Skip to content

artefactory/bytetrack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

92bb32b · Mar 27, 2024

History

33 Commits
Mar 26, 2024
Mar 13, 2024
Mar 27, 2024
Mar 14, 2024
Mar 26, 2024
Mar 14, 2024
Nov 13, 2023
Dec 22, 2023
Nov 13, 2023
Nov 13, 2023
Nov 13, 2023
Mar 26, 2024
Dec 22, 2023
Nov 13, 2023

Repository files navigation

Bytetrack starter guide

This repo is a packaged version of the ByteTrack algorithm.

ByteTrack is a multi-object tracking computer vision model. Using ByteTrack, you can allocate IDs for unique objects in a video for use in tracking objects.

Installation

pip install git+https://github.com/artefactory-fr/bytetrack.git@main

Detection object with Bytetracker and YOLO

from bytetracker import BYTETracker
tracker = BYTETracker(args)
for frame_id, image_filename in enumerate(frames):
    img = cv2.imread(image_filename)
    detections = your_model.predict(img)
    tracked_objects = tracker.update(detections, frame_id)

Copyright

Copyright (c) 2022 Kadir Nar

ByteTrack License

ByteTrack is licensed under the MIT License. See the LICENSE file and the ByteTrack repository for more information.

Citation

@article{zhang2022bytetrack,
  title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
  author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Weng, Fucheng and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2022}
}
@video{intel-iot-devkit,
  author={Intel IoT},
  title={Intel IoT Devkit Sample Videos(https://github.com/intel-iot-devkit/sample-videos)},
  license={Creative Commons Attribution 4.0 International License(https://creativecommons.org/licenses/by/4.0/)}