Skip to content

Latest commit

 

History

History
46 lines (37 loc) · 1.54 KB

README.md

File metadata and controls

46 lines (37 loc) · 1.54 KB

Machine-Learning-Roadmap-2020

Practical Road-map for getting started with Machine Learning and Data Science for Beginners in 2020.

Here we go:

✅ Step 1 Download and Install Anaconda https://www.anaconda.com/download/

✅ Step 2 a. Learn the basics of Python (Lists, Tuples, Dictionaries, etc) b. Understand the basics of data structures and algorithms https://www.datacamp.com/c…/tutorials/data-structures-python

✅ Step 3 Do more practice problems in Python Codeacademy: https://www.codecademy.com/learn/learn-python

✅ Step 4 Learn the scientific libraries (NumPy, SciPy, Pandas) Pandas: https://www.tutorialspoint.com/python_pandas NumPy: https://www.datacamp.com/co…/tutorials/python-numpy-tutorial SciPy: https://www.tutorialspoint.com/scipy/

✅ Step 5 Machine Learning with Scikit-Learn Machine Learning in 20min: https://www.youtube.com/watch?v=MOdlp1d0PNA MIT Machine Learning: https://www.youtube.com/watch?v=h0e2HAPTGF4 Scikit-Learn Introduction: https://machinelearningmastery.com/a-gentle-introduction-t…/ Machine Learning Basics:https://www.tutorialspoint.com/…/machine_learning_with_pyth… Scikit-Learn Tutorial: https://www.youtube.com/watch…

✅ Step 6: Practice your machine learning skills Kaggle Machine Learning Tutorial: https://www.kaggle.com/learn/machine-learning

✅ Step 7: Practice advanced library a. PyTorch https://pytorch.org/tutorials/ b.TensorFlow https://www.tensorflow.org/tutorials/

✅ Step 8: Practice by participating in Kaggle Competitions or personal/professional projects https://www.kaggle.com/competitions