This repository has been archived by the owner on Jul 21, 2020. It is now read-only.
forked from yandexdataschool/Practical_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes.py
153 lines (123 loc) · 5.4 KB
/
bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
A single-file module that makes your lasagne network into a bayesian neural net.
Originally created by github.com/ferrine , rewritten by github.com/justheuristic for simplicity
See example in the notebook
"""
import numpy as np
from theano import tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import lasagne
from lasagne import init
from lasagne.random import get_rng
from functools import wraps
__all__ = ['NormalApproximation', 'get_var_cost', 'bbpwrap']
class NormalApproximation(object):
def __init__(self, mu=0, std=np.exp(-3), seed=None):
"""
Approximation that samples network weights from factorized normal distribution.
:param mu: prior mean for gaussian weights
:param std: prior std for gaussian weights
:param seed: random seed
"""
self.prior_mu = mu
self.prior_std = std
self.srng = RandomStreams(seed or get_rng().randint(1, 2147462579))
def log_normal(self, x, mean, std, eps=0.0):
"""computes log-proba of normal distribution"""
std += eps
return - 0.5 * np.log(2 * np.pi) - T.log(T.abs_(std)) - \
(x - mean) ** 2 / (2 * std ** 2)
def log_prior(self, weights):
"""
Logarithm of prior probabilities for weights:
log P(weights) aka log P(theta)
"""
return self.log_normal(weights, self.prior_mu, self.prior_std)
def log_posterior_approx(self, weights, mean, rho):
"""
Logarithm of ELBO on posterior probabilities:
log q(weights|learned mu and rho) aka log q(theta|x)
"""
std = T.log1p(T.exp(rho)) # rho to std
return self.log_normal(weights, mean, std)
def __call__(self, layer, spec, shape, name=None, **tags):
# case when user uses default init specs
assert tags.get(
'variational', False), "Please declare param as variational to avoid confusion"
if not isinstance(spec, dict):
initial_rho = np.log(np.expm1(self.prior_std)) # std to rho
assert np.isfinite(initial_rho), "too small std to initialize correctly. Please pass explicit"\
" initializer (dict with {'mu':mu_init, 'rho':rho_init})."
spec = {'mu': spec, 'rho': init.Constant(initial_rho)}
mu_spec, rho_spec = spec['mu'], spec['rho']
rho = layer.add_param(
rho_spec, shape, name=(
name or 'unk') + '.rho', **tags)
mean = layer.add_param(
mu_spec, shape, name=(
name or 'unk') + '.mu', **tags)
# Reparameterization trick
e = self.srng.normal(shape, std=1)
W = mean + T.log1p(T.exp(rho)) * e
# KL divergence KL(q,p) = E_(w~q(w|x)) [log q(w|x) - log P(w)] aka
# variational cost
q_p = T.sum(
self.log_posterior_approx(W, mean, rho) -
self.log_prior(W)
)
# accumulate variational cost
layer._bbwrap_var_cost += q_p
return W
def get_var_cost(layer_or_layers, treat_as_input=None):
"""
Returns total variational cost aka KL(q(theta|x)||p(theta)) for all layers in the network
:param layer_or_layers: top layer(s) of your network, just like with lasagne.layers.get_output
:param treat_as_input: don't accumulate over layers below these layers. See same param for lasagne.layers.get_all_layers
Alternatively, one can manually get weights for one layer via layer.get_var_cost()
"""
cost = 0
for layer in lasagne.layers.get_all_layers(
layer_or_layers, treat_as_input):
if hasattr(layer, 'get_var_cost'):
# if layer is bayesian or pretends so
cost += layer.get_var_cost()
return cost
def bbpwrap(approximation=NormalApproximation()):
"""
A decorator that makes arbitrary lasagne layer into a bayesian network layer:
BayesDenseLayer = bbwrap()(DenseLayer)
or more verbosely,
@bbpwrap(NormalApproximation(pstd=0.01))
BayesDenseLayer(DenseLayer):
pass
"""
def decorator(cls):
def add_param_wrap(add_param):
@wraps(add_param)
def wrapped(self, spec, shape, name=None, **tags):
# we should take care about some user specification
# to avoid bbp hook just set tags['variational'] = True
if not tags.get('trainable', True) or \
tags.get('variational', False):
return add_param(self, spec, shape, name, **tags)
else:
# we declare that params we add next
# are the ones we need to fit the distribution
# they don't need to be regularized, strictly
tags['variational'] = True
tags['regularizable'] = False
param = self.approximation(self, spec, shape, name, **tags)
return param
return wrapped
def get_var_cost(self):
"""
Returns total variational cost aka KL(q(theta|x)||p(theta)) for this layer.
Alternatively, use function get_var_cost(layer) to get total cost for all layers below this one.
"""
return self._bbwrap_var_cost
cls.approximation = approximation
cls._bbwrap_var_cost = 0
cls.add_param = add_param_wrap(cls.add_param)
cls.get_var_cost = get_var_cost
return cls
return decorator