed: 36.98 samples/sec Train-Accuracy=0.000114
2016-10-16 14:07:15,009 Epoch[0] Batch [3350] Speed: 36.16 samples/sec Train-Accuracy=0.000112
2016-10-16 14:07:26,183 Epoch[0] Batch [3400] Speed: 35.80 samples/sec Train-Accuracy=0.000110
2016-10-16 14:07:36,937 Epoch[0] Batch [3450] Speed: 37.19 samples/sec Train-Accuracy=0.000109
2016-10-16 14:07:47,920 Epoch[0] Batch [3500] Speed: 36.42 samples/sec Train-Accuracy=0.000107
2016-10-16 14:07:58,563 Epoch[0] Batch [3550] Speed: 37.58 samples/sec Train-Accuracy=0.000106
2016-10-16 14:08:09,229 Epoch[0] Batch [3600] Speed: 37.51 samples/sec Train-Accuracy=0.000104
2016-10-16 14:08:19,759 Epoch[0] Batch [3650] Speed: 37.99 samples/sec Train-Accuracy=0.000103
2016-10-16 14:08:30,253 Epoch[0] Batch [3700] Speed: 38.11 samples/sec Train-Accuracy=0.000101
2016-10-16 14:08:41,559 Epoch[0] Batch [3750] Speed: 35.38 samples/sec Train-Accuracy=0.000100
2016-10-16 14:08:53,924 Epoch[0] Batch [3800] Speed: 32.35 samples/sec Train-Accuracy=0.000132
2016-10-16 14:09:05,388 Epoch[0] Batch [3850] Speed: 34.89 samples/sec Train-Accuracy=0.000130
2016-10-16 14:09:16,142 Epoch[0] Batch [3900] Speed: 37.19 samples/sec Train-Accuracy=0.000128
2016-10-16 14:09:27,046 Epoch[0] Batch [3950] Speed: 36.68 samples/sec Train-Accuracy=0.000158
2016-10-16 14:09:38,914 Epoch[0] Batch [4000] Speed: 33.70 samples/sec Train-Accuracy=0.000156
2016-10-16 14:09:50,390 Epoch[0] Batch [4050] Speed: 34.86 samples/sec Train-Accuracy=0.000154
2016-10-16 14:10:02,068 Epoch[0] Batch [4100] Speed: 34.25 samples/sec Train-Accuracy=0.000152
2016-10-16 14:10:13,315 Epoch[0] Batch [4150] Speed: 35.57 samples/sec Train-Accuracy=0.000151
2016-10-16 14:10:24,072 Epoch[0] Batch [4200] Speed: 37.19 samples/sec Train-Accuracy=0.000149
2016-10-16 14:10:35,302 Epoch[0] Batch [4250] Speed: 35.62 samples/sec Train-Accuracy=0.000147
2016-10-16 14:10:46,017 Epoch[0] Batch [4300] Speed: 37.33 samples/sec Train-Accuracy=0.000145
2016-10-16 14:10:58,246 Epoch[0] Batch [4350] Speed: 32.71 samples/sec Train-Accuracy=0.000144
2016-10-16 14:11:08,778 Epoch[0] Batch [4400] Speed: 37.98 samples/sec Train-Accuracy=0.000142
2016-10-16 14:11:19,240 Epoch[0] Batch [4450] Speed: 38.23 samples/sec Train-Accuracy=0.000169
2016-10-16 14:11:29,910 Epoch[0] Batch [4500] Speed: 37.49 samples/sec Train-Accuracy=0.000167
2016-10-16 14:11:40,594 Epoch[0] Batch [4550] Speed: 37.44 samples/sec Train-Accuracy=0.000165
2016-10-16 14:11:51,384 Epoch[0] Batch [4600] Speed: 37.07 samples/sec Train-Accuracy=0.000163
2016-10-16 14:12:02,084 Epoch[0] Batch [4650] Speed: 37.38 samples/sec Train-Accuracy=0.000161
2016-10-16 14:12:12,953 Epoch[0] Batch [4700] Speed: 36.80 samples/sec Train-Accuracy=0.000160
2016-10-16 14:12:23,698 Epoch[0] Batch [4750] Speed: 37.22 samples/sec Train-Accuracy=0.000184
2016-10-16 14:12:34,357 Epoch[0] Batch [4800] Speed: 37.58 samples/sec Train-Accuracy=0.000182
2016-10-16 14:12:45,108 Epoch[0] Batch [4850] Speed: 37.20 samples/sec Train-Accuracy=0.000180
2016-10-16 14:12:56,069 Epoch[0] Batch [4900] Speed: 36.50 samples/sec Train-Accuracy=0.000179
2016-10-16 14:13:07,680 Epoch[0] Batch [4950] Speed: 34.45 samples/sec Train-Accuracy=0.000177
2016-10-16 14:13:18,812 Epoch[0] Batch [5000] Speed: 35.94 samples/sec Train-Accuracy=0.000175
2016-10-16 14:13:29,709 Epoch[0] Batch [5050] Speed: 36.71 samples/sec Train-Accuracy=0.000173
2016-10-16 14:13:43,549 Epoch[0] Batch [5100] Speed: 28.90 samples/sec Train-Accuracy=0.000172
2016-10-16 14:14:01,207 Epoch[0] Batch [5150] Speed: 22.65 samples/sec Train-Accuracy=0.000170
2016-10-16 14:14:12,332 Epoch[0] Batch [5200] Speed: 35.95 samples/sec Train-Accuracy=0.000168
2016-10-16 14:14:23,078 Epoch[0] Batch [5250] Speed: 37.22 samples/sec Train-Accuracy=0.000167
2016-10-16 14:14:33,868 Epoch[0] Batch [5300] Speed: 37.07 samples/sec Train-Accuracy=0.000165
2016-10-16 14:14:45,506 Epoch[0] Batch [5350] Speed: 34.37 samples/sec Train-Accuracy=0.000164
2016-10-16 14:14:56,625 Epoch[0] Batch [5400] Speed: 35.97 samples/sec Train-Accuracy=0.000162
2016-10-16 14:15:07,729 Epoch[0] Batch [5450] Speed: 36.03 samples/sec Train-Accuracy=0.000161
2016-10-16 14:15:19,282 Epoch[0] Batch [5500] Speed: 34.62 samples/sec Train-Accuracy=0.000159
2016-10-16 14:15:30,171 Epoch[0] Batch [5550] Speed: 36.73 samples/sec Train-Accuracy=0.000158
2016-10-16 14:15:40,987 Epoch[0] Batch [5600] Speed: 36.98 samples/sec Train-Accuracy=0.000156
2016-10-16 14:15:52,367 Epoch[0] Batch [5650] Speed: 35.15 samples/sec Train-Accuracy=0.000155
2016-10-16 14:16:03,203 Epoch[0] Batch [5700] Speed: 36.91 samples/sec Train-Accuracy=0.000154
2016-10-16 14:16:14,299 Epoch[0] Batch [5750] Speed: 36.05 samples/sec Train-Accuracy=0.000152
2016-10-16 14:16:24,776 Epoch[0] Batch [5800] Speed: 38.18 samples/sec Train-Accuracy=0.000151
2016-10-16 14:16:35,551 Epoch[0] Batch [5850] Speed: 37.13 samples/sec Train-Accuracy=0.000150
2016-10-16 14:16:46,124 Epoch[0] Batch [5900] Speed: 37.83 samples/sec Train-Accuracy=0.000191
2016-10-16 14:16:56,790 Epoch[0] Batch [5950] Speed: 37.50 samples/sec Train-Accuracy=0.000189
2016-10-16 14:17:07,740 Epoch[0] Batch [6000] Speed: 36.53 samples/sec Train-Accuracy=0.000188
2016-10-16 14:17:18,552 Epoch[0] Batch [6050] Speed: 37.00 samples/sec Train-Accuracy=0.000186
2016-10-16 14:17:29,190 Epoch[0] Batch [6100] Speed: 37.60 samples/sec Train-Accuracy=0.000184
2016-10-16 14:17:40,305 Epoch[0] Batch [6150] Speed: 35.99 samples/sec Train-Accuracy=0.000183
2016-10-16 14:17:51,128 Epoch[0] Batch [6200] Speed: 36.95 samples/sec Train-Accuracy=0.000181
2016-10-16 14:18:02,338 Epoch[0] Batch [6250] Speed: 35.69 samples/sec Train-Accuracy=0.000180
2016-10-16 14:18:13,667 Epoch[0] Batch [6300] Speed: 35.30 samples/sec Train-Accuracy=0.000179
2016-10-16 14:18:25,042 Epoch[0] Batch [6350] Speed: 35.16 samples/sec Train-Accuracy=0.000177
2016-10-16 14:18:36,565 Epoch[0] Batch [6400] Speed: 34.71 samples/sec Train-Accuracy=0.000176
2016-10-16 14:18:47,602 Epoch[0] Batch [6450] Speed: 36.24 samples/sec Train-Accuracy=0.000174
2016-10-16 14:18:58,246 Epoch[0] Batch [6500] Speed: 37.58 samples/sec Train-Accuracy=0.000173
2016-10-16 14:19:08,930 Epoch[0] Batch [6550] Speed: 37.44 samples/sec Train-Accuracy=0.000172
2016-10-16 14:19:19,809 Epoch[0] Batch [6600] Speed: 36.77 samples/sec Train-Accuracy=0.000170
2016-10-16 14:19:30,454 Epoch[0] Batch [6650] Speed: 37.57 samples/sec Train-Accuracy=0.000169
2016-10-16 14:19:41,404 Epoch[0] Batch [6700] Speed: 36.53 samples/sec Train-Accuracy=0.000168
2016-10-16 14:19:52,322 Epoch[0] Batch [6750] Speed: 36.64 samples/sec Train-Accuracy=0.000167
2016-10-16 14:20:04,372 Epoch[0] Batch [6800] Speed: 33.20 samples/sec Train-Accuracy=0.000165
2016-10-16 14:20:15,121 Epoch[0] Batch [6850] Speed: 37.21 samples/sec Train-Accuracy=0.000164
2016-10-16 14:20:27,112 Epoch[0] Batch [6900] Speed: 33.36 samples/sec Train-Accuracy=0.000163
2016-10-16 14:20:38,790 Epoch[0] Batch [6950] Speed: 34.25 samples/sec Train-Accuracy=0.000162
2016-10-16 14:20:49,720 Epoch[0] Batch [7000] Speed: 36.60 samples/sec Train-Accuracy=0.000161
2016-10-16 14:21:01,187 Epoch[0] Batch [7050] Speed: 34.88 samples/sec Train-Accuracy=0.000160
2016-10-16 14:21:12,345 Epoch[0] Batch [7100] Speed: 35.85 samples/sec Train-Accuracy=0.000158
2016-10-16 14:21:23,109 Epoch[0] Batch [7150] Speed: 37.16 samples/sec Train-Accuracy=0.000157
2016-10-16 14:21:34,770 Epoch[0] Batch [7200] Speed: 34.30 samples/sec Train-Accuracy=0.000156
2016-10-16 14:21:46,250 Epoch[0] Batch [7250] Speed: 34.84 samples/sec Train-Accuracy=0.000155
2016-10-16 14:21:57,700 Epoch[0] Batch [7300] Speed: 34.93 samples/sec Train-Accuracy=0.000154
2016-10-16 14:22:08,848 Epoch[0] Batch [7350] Speed: 35.88 samples/sec Train-Accuracy=0.000153
2016-10-16 14:22:19,385 Epoch[0] Batch [7400] Speed: 37.96 samples/sec Train-Accuracy=0.000152
2016-10-16 14:22:30,157 Epoch[0] Batch [7450] Speed: 37.14 samples/sec Train-Accuracy=0.000151
2016-10-16 14:22:41,640 Epoch[0] Batch [7500] Speed: 34.83 samples/sec Train-Accuracy=0.000150
2016-10-16 14:22:53,025 Epoch[0] Batch [7550] Speed: 35.13 samples/sec Train-Accuracy=0.000149
2016-10-16 14:23:04,151 Epoch[0] Batch [7600] Speed: 35.95 samples/sec Train-Accuracy=0.000148
2016-10-16 14:23:15,223 Epoch[0] Batch [7650] Speed: 36.12 samples/sec Train-Accuracy=0.000147
2016-10-16 14:23:26,520 Epoch[0] Batch [7700] Speed: 35.41 samples/sec Train-Accuracy=0.000146
2016-10-16 14:23:37,346 Epoch[0] Batch [7750] Speed: 36.95 samples/sec Train-Accuracy=0.000145
2016-10-16 14:23:48,266 Epoch[0] Batch [7800] Speed: 36.63 samples/sec Train-Accuracy=0.000144
2016-10-16 14:23:59,401 Epoch[0] Batch [7850] Speed: 35.92 samples/sec Train-Accuracy=0.000143
2016-10-16 14:24:10,174 Epoch[0] Batch [7900] Speed: 37.13 samples/sec Train-Accuracy=0.000142
2016-10-16 14:24:21,039 Epoch[0] Batch [7950] Speed: 36.82 samples/sec Train-Accuracy=0.000142
2016-10-16 14:24:32,750 Epoch[0] Batch [8000] Speed: 34.16 samples/sec Train-Accuracy=0.000141
2016-10-16 14:24:43,957 Epoch[0] Batch [8050] Speed: 35.69 samples/sec Train-Accuracy=0.000140
2016-10-16 14:24:54,756 Epoch[0] Batch [8100] Speed: 37.04 samples/sec Train-Accuracy=0.000139
2016-10-16 14:25:05,727 Epoch[0] Batch [8150] Speed: 36.46 samples/sec Train-Accuracy=0.000138
2016-10-16 14:25:16,562 Epoch[0] Batch [8200] Speed: 36.92 samples/sec Train-Accuracy=0.000137
2016-10-16 14:25:27,746 Epoch[0] Batch [8250] Speed: 35.77 samples/sec Train-Accuracy=0.000136
2016-10-16 14:25:38,733 Epoch[0] Batch [8300] Speed: 36.41 samples/sec Train-Accuracy=0.000136
2016-10-16 14:25:49,651 Epoch[0] Batch [8350] Speed: 36.64 samples/sec Train-Accuracy=0.000135
2016-10-16 14:26:00,509 Epoch[0] Batch [8400] Speed: 36.84 samples/sec Train-Accuracy=0.000134
2016-10-16 14:26:11,196 Epoch[0] Batch [8450] Speed: 37.43 samples/sec Train-Accuracy=0.000133
2016-10-16 14:26:22,009 Epoch[0] Batch [8500] Speed: 36.99 samples/sec Train-Accuracy=0.000132
2016-10-16 14:26:32,766 Epoch[0] Batch [8550] Speed: 37.18 samples/sec Train-Accuracy=0.000132
2016-10-16 14:26:43,509 Epoch[0] Batch [8600] Speed: 37.24 samples/sec Train-Accuracy=0.000131
2016-10-16 14:26:54,230 Epoch[0] Batch [8650] Speed: 37.31 samples/sec Train-Accuracy=0.000130
2016-10-16 14:27:04,954 Epoch[0] Batch [8700] Speed: 37.30 samples/sec Train-Accuracy=0.000129
2016-10-16 14:27:16,040 Epoch[0] Batch [8750] Speed: 36.08 samples/sec Train-Accuracy=0.000129
2016-10-16 14:27:26,933 Epoch[0] Batch [8800] Speed: 36.72 samples/sec Train-Accuracy=0.000128
2016-10-16 14:27:38,073 Epoch[0] Batch [8850] Speed: 35.96 samples/sec Train-Accuracy=0.000127
2016-10-16 14:27:49,289 Epoch[0] Batch [8900] Speed: 35.67 samples/sec Train-Accuracy=0.000126
2016-10-16 14:28:00,066 Epoch[0] Batch [8950] Speed: 37.11 samples/sec Train-Accuracy=0.000126
2016-10-16 14:28:11,292 Epoch[0] Batch [9000] Speed: 35.63 samples/sec Train-Accuracy=0.000125
2016-10-16 14:28:22,788 Epoch[0] Batch [9050] Speed: 34.80 samples/sec Train-Accuracy=0.000124
2016-10-16 14:28:33,799 Epoch[0] Batch [9100] Speed: 36.33 samples/sec Train-Accuracy=0.000124
2016-10-16 14:28:44,494 Epoch[0] Batch [9150] Speed: 37.40 samples/sec Train-Accuracy=0.000123
2016-10-16 14:28:55,220 Epoch[0] Batch [9200] Speed: 37.29 samples/sec Train-Accuracy=0.000122
2016-10-16 14:29:05,836 Epoch[0] Batch [9250] Speed: 37.68 samples/sec Train-Accuracy=0.000122
2016-10-16 14:29:16,592 Epoch[0] Batch [9300] Speed: 37.19 samples/sec Train-Accuracy=0.000121
2016-10-16 14:29:27,272 Epoch[0] Batch [9350] Speed: 37.45 samples/sec Train-Accuracy=0.000120
2016-10-16 14:29:37,904 Epoch[0] Batch [9400] Speed: 37.62 samples/sec Train-Accuracy=0.000120
2016-10-16 14:29:48,713 Epoch[0] Batch [9450] Speed: 37.00 samples/sec Train-Accuracy=0.000119
2016-10-16 14:29:59,397 Epoch[0] Batch [9500] Speed: 37.44 samples/sec Train-Accuracy=0.000118
2016-10-16 14:30:10,220 Epoch[0] Batch [9550] Speed: 36.96 samples/sec Train-Accuracy=0.000118
2016-10-16 14:30:20,767 Epoch[0] Batch [9600] Speed: 37.92 samples/sec Train-Accuracy=0.000117
2016-10-16 14:30:31,509 Epoch[0] Batch [9650] Speed: 37.24 samples/sec Train-Accuracy=0.000117
2016-10-16 14:30:42,098 Epoch[0] Batch [9700] Speed: 37.77 samples/sec Train-Accuracy=0.000116
2016-10-16 14:30:53,390 Epoch[0] Batch [9750] Speed: 35.43 samples/sec Train-Accuracy=0.000115
2016-10-16 14:31:04,255 Epoch[0] Batch [9800] Speed: 36.82 samples/sec Train-Accuracy=0.000115
2016-10-16 14:31:14,983 Epoch[0] Batch [9850] Speed: 37.29 samples/sec Train-Accuracy=0.000114
2016-10-16 14:31:25,710 Epoch[0] Batch [9900] Speed: 37.29 samples/sec Train-Accuracy=0.000114
2016-10-16 14:31:36,428 Epoch[0] Batch [9950] Speed: 37.32 samples/sec Train-Accuracy=0.000113
2016-10-16 14:31:47,187 Epoch[0] Batch [10000] Speed: 37.18 samples/sec Train-Accuracy=0.000112
2016-10-16 14:31:57,947 Epoch[0] Batch [10050] Speed: 37.23 samples/sec Train-Accuracy=0.000112
2016-10-16 14:32:08,612 Epoch[0] Batch [10100] Speed: 37.51 samples/sec Train-Accuracy=0.000111
2016-10-16 14:32:19,479 Epoch[0] Batch [10150] Speed: 36.81 samples/sec Train-Accuracy=0.000111
2016-10-16 14:32:30,217 Epoch[0] Batch [10200] Speed: 37.25 samples/sec Train-Accuracy=0.000110
2016-10-16 14:32:41,089 Epoch[0] Batch [10250] Speed: 36.79 samples/sec Train-Accuracy=0.000110
2016-10-16 14:32:51,674 Epoch[0] Batch [10300] Speed: 37.79 samples/sec Train-Accuracy=0.000109
2016-10-16 14:33:02,372 Epoch[0] Batch [10350] Speed: 37.39 samples/sec Train-Accuracy=0.000109
2016-10-16 14:33:13,255 Epoch[0] Batch [10400] Speed: 36.76 samples/sec Train-Accuracy=0.000108
2016-10-16 14:33:24,250 Epoch[0] Batch [10450] Speed: 36.38 samples/sec Train-Accuracy=0.000108
2016-10-16 14:33:35,430 Epoch[0] Batch [10500] Speed: 35.78 samples/sec Train-Accuracy=0.000107
2016-10-16 14:33:46,749 Epoch[0] Batch [10550] Speed: 35.34 samples/sec Train-Accuracy=0.000107
2016-10-16 14:33:57,788 Epoch[0] Batch [10600] Speed: 36.24 samples/sec Train-Accuracy=0.000106
2016-10-16 14:34:09,398 Epoch[0] Batch [10650] Speed: 34.45 samples/sec Train-Accuracy=0.000106
2016-10-16 14:34:20,713 Epoch[0] Batch [10700] Speed: 35.35 samples/sec Train-Accuracy=0.000105
2016-10-16 14:34:31,743 Epoch[0] Batch [10750] Speed: 36.26 samples/sec Train-Accuracy=0.000105
2016-10-16 14:34:42,329 Epoch[0] Batch [10800] Speed: 37.79 samples/sec Train-Accuracy=0.000104
2016-10-16 14:34:53,048 Epoch[0] Batch [10850] Speed: 37.32 samples/sec Train-Accuracy=0.000104
2016-10-16 14:35:03,931 Epoch[0] Batch [10900] Speed: 36.75 samples/sec Train-Accuracy=0.000103
2016-10-16 14:35:14,671 Epoch[0] Batch [10950] Speed: 37.25 samples/sec Train-Accuracy=0.000114
2016-10-16 14:35:25,415 Epoch[0] Batch [11000] Speed: 37.23 samples/sec Train-Accuracy=0.000114
2016-10-16 14:35:36,220 Epoch[0] Batch [11050] Speed: 37.02 samples/sec Train-Accuracy=0.000113
2016-10-16 14:35:46,927 Epoch[0] Batch [11100] Speed: 37.36 samples/sec Train-Accuracy=0.000113
2016-10-16 14:35:58,072 Epoch[0] Batch [11150] Speed: 35.89 samples/sec Train-Accuracy=0.000112
2016-10-16 14:36:09,099 Epoch[0] Batch [11200] Speed: 36.27 samples/sec Train-Accuracy=0.000112
2016-10-16 14:36:20,707 Epoch[0] Batch [11250] Speed: 34.46 samples/sec Train-Accuracy=0.000111
2016-10-16 14:36:31,849 Epoch[0] Batch [11300] Speed: 35.90 samples/sec Train-Accuracy=0.000111
2016-10-16 14:36:42,770 Epoch[0] Batch [11350] Speed: 36.63 samples/sec Train-Accuracy=0.000110
2016-10-16 14:36:53,803 Epoch[0] Batch [11400] Speed: 36.25 samples/sec Train-Accuracy=0.000110
2016-10-16 14:37:04,858 Epoch[0] Batch [11450] Speed: 36.18 samples/sec Train-Accuracy=0.000109
2016-10-16 14:37:15,688 Epoch[0] Batch [11500] Speed: 36.93 samples/sec Train-Accuracy=0.000109
2016-10-16 14:37:26,460 Epoch[0] Batch [11550] Speed: 37.14 samples/sec Train-Accuracy=0.000108
2016-10-16 14:37:37,177 Epoch[0] Batch [11600] Speed: 37.32 samples/sec Train-Accuracy=0.000108
2016-10-16 14:37:47,782 Epoch[0] Batch [11650] Speed: 37.72 samples/sec Train-Accuracy=0.000107
2016-10-16 14:37:58,322 Epoch[0] Batch [11700] Speed: 37.95 samples/sec Train-Accuracy=0.000107
2016-10-16 14:38:09,203 Epoch[0] Batch [11750] Speed: 36.76 samples/sec Train-Accuracy=0.000106
2016-10-16 14:38:19,736 Epoch[0] Batch [11800] Speed: 37.98 samples/sec Train-Accuracy=0.000106
2016-10-16 14:38:30,424 Epoch[0] Batch [11850] Speed: 37.43 samples/sec Train-Accuracy=0.000116
2016-10-16 14:38:42,023 Epoch[0] Batch [11900] Speed: 34.49 samples/sec Train-Accuracy=0.000116
2016-10-16 14:38:53,012 Epoch[0] Batch [11950] Speed: 36.40 samples/sec Train-Accuracy=0.000115
2016-10-16 14:39:03,585 Epoch[0] Batch [12000] Speed: 37.83 samples/sec Train-Accuracy=0.000115
2016-10-16 14:39:14,313 Epoch[0] Batch [12050] Speed: 37.28 samples/sec Train-Accuracy=0.000114
2016-10-16 14:39:25,137 Epoch[0] Batch [12100] Speed: 36.96 samples/sec Train-Accuracy=0.000114
2016-10-16 14:39:35,864 Epoch[0] Batch [12150] Speed: 37.29 samples/sec Train-Accuracy=0.000113
2016-10-16 14:39:46,562 Epoch[0] Batch [12200] Speed: 37.39 samples/sec Train-Accuracy=0.000113
2016-10-16 14:39:57,369 Epoch[0] Batch [12250] Speed: 37.01 samples/sec Train-Accuracy=0.000112
2016-10-16 14:40:07,927 Epoch[0] Batch [12300] Speed: 37.89 samples/sec Train-Accuracy=0.000112
2016-10-16 14:40:18,559 Epoch[0] Batch [12350] Speed: 37.62 samples/sec Train-Accuracy=0.000111
2016-10-16 14:40:29,381 Epoch[0] Batch [12400] Speed: 36.96 samples/sec Train-Accuracy=0.000111
2016-10-16 14:40:40,127 Epoch[0] Batch [12450] Speed: 37.23 samples/sec Train-Accuracy=0.000110
2016-10-16 14:40:50,805 Epoch[0] Batch [12500] Speed: 37.46 samples/sec Train-Accuracy=0.000110
2016-10-16 14:40:50,805 Epoch[0] Resetting Data Iterator
2016-10-16 14:40:50,805 Epoch[0] Train-Accuracy=0.000110
2016-10-16 14:40:50,805 Epoch[0] Time cost=2764.878
2016-10-16 14:40:57,308 Epoch[0] Validation-Accuracy=0.000000
2016-10-16 14:40:57,496 Saved checkpoint to "cnn-ocr-0001.params"

Process finished with exit code 0

@xlvector
Copy link
Contributor

cnn的不应该啊。图片一开始所有的像素除以255了吗?

@hopef
Copy link
Author

hopef commented Oct 17, 2016

@xlvector 除以了,我是用您的代码,一分一毫都没有修改跑的
https://github.com/xlvector/learning-dl/blob/master/mxnet/ocr/cnn_ocr.py
而且我加大了数据量测试依旧不行,win10、win7下都不行

@hopef
Copy link
Author

hopef commented Oct 17, 2016

我看到这里同样提到这种情况:
xlvector/learning-dl#6
难道真的是mxnet的windows版本有bug吗?

@xlvector
Copy link
Contributor

看了最简单的方法是去aws申请一台linux的机器,同样代码跑一遍看看。。。

@hopef
Copy link
Author

hopef commented Oct 17, 2016

我已经在尝试装linux版本的mxnet测试,只是今天一天装系统的过程不顺畅,没有完成测试。一旦测试完成第一时间在这里答复。

@yajiedesign
Copy link
Contributor

you version too old.
you can download new version in https://github.com/yajiedesign/mxnet/releases
my build new version every day.

@hopef
Copy link
Author

hopef commented Oct 17, 2016

@yajiedesign hahhaha,是我的version too old。尝试您编译的,结果正常的很,这里的https://github.com/dmlc/mxnet/releases 编译的windows版本就是坑爹的坑货,我真真是测试了无数遍呀。。。 灰常感谢您,谢谢~

@thirdwing
Copy link
Contributor

@yajiedesign I will also use your daily release for the R package on Windows. Is it also possible to provide CPU-only version?

@yajiedesign
Copy link
Contributor

@thirdwing I'll try to offer later.

@csJoax
Copy link

csJoax commented Oct 24, 2016

我也碰到过类似的情况,用的是ubuntu系统下kaixhin/mxnet的docker镜像。到了第20个epoch,测试精度很低且没有任何变化。
PS:使用CPU计算;用的是python接口;网络模型是在Alexnet的基础上做了很小的修改(卷积核11x11—>10x10);数据集倒不是很权威,但也算可靠。

@yajiedesign
Copy link
Contributor

@thirdwing sorry some late.cpu version has been uploaded

@thirdwing
Copy link
Contributor

@yajiedesign Thanks!

BTW, I think we can close this issue for now.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants