forked from mudigosa/Image-Classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
61 lines (43 loc) · 1.77 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch import tensor
from torch import optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
import torchvision.models as models
from collections import OrderedDict
import json
import PIL
from PIL import Image
import argparse
import futils
#Command Line Arguments
argumentparser = argparse.ArgumentParser(
description='predict-file')
argumentparser.add_argument('input_img', default='mudigosa/flowers/test/1/image_06752.jpg', nargs='*', action="store", type = str)
argumentparser.add_argument('checkpoint', default='/home/workspace/mudigosa/checkpoint.pth', nargs='*', action="store",type = str)
argumentparser.add_argument('--top_k', default=5, dest="top_k", action="store", type=int)
argumentparser.add_argument('--category_names', dest="category_names", action="store", default='mudigosa/mapping/cat_to_name.json')
argumentparser.add_argument('--gpu', default="gpu", action="store", dest="gpu")
parser = argumentparser.parse_args()
path_images = parser.input_img
number_of_outputs = parser.top_k
power = parser.gpu
input_img = parser.input_img
path = parser.checkpoint
category_names = parser.category_names
training_loader, testing_loader, validation_loader = futils.load_data()
futils.load_checkpoint(path)
with open('category_names', 'r') as json_file:
cat_to_name = json.load(json_file)
probability = futils.predict(path_images, model, number_of_outputs, power)
labels = [cat_to_name[str(index + 1)] for index in np.array(probability[1][0])]
probabilities = np.array(probability[0][0])
i=0
while i < number_of_outputs:
print("{} with a probability of {}".format(labels[i], probabilities[i]))
i += 1
print("Here you are")