-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtoyCode.h
448 lines (353 loc) · 13.6 KB
/
toyCode.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#pragma once
#include "mcBase.h"
#include "interp.h"
#include "gaussians.h"
#include <iostream>
struct Record
{
int numArg; // ToyNumber of arguments: 0, 1 or 2
int idx1; // index of first argument on tape
int idx2; // index of second argument on tape
double der1; // partial derivative to first argument
double der2; // partial derivative to second argument
};
// The tape, declared as a global variable
vector<Record> tape;
// Custom ToyNumber type
struct ToyNumber
{
double value;
int idx;
// default constructor does nothing
ToyNumber() {}
// constructs with a value and record
ToyNumber(const double& x) : value(x)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// reference record on tape
idx = tape.size() - 1;
// populate record on tape
rec.numArg = 0;
}
ToyNumber operator +() const { return *this; }
ToyNumber operator -() const { return ToyNumber(0.0) - *this; }
ToyNumber& operator +=(const ToyNumber& rhs) { *this = *this + rhs; return *this; }
ToyNumber& operator -=(const ToyNumber& rhs) { *this = *this - rhs; return *this; }
ToyNumber& operator *=(const ToyNumber& rhs) { *this = *this * rhs; return *this; }
ToyNumber& operator /=(const ToyNumber& rhs) { *this = *this / rhs; return *this; }
friend ToyNumber operator+(const ToyNumber& lhs, const ToyNumber& rhs)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = lhs.value + rhs.value;
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 2;
rec.idx1 = lhs.idx;
rec.idx2 = rhs.idx;
// compute derivatives
rec.der1 = 1;
rec.der2 = 1;
return result;
}
friend ToyNumber operator-(const ToyNumber& lhs, const ToyNumber& rhs)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = lhs.value - rhs.value;
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 2;
rec.idx1 = lhs.idx;
rec.idx2 = rhs.idx;
// compute derivatives -
rec.der1 = 1;
rec.der2 = -1;
return result;
}
friend ToyNumber operator*(const ToyNumber& lhs, const ToyNumber& rhs)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = lhs.value * rhs.value;
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 2;
rec.idx1 = lhs.idx;
rec.idx2 = rhs.idx;
// compute derivatives *
rec.der1 = rhs.value;
rec.der2 = lhs.value;
return result;
}
friend ToyNumber operator/(const ToyNumber& lhs, const ToyNumber& rhs)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = lhs.value / rhs.value;
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 2;
rec.idx1 = lhs.idx;
rec.idx2 = rhs.idx;
// compute derivatives /
rec.der1 = 1.0 / rhs.value;
rec.der2 = -lhs.value / (rhs.value * rhs.value);
return result;
}
friend ToyNumber log(const ToyNumber& arg)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = log(arg.value);
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 1;
rec.idx1 = arg.idx;
// compute derivative
rec.der1 = 1.0 / arg.value;
return result;
}
friend ToyNumber exp(const ToyNumber& arg)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = exp(arg.value);
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 1;
rec.idx1 = arg.idx;
// compute derivative
rec.der1 = result.value;
return result;
}
friend ToyNumber sqrt(const ToyNumber& arg)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = sqrt(arg.value);
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 1;
rec.idx1 = arg.idx;
// compute derivative
rec.der1 = 0.5 / result.value;
return result;
}
friend ToyNumber normalDens(const ToyNumber& arg)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = normalDens(arg.value);
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 1;
rec.idx1 = arg.idx;
// compute derivative
rec.der1 = -result.value * arg.value;
return result;
}
friend ToyNumber normalCdf(const ToyNumber& arg)
{
// create a new record on tape
tape.push_back(Record());
Record& rec = tape.back();
// compute result
ToyNumber result;
result.value = normalCdf(arg.value);
// reference record on tape
result.idx = tape.size() - 1;
// populate record on tape
rec.numArg = 1;
rec.idx1 = arg.idx;
// compute derivative
rec.der1 = normalDens(arg.value);
return result;
}
friend bool operator==(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value == rhs.value; }
friend bool operator!=(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value != rhs.value; }
friend bool operator>(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value > rhs.value; }
friend bool operator>=(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value >= rhs.value; }
friend bool operator<(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value < rhs.value; }
friend bool operator<=(const ToyNumber& lhs, const ToyNumber& rhs) { return lhs.value <= rhs.value; }
};
template <class T> inline T blackScholes(
// input layer 0
const T spot, const T rate, const T yield, const T vol, const T strike, const T mat)
{
/* layer 1 */ T df = exp(-rate * mat), fwd = spot * exp((rate - yield) * mat), std = vol * sqrt(mat);
/* layer 2 */ T d = log(fwd / strike) / std;
/* layer 3 */ T d1 = d + 0.5 * std, d2 = d - 0.5 * std;
/* layer 4 */ T p1 = normalCdf(d1), p2 = normalCdf(d2);
/* output layer 5 */ return df * (fwd * p1 - strike * p2);
}
vector<double> calculateAdjoints(ToyNumber& result)
{
// initialization
vector<double> adjoints(tape.size(), 0.0); // initialize all to 0
int N = result.idx; // find N
adjoints[N] = 1.0; // seed aN = 1
// backward propagation
for(int j=N; j>0; --j) // iterate backwards over tape
{
if (tape[j].numArg > 0)
{
adjoints[tape[j].idx1] += adjoints[j] * tape[j].der1; // propagate first argument
if (tape[j].numArg > 1)
{
adjoints[tape[j].idx2] += adjoints[j] * tape[j].der2; // propagate second argument
}
}
}
return adjoints;
}
void blackScholesDiff()
{
ToyNumber spot = 100, rate = 0.02, yield = 0.05, vol = 0.2, strike = 110, mat = 2; // initializes and records inputs
auto result = blackScholes(spot, rate, yield, vol, strike, mat); // evaluates and records operations
cout << "Value = " << result.value << endl; // 5.03705
// propagate adjoints
vector<double> adjoints = calculateAdjoints(result);
// show derivatives
cout << "Derivative to spot (delta) = " << adjoints[spot.idx] << endl; // 0.309
cout << "Derivative to rate (rho) = " << adjoints[rate.idx] << endl; // 51.772
cout << "Derivative to dividend yield = " << adjoints[yield.idx] << endl; // -61.846
cout << "Derivative to volatility (vega) = " << adjoints[vol.idx] << endl; // 46.980
cout << "Derivative to strike (-digital) = " << adjoints[strike.idx] << endl; // -0.235
cout << "Derivative to maturity (-theta) = " << adjoints[mat.idx] << endl; // 1.321
while (true);
}
template <class T>
inline T toyDupireBarrierMc(
// Spot
const T S0,
// Local volatility
const vector<T> spots,
const vector<T> times,
const matrix<T> vols,
// Product parameters
const T maturity,
const T strike,
const T barrier,
// Number of paths and time steps
const int Np,
const int Nt,
// Smoothing
const T epsilon,
// Initialized random number generator
RNG& random)
{
// Initialize
T result = 0;
vector<double> gaussianIncrements(Nt); // double because the RNG is not templated (and doesn't need to be, see chapter 12)
const T dt = maturity / Nt, sdt = sqrt(dt);
// Loop over paths
for (int i = 0; i < Np; ++i)
{
// Generate Nt Gaussian Numbers
random.nextG(gaussianIncrements);
// Step by step
T spot = S0, time = 0;
/* bool alive = true; */ T alive = 1.0; // alive is a real number in (0,1)
for (size_t j = 0; j < Nt; ++j)
{
// Interpolate volatility
const T vol = interp2D(spots, times, vols, spot, time);
time += dt;
// Simulate return
spot *= exp(-0.5 * vol * vol * dt + vol * sdt * gaussianIncrements[j]);
// Monitor barrier
/* if (spot > barrier) { alive = false; break; } */
if (spot > barrier + epsilon) { alive = 0.0; break; } // definitely dead
else if (spot < barrier - epsilon) { /* do nothing */ } // definitely alive
else /* in between, interpolate */ alive *= 1.0 - (spot - barrier + epsilon) / (2 * epsilon);
}
// Payoff
/* if (alive && spot > strike) result += spot - strike; */ if (spot > strike) result += alive * (spot - strike); // pay on surviving notional
} // paths
return result / Np;
}
void dupireRisksMiniBatch(
const double S0, const vector<double> spots, const vector<double> times, const matrix<double> vols,
const double maturity, const double strike, const double barrier,
const int Np, const int Nt, const double epsilon, RNG& random,
/* results: value and dV/dS, dV/d(local vols) */ double& price, double& delta, matrix<double>& vegas)
{
// 1. Initialize inputs, record on tape
ToyNumber nS0(S0), nMaturity(maturity), nStrike(strike), nBarrier(barrier), nEpsilon(epsilon);
vector<ToyNumber> nSpots(spots.size()), nTimes(times.size());
matrix<ToyNumber> nVols(vols.rows(), vols.cols());
for (int i = 0; i < spots.size(); ++i) nSpots[i] = ToyNumber(spots[i]);
for (int i = 0; i < times.size(); ++i) nTimes[i] = ToyNumber(times[i]);
for (int i = 0; i < vols.rows(); ++i) for (int j = 0; j < vols.cols(); ++j) nVols[i][j] = ToyNumber(vols[i][j]);
// 2. Call instrumented evaluation code, which evaluates the barrier option price and records all operations
ToyNumber nPrice = toyDupireBarrierMc(nS0, nSpots, nTimes, nVols, nMaturity, nStrike, nBarrier, Np, Nt, nEpsilon, random);
// 3. Adjoint propagation
// propagate adjoints
vector<double> adjoints = calculateAdjoints(nPrice);
// 4. Pick results
price = nPrice.value;
delta = adjoints[nS0.idx];
for (int i = 0; i < vols.rows(); ++i) for (int j = 0; j < vols.cols(); ++j) vegas[i][j] = adjoints[nVols[i][j].idx];
}
void toyDupireBarrierMcRisks(
const double S0, const vector<double> spots, const vector<double> times, const matrix<double> vols,
const double maturity, const double strike, const double barrier,
const int Np, const int Nt, const double epsilon, RNG& random,
/* results: value and dV/dS, dV/d(local vols) */ double& price, double& delta, matrix<double>& vegas)
{
price = 0;
delta = 0;
for (int i = 0; i < vegas.rows(); ++i) for (int j = 0; j < vegas.cols(); ++j) vegas[i][j] = 0;
double batchPrice, batchDelta;
matrix<double> batchVegas(vegas.rows(), vegas.cols());
int pathsToGo = Np, pathsPerBatch = 1024;
while (pathsToGo > 0)
{
// wipe tape
tape.clear();
// do mini batch
int paths = min(pathsToGo, pathsPerBatch);
dupireRisksMiniBatch(S0, spots, times, vols, maturity, strike, barrier, paths, Nt, epsilon, random, batchPrice, batchDelta, batchVegas);
// update results
price += batchPrice * paths / Np;
delta += batchDelta * paths / Np;
for (int i = 0; i < vegas.rows(); ++i) for (int j = 0; j < vegas.cols(); ++j)
vegas[i][j] += batchVegas[i][j] * paths / Np;
pathsToGo -= paths;
}
}