forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_old.m
249 lines (204 loc) · 7.02 KB
/
knn_old.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
function [Class,P]=knn_old(Data, Proto, proto_class, K)
%KNN_OLD A K-nearest neighbor classifier using Euclidean distance
%
% [Class,P]=knn_old(Data, Proto, proto_class, K)
%
% [sM_class,P]=knn_old(sM, sData, [], 3);
% [sD_class,P]=knn_old(sD, sM, class);
% [class,P]=knn_old(data, proto, class);
% [class,P]=knn_old(sData, sM, class,5);
%
% Input and output arguments ([]'s are optional):
% Data (matrix) size Nxd, vectors to be classified (=classifiees)
% (struct) map or data struct: map codebook vectors or
% data vectors are considered as classifiees.
% Proto (matrix) size Mxd, prototype vector matrix (=prototypes)
% (struct) map or data struct: map codebook vectors or
% data vectors are considered as prototypes.
% [proto_class] (vector) size Nx1, integers 1,2,...,k indicating the
% classes of corresponding protoptypes, default: see the
% explanation below.
% [K] (scalar) the K in KNN classifier, default is 1
%
% Class (matrix) size Nx1, vector of 1,2, ..., k indicating the class
% desicion according to the KNN rule
% P (matrix) size Nxk, the relative amount of prototypes of
% each class among the K closest prototypes for
% each classifiee.
%
% If 'proto_class' is _not_ given, 'Proto' _must_ be a labeled SOM
% Toolbox struct. The label of the data vector or the first label of
% the map model vector is considered as class label for th prototype
% vector. In this case the output 'Class' is a copy of 'Data' (map or
% data struct) relabeled according to the classification. If input
% argument 'proto_class' _is_ given, the output argument 'Class' is
% _always_ a vector of integers 1,2,...,k indiacating the class.
%
% If there is a tie between representatives of two or more classes
% among the K closest neighbors to the classifiee, the class is
% selected randomly among these candidates.
%
% IMPORTANT
%
% ** Even if prototype vectors are given in a map struct the mask _is not
% taken into account_ when calculating Euclidean distance
% ** The function calculates the total distance matrix between all
% classifiees and prototype vectors. This results to an MxN matrix;
% if N is high it is recommended to divide the matrix 'Data'
% (the classifiees) into smaller sets in order to avoid memory
% overflow or swapping. Also, if K>1 this function uses 'sort' which is
% considerably slower than 'max' which is used for K==1.
%
% See also KNN, SOM_LABEL, SOM_AUTOLABEL
% Contributed to SOM Toolbox 2.0, February 11th, 2000 by Johan Himberg
% Copyright (c) by Johan Himberg
% http://www.cis.hut.fi/projects/somtoolbox/
% Version 2.0beta Johan 040200
%% Init %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This must exist later
classnames='';
% Check K
if nargin<4 || isempty(K),
K=1;
end
if ~vis_valuetype(K,{'1x1'})
error('Value for K must be a scalar.');
end
% Take data from data or map struct
if isstruct(Data);
if isfield(Data,'type') && ischar(Data.type),
else
error('Invalid map/data struct?');
end
switch Data.type
case 'som_map'
data=Data.codebook;
case 'som_data'
data=Data.data;
end
else
% is already a matrix
data=Data;
end
% Take prototype vectors from prototype struct
if isstruct(Proto),
if isfield(Proto,'type') && ischar(Proto.type),
else
error('Invalid map/data struct?');
end
switch Proto.type
case 'som_map'
proto=Proto.codebook;
case 'som_data'
proto=Proto.data;
end
else
% is already a matrix
proto=Proto;
end
% Check that inputs are matrices
if ~vis_valuetype(proto,{'nxm'}) || ~vis_valuetype(data,{'nxm'}),
error('Prototype or data input not valid.')
end
% Record data&proto sizes and check their dims
[N_data dim_data]=size(data);
[N_proto dim_proto]=size(proto);
if dim_proto ~= dim_data,
error('Data and prototype vector dimension does not match.');
end
% Check if the classes are given as labels (no class input arg.)
% if they are take them from prototype struct
if nargin<3 || isempty(proto_class)
if ~isstruct(Proto)
error(['If prototypes are not in labeled map or data struct' ...
'class must be given.']);
% transform to interger (numerical) class labels
else
[proto_class,classnames]=class2num(Proto.labels);
end
end
% Check class label vector: must be numerical and of integers
if ~vis_valuetype(proto_class,{[N_proto 1]});
error(['Class vector is invalid: has to be a N-of-data_rows x 1' ...
' vector of integers']);
elseif sum(fix(proto_class)-proto_class)~=0
error('Class labels in vector ''Class'' must be integers.');
end
% Find all class labels
ClassIndex=unique(proto_class);
N_class=length(ClassIndex); % number of different classes
% Calculate euclidean distances between classifiees and prototypes
d=distance(proto,data);
%%%% Classification %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if K==1, % sort distances only if K>1
% 1NN
% Select the closest prototype
[~,proto_index]=min(d);
class=proto_class(proto_index);
else
% Sort the prototypes for each classifiee according to distance
[~,proto_index]=sort(d);
%% Select K closest prototypes
proto_index=proto_index(1:K,:);
knn_class=proto_class(proto_index);
for i=1:N_class,
classcounter(i,:)=sum(knn_class==ClassIndex(i));
end
%% Vote between classes of K neighbors
[winner,vote_index]=max(classcounter);
%% Handle ties
% set index to clases that got as amuch votes as winner
equal_to_winner=(repmat(winner,N_class,1)==classcounter);
% set index to ties
tie_index=find(sum(equal_to_winner)>1); % drop the winner from counter
% Go through equal classes and reset vote_index randomly to one
% of them
for i=1:length(tie_index),
tie_class_index=find(equal_to_winner(:,tie_index(i)));
fortuna=randperm(length(tie_class_index));
vote_index(tie_index(i))=tie_class_index(fortuna(1));
end
class=ClassIndex(vote_index);
end
%% Build output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Relative amount of classes in K neighbors for each classifiee
if K==1,
P=zeros(N_data,N_class);
if nargout>1,
for i=1:N_data,
P(i,ClassIndex==class(i))=1;
end
end
else
P=classcounter'./K;
end
% xMake class names to struct if they exist
if ~isempty(classnames),
Class=Data;
for i=1:N_data,
Class.labels{i,1}=classnames{class(i)};
end
else
Class=class;
end
%%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nos,names] = class2num(class)
% Change string labels in map/data struct to integer numbers
names = {};
nos = zeros(length(class),1);
for i=1:length(class)
if ~isempty(class{i}) && ~any(strcmp(class{i},names))
names=cat(1,names,class(i));
end
end
tmp_nos = (1:length(names))';
for i=1:length(class)
if ~isempty(class{i})
nos(i,1) = find(strcmp(class{i},names));
end
end
function d=distance(X,Y)
% Euclidean distance matrix between row vectors in X and Y
U=~isnan(Y); Y(~U)=0;
V=~isnan(X); X(~V)=0;
d=X.^2*U'+V*Y'.^2-2*X*Y';