forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsom_demo4.m
307 lines (236 loc) · 10.1 KB
/
som_demo4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
%SOM_DEMO4 Data analysis using the SOM.
% Contributed to SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto
% http://www.cis.hut.fi/projects/somtoolbox/
% Version 1.0beta juuso 071197
% Version 2.0beta juuso 090200 070600
clf reset;
f0 = gcf;
echo on
clc
% ==========================================================
% SOM_DEMO4 - DATA ANALYSIS USING THE SOM
% ==========================================================
% In this demo, the IRIS data set is analysed using SOM. First, the
% data is read from ascii file (please make sure they can be found
% from the current path), normalized, and a map is
% trained. Since the data also had labels, the map is labelled.
try
sD = som_read_data('iris.data');
catch
echo off
warning('File ''iris.data'' not found. Using simulated data instead.')
D = randn(50,4);
D(:,1) = D(:,1)+5; D(:,2) = D(:,2)+3.5;
D(:,3) = D(:,3)/2+1.5; D(:,4) = D(:,4)/2+0.3;
D2 = randn(100,4); D2(:,2) = sort(D2(:,2));
D2(:,1) = D2(:,1)+6.5; D2(:,2) = D2(:,2)+2.8;
D2(:,3) = D2(:,3)+5; D2(:,4) = D2(:,4)/2+1.5;
sD = som_data_struct([D; D2],'name','iris (simulated)',...
'comp_names',{'SepalL','SepalW','PetalL','PetalW'});
sD = som_label(sD,'add',[1:50]','Setosa');
sD = som_label(sD,'add',[51:100]','Versicolor');
sD = som_label(sD,'add',[101:150]','Virginica');
echo on
end
sD = som_normalize(sD,'var');
sM = som_make(sD);
sM = som_autolabel(sM,sD,'vote');
pause % Strike any key to visualize the map...
clc
% VISUAL INSPECTION OF THE MAP
% ============================
% The first step in the analysis of the map is visual inspection.
% Here is the U-matrix, component planes and labels (you may
% need to enlarge the figure in order to make out the labels).
som_show(sM,'umat','all','comp',[1:4],'empty','Labels','norm','d');
som_show_add('label',sM.labels,'textsize',8,'textcolor','r','subplot',6);
% From this first visualization, one can see that:
% - there are essentially two clusters
% - PetalL and PetalW are highly correlated
% - SepalL is somewhat correlated to PetalL and PetalW
% - one cluster corresponds to the Setosa species and exhibits
% small petals and short but wide sepals
% - the other cluster corresponds to Virginica and Versicolor
% such that Versicolor has smaller leaves (both sepal and
% petal) than Virginica
% - inside both clusters, SepalL and SepalW are highly correlated
pause % Strike any key to continue...
% Next, the projection of the data set is investigated. A
% principle component projection is made for the data, and applied
% to the map. The colormap is done by spreading a colormap on the
% projection. Distance matrix information is extracted from the
% U-matrix, and it is modified by knowledge of zero-hits
% (interpolative) units. Finally, three visualizations are shown:
% the color code, with clustering information and the number of
% hits in each unit, the projection and the labels.
echo off
f1=figure;
[Pd,V,me,l] = pcaproj(sD,2); Pm = pcaproj(sM,V,me); % PC-projection
Code = som_colorcode(Pm); % color coding
hits = som_hits(sM,sD); % hits
U = som_umat(sM); % U-matrix
Dm = U(1:2:size(U,1),1:2:size(U,2)); % distance matrix
Dm = 1-Dm(:)/max(Dm(:)); Dm(find(hits==0)) = 0; % clustering info
subplot(1,3,1)
som_cplane(sM,Code,Dm);
hold on
som_grid(sM,'Label',cellstr(int2str(hits)),...
'Line','none','Marker','none','Labelcolor','k');
hold off
title('Color code')
subplot(1,3,2)
som_grid(sM,'Coord',Pm,'MarkerColor',Code,'Linecolor','k');
hold on, plot(Pd(:,1),Pd(:,2),'k+'), hold off, axis tight, axis equal
title('PC projection')
subplot(1,3,3)
som_cplane(sM,'none')
hold on
som_grid(sM,'Label',sM.labels,'Labelsize',8,...
'Line','none','Marker','none','Labelcolor','r');
hold off
title('Labels')
echo on
% From these figures one can see that:
% - the projection confirms the existence of two different clusters
% - interpolative units seem to divide the Virginica
% flowers into two classes, the difference being in the size of
% sepal leaves
pause % Strike any key to continue...
% Finally, perhaps the most informative figure of all: simple
% scatter plots and histograms of all variables. The species
% information is coded as a fifth variable: 1 for Setosa, 2 for
% Versicolor and 3 for Virginica. Original data points are in the
% upper triangle, map prototype values on the lower triangle, and
% histograms on the diagonal: black for the data set and red for
% the map prototype values. The color coding of the data samples
% has been copied from the map (from the BMU of each sample). Note
% that the variable values have been denormalized.
echo off
% denormalize and add species information
names = sD.comp_names; names{end+1} = 'species';
D = som_denormalize(sD.data,sD); dlen = size(D,1);
s = zeros(dlen,1)+NaN; s(strcmp(sD.labels,'Setosa'))=1;
s(strcmp(sD.labels,'Versicolor'))=2; s(strcmp(sD.labels,'Virginica'))=3;
D = [D, s];
M = som_denormalize(sM.codebook,sM); munits = size(M,1);
s = zeros(munits,1)+NaN; s(strcmp(sM.labels,'Setosa'))=1;
s(strcmp(sM.labels,'Versicolor'))=2; s(strcmp(sM.labels,'Virginica'))=3;
M = [M, s];
f2=figure;
% color coding copied from the map
bmus = som_bmus(sM,sD); Code_data = Code(bmus,:);
k=1;
for i=1:5, for j=1:5,
if i<j, i1=i; i2=j; else i1=j; i2=i; end
subplot(5,5,k); cla
if i<j,
som_grid('rect',[dlen 1],'coord',D(:,[i1 i2]),...
'Line','none','MarkerColor',Code_data,'Markersize',2);
title(sprintf('%s vs. %s',names{i1},names{i2}))
elseif i>j,
som_grid(sM,'coord',M(:,[i1 i2]),...
'markersize',2,'MarkerColor',Code);
title(sprintf('%s vs. %s',names{i1},names{i2}))
else
if i1<5, b = 10; else b = 3; end
[nd,x] = hist(D(:,i1),b); nd=nd/sum(nd);
nm = hist(M(:,i1),x); nm = nm/sum(nm);
h=bar(x,nd,0.8); set(h,'EdgeColor','none','FaceColor','k');
hold on
h=bar(x,nm,0.3); set(h,'EdgeColor','none','FaceColor','r');
hold off
title(names{i1})
end
k=k+1;
end
end
echo on
% This visualization shows quite a lot of information:
% distributions of single and pairs of variables both in the data
% and in the map. If the number of variables was even slightly
% more, it would require a really big display to be convenient to
% use.
% From this visualization we can conform many of the earlier
% conclusions, for example:
% - there are two clusters: 'Setosa' (blue, dark green) and
% 'Virginica'/'Versicolor' (light green, yellow, reds)
% (see almost any of the subplots)
% - PetalL and PetalW have a high linear correlation (see
% subplots 4,3 and 3,4)
% - SepalL is correlated (at least in the bigger cluster) with
% PetalL and PetalW (in subplots 1,3 1,4 3,1 and 4,1)
% - SepalL and SepalW have a clear linear correlation, but it
% is slightly different for the two main clusters (in
% subplots 2,1 and 1,2)
pause % Strike any key to cluster the map...
close(f1), close(f2), figure(f0), clf
clc
% CLUSTERING OF THE MAP
% =====================
% Visual inspection already hinted that there are at least two
% clusters in the data, and that the properties of the clusters are
% different from each other (esp. relation of SepalL and
% SepalW). For further investigation, the map needs to be
% partitioned.
% Here, the KMEANS_CLUSTERS function is used to find an initial
% partitioning. The plot shows the Davies-Boulding clustering
% index, which is minimized with best clustering.
subplot(1,3,1)
[c,p,err,ind] = kmeans_clusters(sM, 7); % find at most 7 clusters
plot(1:length(ind),ind,'x-')
[dummy,i] = min(ind)
cl = p{i};
% The Davies-Boulding index seems to indicate that there are
% two clusters on the map. Here is the clustering info
% calculated previously and the partitioning result:
subplot(1,3,2)
som_cplane(sM,Code,Dm)
subplot(1,3,3)
som_cplane(sM,cl)
% You could use also function SOM_SELECT to manually make or modify
% the partitioning.
% After this, the analysis would proceed with summarization of the
% results, and analysis of each cluster one at a time.
% Unfortunately, you have to do that yourself. The SOM Toolbox does
% not, yet, have functions for those purposes.
pause % Strike any key to continue...
clf
clc
% MODELING
% ========
% One can also build models on top of the SOM. Typically, these
% models are simple local or nearest-neighbor models.
% Here, SOM is used for probability density estimation. Each map
% prototype is the center of a gaussian kernel, the parameters
% of which are estimated from the data. The gaussian mixture
% model is estimated with function SOM_ESTIMATE_GMM and the
% probabilities can be calculated with SOM_PROBABILITY_GMM.
[K,P] = som_estimate_gmm(sM,sD);
[pd,Pdm,pmd] = som_probability_gmm(sD,sM,K,P);
% Here is the probability density function value for the first data
% sample (x=sD.data(:,1)) in terms of each map unit (m):
som_cplane(sM,Pdm(:,1))
colorbar
title('p(x|m)')
pause % Strike any key to continue...
% Here, SOM is used for classification. Although the SOM can be
% used for classification as such, one has to remember that it does
% not utilize class information at all, and thus its results are
% inherently suboptimal. However, with small modifications, the
% network can take the class into account. The function
% SOM_SUPERVISED does this.
% Learning vector quantization (LVQ) is an algorithm that is very
% similar to the SOM in many aspects. However, it is specifically
% designed for classification. In the SOM Toolbox, there are
% functions LVQ1 and LVQ3 that implement two versions of this
% algorithm.
% Here, the function SOM_SUPERVISED is used to create a classifier
% for IRIS data set:
sM = som_supervised(sD,'small');
som_show(sM,'umat','all');
som_show_add('label',sM.labels,'TextSize',8,'TextColor','r')
sD2 = som_label(sD,'clear','all');
sD2 = som_autolabel(sD2,sM); % classification
ok = strcmp(sD2.labels,sD.labels); % errors
100*(1-sum(ok)/length(ok)) % error percentage (%)
echo off