This repository has been archived by the owner on Jul 21, 2020. It is now read-only.
forked from yandexdataschool/Practical_RL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_util.py
63 lines (52 loc) · 2.23 KB
/
atari_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cv2
import numpy as np
from gym.core import Wrapper
from gym.spaces.box import Box
class PreprocessAtari(Wrapper):
def __init__(self, env, height=42, width=42, color=False,
crop=lambda img: img, n_frames=4, dim_order='pytorch', reward_scale=1):
"""A gym wrapper that reshapes, crops and scales image into the desired shapes"""
super(PreprocessAtari, self).__init__(env)
self.img_size = (height, width)
self.crop = crop
self.color = color
self.dim_order = dim_order
self.reward_scale = reward_scale
n_channels = (3 * n_frames) if color else n_frames
obs_shape = {
'theano': (n_channels, height, width),
'pytorch': (n_channels, height, width),
'tensorflow': (height, width, n_channels),
}[dim_order]
self.observation_space = Box(0.0, 1.0, obs_shape)
self.framebuffer = np.zeros(obs_shape, 'float32')
def reset(self):
"""Resets the game, returns initial frames"""
self.framebuffer = np.zeros_like(self.framebuffer)
self.update_buffer(self.env.reset())
return self.framebuffer
def step(self, action):
"""Plays the game for 1 step, returns frame buffer"""
new_img, r, done, info = self.env.step(action)
self.update_buffer(new_img)
return self.framebuffer, r * self.reward_scale, done, info
### image processing ###
def update_buffer(self, img):
img = self.preproc_image(img)
offset = 3 if self.color else 1
if self.dim_order == 'tensorflow':
axis = -1
cropped_framebuffer = self.framebuffer[:, :, :-offset]
else:
axis = 0
cropped_framebuffer = self.framebuffer[:-offset, :, :]
self.framebuffer = np.concatenate([img, cropped_framebuffer], axis=axis)
def preproc_image(self, img):
"""what happens to the observation"""
img = self.crop(img)
img = cv2.resize(img / 255, self.img_size, interpolation=cv2.INTER_LINEAR)
if not self.color:
img = img.mean(-1, keepdims=True)
if self.dim_order != 'tensorflow':
img = img.transpose([2, 0, 1]) # [h, w, c] to [c, h, w]
return img