-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_main.py
350 lines (288 loc) · 13.6 KB
/
dqn_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import argparse
import pickle
from collections import namedtuple
from itertools import count
import os, time, json
import numpy as np
import matplotlib.pyplot as plt
import gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler
# taken from https://github.com/sweetice/Deep-reinforcement-learning-with-pytorch, with heavy modifications.
class Net(nn.Module):
def __init__(self, num_state, num_action):
super(Net, self).__init__()
self.fc1 = nn.Linear(num_state, 100)
self.activation = nn.LeakyReLU()
self.fc2 = nn.Linear(100, num_action)
def forward(self, x):
x = self.activation(self.fc1(x))
action_prob = self.fc2(x)
return action_prob
class DQN():
def __init__(self, num_state, num_action, params):
super(DQN, self).__init__()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# data collection aids
self.name = 'agents/' + params.env_name + '_' + params.model_name
self.losses = []
self.rewards = []
self.params = params
if self.params.mode == 'test':
self.load(self.name)
else:
self.target_net, self.act_net = Net(num_state, num_action), Net(num_state, num_action)
self.target_net, self.act_net = self.target_net.to(self.device), self.act_net.to(self.device)
self.unpack_params()
self.loss_func = nn.MSELoss()
self.num_actions = num_action
self.num_states = num_state
self.memory_count = 0
self.update_count = 0
def unpack_params(self):
self.epsilon = self.params.exploration_noise
self.optimizer = get_optimizer(self.params.optimizer, self.act_net, self.params.learning_rate)
self.capacity = self.params.capacity
self.memory = [None]*self.capacity
self.update_point = self.params.update_count
self.gamma = self.params.gamma
self.batch_size = self.params.batch_size
self.game = self.params.env_name
self.epsilon_decay = self.params.epsilon_decay
def select_action(self,state):
state = torch.tensor(state, dtype=torch.float).unsqueeze(0)
state = state.to(self.device)
value = self.act_net(state)
action_max_value, index = torch.max(value, 1)
action = index.item()
if np.random.uniform() <= self.epsilon:
action = np.random.choice(range(self.num_actions), 1).item()
return action
def store_transition(self,transition):
index = self.memory_count % self.capacity
self.memory[index] = transition
self.memory_count += 1
def update_epsilon(self):
self.epsilon *= self.epsilon_decay
def update_target_network_weights(self):
if self.update_count == self.update_point:
self.update_count = 0
self.target_net.load_state_dict(self.act_net.state_dict())
def update(self):
if self.memory_count >= self.capacity:
# convert inputs to torch tensors.
state = torch.Tensor([t.old_state for t in self.memory]).float()
action = torch.LongTensor([t.action for t in self.memory]).view(-1,1).long()
reward = torch.Tensor([t.reward for t in self.memory]).float()
next_state = torch.Tensor([t.new_state for t in self.memory]).float()
# move to device.
state = state.to(self.device)
action = action.to(self.device)
reward = reward.to(self.device)
next_state = next_state.to(self.device)
# normalize rewards.
reward = (reward - reward.mean()) / (reward.std() + 1e-7)
# update Q value
with torch.no_grad():
target_v = reward + self.gamma * self.target_net(next_state).max(1)[0]
batch_loss = 0
# sample from replay buffer, update actor network.
for index in BatchSampler(SubsetRandomSampler(range(len(self.memory))), batch_size=self.batch_size, drop_last=False):
v = (self.act_net(state).gather(1, action))[index]
loss = self.loss_func(target_v[index].unsqueeze(1), (self.act_net(state).gather(1, action))[index])
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
batch_loss += loss.item()
# update target Q network when sufficient iterations have passed.
self.update_count +=1
self.update_target_network_weights()
self.losses.append(batch_loss/self.batch_size)
self.rewards.append(reward.mean().item())
def save(self, ep_number):
if not os.path.isdir('agents'):
os.mkdir('agents/')
act_model_path = 'agents/' + self.params.model_name + '_' + self.game + '_actor_episode' + str(ep_number) + '.pth'
target_model_path = 'agents/' + self.params.model_name + '_' + self.game + '_target_episode' + str(ep_number)+ '.pth'
torch.save(self.act_net.state_dict(), act_model_path)
torch.save(self.target_net.state_dict(), target_model_path)
save_dic = vars(self.params)
save_dic['num_actions'] = self.num_actions
save_dic['num_states'] = self.num_states
save_dic['memory_count'] = self.memory_count
save_dic['update_count'] = self.update_count
save_dic['losses'] = self.losses
save_dic['rewards'] = self.rewards
filename = self.name + '.json'
with open(filename, 'w') as fp:
json.dump(save_dic, fp, indent=4)
def load(self, name):
# name = 'agents/' + game + '_' + model_name
filename = name + '.json'
print('loading from : ', filename)
try:
with open(filename, 'r') as fp:
data = json.load(fp)
except FileNotFoundError:
raise FileNotFoundError("Specified agent does not exist. Aborting.")
self.params = argparse.Namespace(**data)
self.num_actions = data['num_actions']
self.num_states = data['num_states']
ep_number = self.params.num_episodes - 1
act_model_path = 'agents/' + self.params.model_name + '_' + self.params.env_name + '_actor_episode' + str(ep_number) + '.pth'
target_model_path = 'agents/' + self.params.model_name + '_' + self.params.env_name + '_target_episode' + str(ep_number)+ '.pth'
# load the models.
self.act_net, self.target_net = Net(self.num_states, self.num_actions), Net(self.num_states, self.num_actions)
self.act_net, self.target_net = self.act_net.to(self.device), self.target_net.to(self.device)
self.act_net.load_state_dict(torch.load(act_model_path))
self.target_net.load_state_dict(torch.load(target_model_path))
# load other parameters.
self.unpack_params()
self.memory_count = data['memory_count']
self.update_count = data['update_count']
self.losses = data['losses']
self.rewards = data['rewards']
def get_losses(self):
return self.losses
def get_rewards(self):
return self.rewards
class Transition(object):
def __init__(self, old_state, action, new_state, reward: float, terminate_: bool):
self.old_state = old_state
self.action = action
self.new_state = new_state
self.reward = reward
self.terminate = terminate_
@property
def terminate(self):
return self.__terminate
@terminate.setter
def terminate(self, terminate_):
if isinstance(terminate_, bool):
self.__terminate = terminate_
else:
raise TypeError(f'{terminate_} should be bool type')
def get_transition_tuple(self) -> tuple:
return self.old_state, self.action, self.new_state, self.reward, self.terminate
def initialize_game(params):
env = gym.make(params.env_name).unwrapped
num_state = env.observation_space.shape[0]
num_action = env.action_space.n
dqn = DQN(num_state, num_action, params)
return env, num_state, num_action, dqn
def get_optimizer(name, net, learning_rate):
if name.lower() == 'adam':
optimizer = optim.Adam(net.parameters(), learning_rate)
elif name.lower() == 'adagrad':
optimizer = optim.Adagrad(net.parameters(), learning_rate)
elif name.lower() == 'adadelta':
optimizer = optim.Adadelta(net.parameters(), learning_rate)
elif name.lower() == 'sgd':
optimizer = optim.SGD(net.parameters(), learning_rate)
elif name.lower() == 'rmsprop':
optimizer = optim.RMSprop(net.parameters(), learning_rate)
return optimizer
def display_state_action_dims(games):
for env_name in games:
env = gym.make(env_name).unwrapped
num_state = env.observation_space.shape[0]
num_action = env.action_space.n
print("%s | num_states : %s | num_actions: %s" % (env_name, num_state, num_action))
def run(params, return_agent=False):
env, num_state, num_action, agent = initialize_game(params)
all_rewards = []
for i_ep in range(params.num_episodes):
state = env.reset()
if i_ep % 10 == 0 and i_ep > 0:
print("episode: %s" % i_ep)
# if i_ep % (params.log_interval-1) == 0 and i_ep > 0:
# agent.save(i_ep)
for t in range(params.num_iterations):
action = agent.select_action(state)
next_state, reward, done, info = env.step(action)
if params.render: env.render()
transition = Transition(state, action, next_state, reward, done)
agent.store_transition(transition)
if (done or t == params.num_iterations - 1):
agent.update()
all_rewards.append(reward)
agent.update_epsilon()
if return_agent:
return agent
else:
return -np.mean(all_rewards)
# TODO: figure out which of these are unnecessary.
if __name__ == "__main__":
supported_games = ['MountainCar-v0',
'CartPole-v0',
'LunarLander-v2',
'Acrobot-v1',
'Breakout-ram-v0',
'AirRaid-ram-v0',
'Alien-ram-v0',
'Assault-ram-v0',
'Asteroids-ram-v0',
'SpaceInvaders-ram-v0',
'Tennis-ram-v0',
'Pong-ram-v0',
'MsPacman-ram-v0',
'MontezumaRevenge-ram-v0',
'Centipede-ram-v0']
display_state_action_dims(supported_games)
# parse arguments.
device = 'cuda' if torch.cuda.is_available() else 'cpu'
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='train', type=str) # mode = 'train' or 'test'
# model parameters.
parser.add_argument('--env_name', default='MountainCar-v0',)
parser.add_argument('--update_count', default=150, type=int) # number of iterations before transferring weights.
parser.add_argument('--learning_rate', default=3e-4, type=float) # learning rate for networks.
parser.add_argument('--gamma', default=0.99, type=int) # discounted factor
parser.add_argument('--capacity', default=10, type=int) # replay buffer size
parser.add_argument('--num_iterations', default=1000, type=int) # num of iterations per episode
parser.add_argument('--batch_size', default=100, type=int) # mini batch size
parser.add_argument('--seed', default=True, type=bool)
parser.add_argument('--random_seed', default=9527, type=int)
parser.add_argument('--sample_type', default='uniform', type=str) # uniform or prioritized - can consider if we have the time.
parser.add_argument('--exploration_noise', default=0.1, type=float) # epsilon for epsilon-greedy policy.
parser.add_argument('--num_episodes', default=100, type=int) # number of episodes.
parser.add_argument('--optimizer', default='adam', type=str) # optimizer to be used.
parser.add_argument('--model_name', default='default_dqn', type=str)
# optional parameters
parser.add_argument('--num_hidden_layers', default=2, type=int)
parser.add_argument('--sample_frequency', default=256, type=int)
parser.add_argument('--render', default=False, type=bool) # show UI or not
parser.add_argument('--log_interval', default=50, type=int) #
parser.add_argument('--load', default=False, type=bool) # load model
parser.add_argument('--render_interval', default=100, type=int) # after render_interval, the env.render() will work
parser.add_argument('--policy_noise', default=0.2, type=float)
parser.add_argument('--noise_clip', default=0.5, type=float)
parser.add_argument('--policy_delay', default=2, type=int)
args = parser.parse_args()
# params = {
# 'mode':'train',
# 'render': False,
# 'log_interval': 100,
# 'env_name': 'MountainCar-v0',
# 'num_iterations': 100,
# 'num_episodes': 100,
# 'exploration_noise': 0.1,
# 'capacity':10000,
# 'model_name': 'trial_model',
# 'update_count': 100,
# 'gamma': 0.5,
# 'batch_size': 128,
# 'optimizer': 'adam',
# 'learning_rate': 0.001
# }
# pass args into the main function
agent = run(args)
env = gym.make(args.env_name)
while True:
state = env.reset()
env.render()
for t in range(args.num_iterations):
action = agent.select_action(state)
next_state, reward, done, info = env.step(action)