-
Notifications
You must be signed in to change notification settings - Fork 0
/
Sizes.hs
72 lines (60 loc) · 1.61 KB
/
Sizes.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
{-
for lambdalisp.blc:
Unary: 163654
Tree: 129128
Levenshtein: 126903
Elias gamma: 125862
Huffman: 118902
-}
import Data.List
main = do
ts <- toks <$> getContents
putStrLn $ unwords ["Unary: ", show $ sum $ map szU ts]
putStrLn $ unwords ["Catalan: ", show $ sum $ map szT ts]
putStrLn $ unwords ["Levenshtein:", show $ sum $ map szL ts]
putStrLn $ unwords ["Elias omega:", show $ sum $ map szE ts]
putStrLn $ unwords ["Huffman: ", show $ huf ts]
data Tok = Abs | App | Var Int deriving (Eq, Ord)
toks :: String -> [Tok]
toks "" = []
toks ('0':'0':xs) = Abs : toks xs
toks ('0':'1':xs) = App : toks xs
toks xs | (ys, '0':xs) <- span (== '1') xs = Var (length ys - 1) : toks xs
-- size, unary encoding
szU :: Tok -> Int
szU Abs = 2
szU App = 2
szU (Var v) = 2 + v
-- size, tree encoding
szT :: Tok -> Int
szT Abs = 2
szT App = 2
szT (Var v) = 2 * length (takeWhile (<= v) (scanl (+) 0 cats))
cats :: [Int]
cats = [c (2*n) n `div` (n+1) | n <- [0..]]
-- size, Levenshtein encoding
szL :: Tok -> Int
szL Abs = 2
szL App = 2
szL (Var v) = 1 + l v
where
l 0 = 1
l n = 1 + l k + k where k = floor (logBase 2 (fromIntegral n))
-- size, Elias omega encoding
szE :: Tok -> Int
szE Abs = 2
szE App = 2
szE (Var v) = 1 + l (v + 1)
where
l 1 = 1
l n = 1 + l k + k where k = floor (logBase 2 (fromIntegral n))
-- size, optimal Huffman encoding (a lower bound)
huf :: [Tok] -> Int
huf = go . map length . group . sort
where
go [_] = 0
go xs | x:y:xs <- sort xs = x+y + go (x+y : xs)
-- misc
c :: Integral a => a -> a -> a
c n 0 = 1
c n k = c (n-1) (k-1) * n `div` k