forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsom_hits.m
217 lines (192 loc) · 6.45 KB
/
som_hits.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
function [hits] = som_hits(sMap, sData, mode)
%SOM_HITS Calculate the response of the given data on the map.
%
% hits = som_hits(sMap, sData, [mode])
%
% h = som_hits(sMap,sData);
% h = som_hits(sMap,sData,'fuzzy');
%
% Input and output arguments ([]'s are optional):
% sMap (struct) map struct
% (matrix) codebook matrix, size munits x dim
% sData (struct) data struct
% (matrix) data matrix, size dlen x dim
% [mode] (string) 'crisp' (default), 'kernel', 'fuzzy'
%
% hits (vector) the number of hits in each map unit, length = munits
%
% The response of the data on the map can be calculated e.g. in
% three ways, selected with the mode argument:
% 'crisp' traditional hit histogram
% 'kernel' a sum of dlen neighborhood kernels, where kernel
% is positioned on the BMU of each data sample. The
% neighborhood function is sMap.neigh and the
% neighborhood width is sMap.trainhist(end).radius_fin
% or 1 if this is empty or NaN
% 'fuzzy' fuzzy response calculated by summing 1./(1+(q/a)^2)
% for each data sample, where q is a vector containing
% distance from the data sample to each map unit and
% a is average quantization error
%
% For more help, try 'type som_hits' or check out online documentation.
% See also SOM_AUTOLABEL, SOM_BMUS.
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% som_hits
%
% PURPOSE
%
% Calculate the response of the given data on the map.
%
% SYNTAX
%
% hits = som_hits(sMap, sData)
% hits = som_hits(M, D)
% hits = som_hits(..., mode)
%
% DESCRIPTION
%
% Returns a vector indicating the response of the map to the data.
% The response of the data on the map can be calculated e.g. in
% three ways, selected with the mode argument:
% 'crisp' traditional hit histogram: how many times each map unit
% was the BMU for the data set
% 'kernel' a sum of neighborhood kernels, where a kernel
% is positioned on the BMU of each data sample. The
% neighborhood function is sMap.neigh and the
% neighborhood width is sMap.trainhist(end).radius_fin
% or 1 if this is not available
% 'fuzzy' fuzzy response calculated by summing
%
% 1
% ------------
% 1 + (q/a)^2
%
% for each data sample, where q is a vector containing
% distance from the data sample to each map unit and
% a is average quantization error
%
% REQUIRED INPUT ARGUMENTS
%
% sMap The vectors from among which the BMUs are searched
% for. These must not have any unknown components (NaNs).
% (struct) map struct
% (matrix) codebook matrix, size munits x dim
%
% sData The data vector(s) for which the BMUs are searched.
% (struct) data struct
% (matrix) data matrix, size dlen x dim
%
% OPTIONAL INPUT ARGUMENTS
%
% mode (string) The respond mode: 'crisp' (default), 'kernel'
% or 'fuzzy'. 'kernel' can only be used if
% the first argument (sMap) is a map struct.
%
% OUTPUT ARGUMENTS
%
% hits (vector) The number of hits in each map unit.
%
% EXAMPLES
%
% hits = som_hits(sM,D);
% hits = som_hits(sM,D,'kernel');
% hits = som_hits(sM,D,'fuzzy');
%
% SEE ALSO
%
% som_bmus Find BMUs and quantization errors for a given data set.
% Copyright (c) 1997-2000 by the SOM toolbox programming team.
% http://www.cis.hut.fi/projects/somtoolbox/
% Version 1.0beta juuso 220997
% Version 2.0beta juuso 161199
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% check arguments
error(nargchk(2, 3, nargin)); % check no. of input args is correct
if isstruct(sMap),
switch sMap.type,
case 'som_map', munits = prod(sMap.topol.msize);
case 'som_data', munits = size(sMap.data,1);
otherwise,
error('Illegal struct for 1st argument.')
end
else
munits = size(sMap,1);
end
hits = zeros(munits,1);
if nargin<3, mode = 'crisp'; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% action
% calculate BMUs
[bmus,qerrs] = som_bmus(sMap,sData,1);
switch mode,
case 'crisp',
% for each unit, check how many hits it got
for i=1:munits, hits(i) = sum(bmus == i); end
case 'kernel',
% check that sMap really is a map
if ~isstruct(sMap) && ~strcmp(sMap.type,'som_map'),
error('Kernel mode can only be used for maps.');
end
% calculate neighborhood kernel
Ud = som_unit_dists(sMap.topol).^2;
sTrain = sMap.trainhist(end);
if ~isempty(sTrain),
rad = sTrain.radius_fin;
if isempty(rad) || isnan(rad), rad = 1; end
else
rad = 1;
end
rad = rad^2;
if rad==0, rad = eps; end % to avoid divide-by-0 errors
switch sTrain.neigh,
case 'bubble', H = (Ud<=rad);
case 'gaussian', H = exp(-Ud/(2*rad));
case 'cutgauss', H = exp(-Ud/(2*rad)) .* (Ud<=rad);
case 'ep', H = (1-Ud/rad) .* (Ud<=rad);
end
% weight hits with neighborhood kernel
hits = sum(H(bmus,:),1)';
case 'fuzzy',
% extract the two matrices (M, D) and the mask
mask = [];
if isstruct(sMap),
if strcmp(sMap.type,'som_data'), M = sMap.data;
else M = sMap.codebook; mask = sMap.mask;
end
else M = sMap;
end
if any(isnan(M(:))),
error('Data in first argument must not have any NaNs.');
end
if isstruct(sData),
switch sData.type,
case 'som_map',
D = sData.codebook;
if isempty(mask), mask = sData.mask; end
case 'som_data', D = sData.data;
otherwise, error('Illegal 2nd argument.');
end
else D = sData;
end
[dlen dim] = size(D);
if isempty(mask), mask = ones(dim,1); end
% scaling factor
a = mean(qerrs).^2;
% calculate distances & bmus
% (this is better explained in som_batchtrain and som_bmus)
Known = ~isnan(D); D(find(~Known)) = 0; % unknown components
blen = min(munits,dlen); % block size
W1 = mask*ones(1,blen); W2 = ones(munits,1)*mask'; D = D'; Known = Known';
i0 = 0;
while i0+1<=dlen,
inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen; % indeces
Dist = (M.^2)*(W1(:,1:length(inds)).*Known(:,inds)) ...
+ W2*(D(:,inds).^2) ...
- 2*M*diag(mask)*D(:,inds); % squared distances
hits = hits + sum(1./(1+Dist/a),2);
end
otherwise,
error(['Unknown mode: ' mode]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%