-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathClassDann.py
executable file
·366 lines (298 loc) · 15.2 KB
/
ClassDann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 14 11:13:23 2017
@author: alain
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data_utils
import torch.optim as optim
from time import time as tick
from sklearn.metrics import balanced_accuracy_score
def create_data_loader(X,y, batch_size):
data = data_utils.TensorDataset(torch.from_numpy(X).float(), y)
return data_utils.DataLoader(data, batch_size= batch_size, sampler = data_utils.sampler.RandomSampler(data))
def build_label_domain(size,label):
label_domain = torch.LongTensor(size)
label_domain.data.resize_(size).fill_(label)
return label_domain
def loop_iterable(iterable):
while True:
yield from iterable
def clip_gradient_samplewise(model,C=1,sigma_noise=1,thresh_clip=1,cuda='False'):
device = 'cuda' if cuda else 'cpu'
for layer in model.modules():
for param in layer.parameters():
norm_vec = torch.norm(param.grad1.view(param.grad1.shape[0],-1),dim=1)/C
for i in range(norm_vec.shape[0]):
norm_vec[i] = norm_vec[i] if norm_vec[i]>thresh_clip else 1
for k in range(1,len(param.grad1.shape)):
norm_vec = norm_vec.unsqueeze(k)
param.grad1 /= norm_vec
param.grad1 += torch.randn(param.grad1.shape).to(device)*sigma_noise
param.grad = param.grad1.mean(dim=0)
class DANN(object):
def __init__(self, feat_extractor,data_classifier, domain_classifier,source_data_loader, target_data_loader,
grad_scale = 1,cuda = False, logger_file = None, eval_data_loader = None, wgan = False,
T_batches = None, do_dp = False):
self.feat_extractor = feat_extractor
self.data_classifier = data_classifier
self.source_data_loader = source_data_loader
self.eval_data_loader = target_data_loader # potentially list of data_loader on which to evaluate the model
self.eval_domain_data =0 # argument of list of eval_data_loader to use as domain evaluation with source
self.eval_reference = 0
self.source_domain_label = 1
self.test_domain_label = 0
self.cuda = cuda
self.nb_iter = 1000
self.logger = logger_file
self.criterion = nn.CrossEntropyLoss()
self.lr_decay_epoch = -1
self.lr_decay_factor = 0.5
self.wgan = wgan
self.clamp = 0.1
self.filesave = None
self.save_best = True
self.epoch_to_start_align = 100 # start aligning distrib at this epoch
self.T_batches = loop_iterable(target_data_loader)
self.grad_scale_0 = grad_scale
self.grad_scale = grad_scale
# DP default setting
self.do_dp = False
self.C = 1
self.sigma_noise = 0
self.thresh_clip = 1
# adding gradient reversal layer transparently to the user
class GradReverse(torch.autograd.Function):
@staticmethod
def forward(self,x):
return x.clone()
@staticmethod
def backward(self,grad_output):
return grad_output.neg()#*_parent_class.grad_scale
class GRLDomainClassifier(nn.Module):
def __init__(self,domain_classifier):
super(GRLDomainClassifier, self).__init__()
self.domain_classifier = domain_classifier
def forward(self, input):
x = GradReverse.apply(input)
x = self.domain_classifier.forward(x)
return x
self.grl_domain_classifier = GRLDomainClassifier(domain_classifier)
# these are the default
self.optimizer_feat_extractor = optim.SGD(self.feat_extractor.parameters(),lr = 0.001)
self.optimizer_data_classifier = optim.SGD(self.data_classifier.parameters(),lr = 0.001)
self.optimizer_domain_classifier = optim.SGD(self.grl_domain_classifier.parameters(),lr = 0.1)
def set_lr_decay_epoch(self,decay_epoch):
self.lr_decay_epoch = decay_epoch
#
def set_epoch_to_start_align(self, epoch_to_start_align):
self.epoch_to_start_align = epoch_to_start_align
def set_grad_scale(self,new_grad_scale):
self.grad_scale = new_grad_scale
def set_filesave(self,filesave):
self.filesave = filesave
def show_grad_scale(self):
print(self.grad_scale)
return
def set_thresh_normclip(self,thresh):
self.thresh_clip = thresh
print('Threshold norm clipping:',self.thresh_clip )
def set_normclip(self,norm_clip):
self.C = norm_clip
print('norm clipping C :',self.C )
def set_sigma_noise(self,sigma_noise):
self.sigma_noise=sigma_noise
print('set DP Gaussian Noise to:',self.sigma_noise )
def set_dodp(self,dodp):
self.do_dp=dodp
print('Going Private',self.do_dp)
def set_optimizer_data_classifier(self, optimizer):
self.optimizer_data_classifier = optimizer
def set_optimizer_domain_classifier(self, optimizer):
self.optimizer_domain_classifier = optimizer
def set_optimizer_feat_extractor(self, optimizer):
self.optimizer_feat_extractor = optimizer
def set_nbiter(self, nb_iter):
self.nb_iter = nb_iter
def set_clamp(self,clamp_val):
self.clamp = abs(clamp_val)
def set_save_best(self,save_best):
self.save_best = save_best
def build_label_domain(self,size,label):
label_domain = torch.LongTensor(size)
if self.cuda:
label_domain = label_domain.cuda()
label_domain.data.resize_(size).fill_(label)
return label_domain
def evaluate_data_classifier(self,data_loader, comments = ''):
self.feat_extractor.eval()
self.data_classifier.eval()
test_loss = 0
correct = 0
y_pred = torch.Tensor()
y_true = torch.zeros((0))
for data, target in data_loader:
if self.cuda:
data, target = data.cuda(), target.cuda()
output_feat = self.feat_extractor(data)
output = self.data_classifier(output_feat)
test_loss += self.criterion(output, target).item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
y_pred = torch.cat((y_pred,pred.float().cpu()))
y_true = torch.cat((y_true,target.float().cpu()))
MAP = balanced_accuracy_score(y_true,y_pred)
test_loss = test_loss
test_loss /= len(data_loader) # loss function already averages over batch size
accur = correct.item() / len(data_loader.dataset)
print('{} Mean Loss: {:.4f}, Accuracy: {}/{} ({:.0f}%) MAP :{:.4f}'.format(
comments, test_loss, correct, len(data_loader.dataset),
100*accur,MAP))
if self.logger is not None:
self.logger.info('{} Mean Loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(comments, test_loss, correct, len(data_loader.dataset),
accur))
return accur,MAP
def evaluate_domain_classifier_class(self, data_loader, domain_label):
self.feat_extractor.eval()
self.data_classifier.eval()
self.grl_domain_classifier.eval()
loss = 0
correct = 0
for data, _ in data_loader:
target = self.build_label_domain(data.size(0),domain_label)
if self.cuda:
data, target = data.cuda(), target.cuda()
output_feat = self.feat_extractor(data)
output = self.grl_domain_classifier(output_feat)
loss += self.criterion(output, target).item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
return loss, correct
def evaluate_domain_classifier(self):
self.feat_extractor.eval()
self.data_classifier.eval()
self.grl_domain_classifier.eval()
test_loss,correct = 0, 0
test_loss, correct = self.evaluate_domain_classifier_class(self.source_data_loader, self.source_domain_label)
loss, correct_a = self.evaluate_domain_classifier_class(self.eval_data_loader, self.test_domain_label)
test_loss +=loss
correct +=correct_a
nb_source = len(self.source_data_loader.dataset)
nb_target = len(self. eval_data_loader.dataset)
nb_tot = nb_source + nb_target
print('Domain: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, ( nb_source + nb_target ),
100. * correct / (nb_source + nb_target )))
if self.logger is not None:
self.logger.info('Domain: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, ( nb_tot),
100. * correct / nb_tot ))
print(correct,nb_tot)
return correct.item() / nb_tot
def fit(self):
# initialization
if self.cuda:
self.feat_extractor.cuda()
self.data_classifier.cuda()
self.grl_domain_classifier.cuda()
device = 'cuda'
else:
device = 'cpu'
self.perf_source = torch.zeros(self.nb_iter)
self.perf_val = torch.zeros(self.nb_iter,len(self.eval_data_loader))
self.perf_domain = torch.zeros(self.nb_iter)
# C = 1
# sigma_noise = 1.65
# thresh_clip = 1
# do_dp = False
if self.do_dp:
print('Going Private, Noise : ', self.sigma_noise)
autograd_hacks.add_hooks(self.grl_domain_classifier)
autograd_hacks.add_hooks(self.feat_extractor)
autograd_hacks.add_hooks(self.data_classifier)
for epoch in range(self.nb_iter):
self.feat_extractor.train()
self.data_classifier.train()
self.grl_domain_classifier.train()
tic = tick()
for batch_idx, (data, target) in enumerate(self.source_data_loader):
size_source = data.size(0)
data_test = next(self.T_batches)[0]
if self.cuda:
data, target = data.cuda(), target.cuda()
data_test = data_test.cuda()
# set gradient to 0
self.feat_extractor.zero_grad()
self.data_classifier.zero_grad()
self.grl_domain_classifier.zero_grad()
if epoch > self.epoch_to_start_align:
# for test data, compute_loss, gradient on domain classifier only
output_feat_test = self.feat_extractor(data_test)
output_domain_test = self.grl_domain_classifier(output_feat_test)
label_domain = build_label_domain(output_domain_test.size(0), self.test_domain_label)
if self.cuda:
label_domain = label_domain.cuda()
error_test_data = F.cross_entropy(output_domain_test,label_domain)
error_t = self.grad_scale * error_test_data
error_t.backward(retain_graph=True)
if self.do_dp:
autograd_hacks.compute_grad1(self.grl_domain_classifier)
autograd_hacks.compute_grad1(self.feat_extractor)
clip_gradient_samplewise(self.grl_domain_classifier,self.C,self.sigma_noise,self.thresh_clip,self.cuda)
clip_gradient_samplewise(self.feat_extractor,self.C,self.sigma_noise,self.thresh_clip,self.cuda)
# HANDLING the non-privatedata
output_feat_source = self.feat_extractor(data)
output_class_source = self.data_classifier(output_feat_source)
output_domain_source = self.grl_domain_classifier(output_feat_source)
label_domain = build_label_domain(size_source,self.source_domain_label)
if self.cuda:
label_domain = label_domain.cuda()
error_source_data = F.cross_entropy(output_domain_source,label_domain)
loss = F.cross_entropy(output_class_source,target)
error_ = loss + self.grad_scale*error_source_data
error_.backward()
else:
output_feat_source = self.feat_extractor(data)
output_class_source = self.data_classifier(output_feat_source)
loss = F.cross_entropy(output_class_source,target)
error = loss
error.backward()
self.optimizer_feat_extractor.step()
self.optimizer_data_classifier. step()
self.optimizer_domain_classifier.step()
if self.do_dp:
autograd_hacks.clear_backprops(self.grl_domain_classifier)
autograd_hacks.clear_backprops(self.feat_extractor)
autograd_hacks.clear_backprops(self.data_classifier)
if self.lr_decay_epoch > 0:
exp_lr_scheduler(self.optimizer_feat_extractor,epoch,self.lr_decay_epoch,self.lr_decay_factor)
exp_lr_scheduler(self.optimizer_data_classifier,epoch,self.lr_decay_epoch,self.lr_decay_factor)
exp_lr_scheduler(self.optimizer_domain_classifier,epoch,self.lr_decay_epoch,self.lr_decay_factor)
toc = tick() - tic
algoname = 'DP-DANN' if self.do_dp else 'DANN'
print('\n{} Train Epoch: {}/{} {:2.2f}s [{}/{} ({:.0f}%)]\tLoss: {:.6f} Error:{:.6f}'.format(algoname,
epoch, self.nb_iter, toc , batch_idx * len(data), len(self.source_data_loader.dataset),
100. * batch_idx / len(self.source_data_loader), loss.item(),error.item()))
self.evaluate_data_classifier(self.source_data_loader)
self.evaluate_data_classifier(self.eval_data_loader)
self.evaluate_domain_classifier()
def get_feature_extractor(self):
return self.feat_extractor
def get_data_classifier(self):
return self.data_classifier
def save_perf(self):
np.savez(self.filesave + '.npz' ,accuracy_train = self.perf_source.numpy(), accuracy_evaluation = self.perf_val.numpy(),
accuracy_domain = self.perf_domain.numpy())
def exp_lr_scheduler(optimizer, epoch, lr_decay_epoch=100,lr_decay_factor=0.5):
"""Decay current learning rate by a factor of 0.5 every lr_decay_epoch epochs."""
init_lr = optimizer.param_groups[0]['lr']
if epoch > 0 and (epoch % lr_decay_epoch == 0):
lr = init_lr*lr_decay_factor
print('\n LR is set to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer