forked from ilarinieminen/SOM-Toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsom_seqtrain.m
562 lines (520 loc) · 20.7 KB
/
som_seqtrain.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
function [sMap, sTrain] = som_seqtrain(sMap, D, varargin)
%SOM_SEQTRAIN Use sequential algorithm to train the Self-Organizing Map.
%
% [sM,sT] = som_seqtrain(sM, D, [[argID,] value, ...])
%
% sM = som_seqtrain(sM,D);
% sM = som_seqtrain(sM,sD,'alpha_type','power','tracking',3);
% [M,sT] = som_seqtrain(M,D,'ep','trainlen',10,'inv','hexa');
%
% Input and output arguments ([]'s are optional):
% sM (struct) map struct, the trained and updated map is returned
% (matrix) codebook matrix of a self-organizing map
% size munits x dim or msize(1) x ... x msize(k) x dim
% The trained map codebook is returned.
% D (struct) training data; data struct
% (matrix) training data, size dlen x dim
% [argID, (string) See below. The values which are unambiguous can
% value] (varies) be given without the preceeding argID.
%
% sT (struct) learning parameters used during the training
%
% Here are the valid argument IDs and corresponding values. The values which
% are unambiguous (marked with '*') can be given without the preceeding argID.
% 'mask' (vector) BMU search mask, size dim x 1
% 'msize' (vector) map size
% 'radius' (vector) neighborhood radiuses, length 1, 2 or trainlen
% 'radius_ini' (scalar) initial training radius
% 'radius_fin' (scalar) final training radius
% 'alpha' (vector) learning rates, length trainlen
% 'alpha_ini' (scalar) initial learning rate
% 'tracking' (scalar) tracking level, 0-3
% 'trainlen' (scalar) training length
% 'trainlen_type' *(string) is the given trainlen 'samples' or 'epochs'
% 'train' *(struct) train struct, parameters for training
% 'sTrain','som_train ' = 'train'
% 'alpha_type' *(string) learning rate function, 'inv', 'linear' or 'power'
% 'sample_order'*(string) order of samples: 'random' or 'ordered'
% 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss',
% 'ep' or 'bubble'
% 'topol' *(struct) topology struct
% 'som_topol','sTopo l' = 'topol'
% 'lattice' *(string) map lattice, 'hexa' or 'rect'
% 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid'
%
% For more help, try 'type som_seqtrain' or check out online documentation.
% See also SOM_MAKE, SOM_BATCHTRAIN, SOM_TRAIN_STRUCT.
%%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% som_seqtrain
%
% PURPOSE
%
% Trains a Self-Organizing Map using the sequential algorithm.
%
% SYNTAX
%
% sM = som_seqtrain(sM,D);
% sM = som_seqtrain(sM,sD);
% sM = som_seqtrain(...,'argID',value,...);
% sM = som_seqtrain(...,value,...);
% [sM,sT] = som_seqtrain(M,D,...);
%
% DESCRIPTION
%
% Trains the given SOM (sM or M above) with the given training data
% (sD or D) using sequential SOM training algorithm. If no optional
% arguments (argID, value) are given, a default training is done, the
% parameters are obtained from SOM_TRAIN_STRUCT function. Using
% optional arguments the training parameters can be specified. Returns
% the trained and updated SOM and a train struct which contains
% information on the training.
%
% REFERENCES
%
% Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag,
% Berlin, 1995, pp. 78-82.
% Kohonen, T., "Clustering, Taxonomy, and Topological Maps of
% Patterns", International Conference on Pattern Recognition
% (ICPR), 1982, pp. 114-128.
% Kohonen, T., "Self-Organized formation of topologically correct
% feature maps", Biological Cybernetics 43, 1982, pp. 59-69.
%
% REQUIRED INPUT ARGUMENTS
%
% sM The map to be trained.
% (struct) map struct
% (matrix) codebook matrix (field .data of map struct)
% Size is either [munits dim], in which case the map grid
% dimensions (msize) should be specified with optional arguments,
% or [msize(1) ... msize(k) dim] in which case the map
% grid dimensions are taken from the size of the matrix.
% Lattice, by default, is 'rect' and shape 'sheet'.
% D Training data.
% (struct) data struct
% (matrix) data matrix, size [dlen dim]
%
% OPTIONAL INPUT ARGUMENTS
%
% argID (string) Argument identifier string (see below).
% value (varies) Value for the argument (see below).
%
% The optional arguments can be given as 'argID',value -pairs. If an
% argument is given value multiple times, the last one is
% used. The valid IDs and corresponding values are listed below. The values
% which are unambiguous (marked with '*') can be given without the
% preceeding argID.
%
% 'mask' (vector) BMU search mask, size dim x 1. Default is
% the one in sM (field '.mask') or a vector of
% ones if only a codebook matrix was given.
% 'msize' (vector) map grid dimensions. Default is the one
% in sM (field sM.topol.msize) or
% 'si = size(sM); msize = si(1:end-1);'
% if only a codebook matrix was given.
% 'radius' (vector) neighborhood radius
% length = 1: radius_ini = radius
% length = 2: [radius_ini radius_fin] = radius
% length > 2: the vector given neighborhood
% radius for each step separately
% trainlen = length(radius)
% 'radius_ini' (scalar) initial training radius
% 'radius_fin' (scalar) final training radius
% 'alpha' (vector) learning rate
% length = 1: alpha_ini = alpha
% length > 1: the vector gives learning rate
% for each step separately
% trainlen is set to length(alpha)
% alpha_type is set to 'user defined'
% 'alpha_ini' (scalar) initial learning rate
% 'tracking' (scalar) tracking level: 0, 1 (default), 2 or 3
% 0 - estimate time
% 1 - track time and quantization error
% 2 - plot quantization error
% 3 - plot quantization error and two first
% components
% 'trainlen' (scalar) training length (see also 'tlen_type')
% 'trainlen_type' *(string) is the trainlen argument given in 'epochs'
% or in 'samples'. Default is 'epochs'.
% 'sample_order'*(string) is the sample order 'random' (which is the
% the default) or 'ordered' in which case
% samples are taken in the order in which they
% appear in the data set
% 'train' *(struct) train struct, parameters for training.
% Default parameters, unless specified,
% are acquired using SOM_TRAIN_STRUCT (this
% also applies for 'trainlen', 'alpha_type',
% 'alpha_ini', 'radius_ini' and 'radius_fin').
% 'sTrain', 'som_train' (struct) = 'train'
% 'neigh' *(string) The used neighborhood function. Default is
% the one in sM (field '.neigh') or 'gaussian'
% if only a codebook matrix was given. Other
% possible values is 'cutgauss', 'ep' and 'bubble'.
% 'topol' *(struct) topology of the map. Default is the one
% in sM (field '.topol').
% 'sTopol', 'som_topol' (struct) = 'topol'
% 'alpha_type'*(string) learning rate function, 'inv', 'linear' or 'power'
% 'lattice' *(string) map lattice. Default is the one in sM
% (field sM.topol.lattice) or 'rect'
% if only a codebook matrix was given.
% 'shape' *(string) map shape. Default is the one in sM
% (field sM.topol.shape) or 'sheet'
% if only a codebook matrix was given.
%
% OUTPUT ARGUMENTS
%
% sM the trained map
% (struct) if a map struct was given as input argument, a
% map struct is also returned. The current training
% is added to the training history (sM.trainhist).
% The 'neigh' and 'mask' fields of the map struct
% are updated to match those of the training.
% (matrix) if a matrix was given as input argument, a matrix
% is also returned with the same size as the input
% argument.
% sT (struct) train struct; information of the accomplished training
%
% EXAMPLES
%
% Simplest case:
% sM = som_seqtrain(sM,D);
% sM = som_seqtrain(sM,sD);
%
% To change the tracking level, 'tracking' argument is specified:
% sM = som_seqtrain(sM,D,'tracking',3);
%
% The change training parameters, the optional arguments 'train',
% 'neigh','mask','trainlen','radius','radius_ini', 'radius_fin',
% 'alpha', 'alpha_type' and 'alpha_ini' are used.
% sM = som_seqtrain(sM,D,'neigh','cutgauss','trainlen',10,'radius_fin',0);
%
% Another way to specify training parameters is to create a train struct:
% sTrain = som_train_struct(sM,'dlen',size(D,1),'algorithm','seq');
% sTrain = som_set(sTrain,'neigh','cutgauss');
% sM = som_seqtrain(sM,D,sTrain);
%
% By default the neighborhood radius goes linearly from radius_ini to
% radius_fin. If you want to change this, you can use the 'radius' argument
% to specify the neighborhood radius for each step separately:
% sM = som_seqtrain(sM,D,'radius',[5 3 1 1 1 1 0.5 0.5 0.5]);
%
% By default the learning rate (alpha) goes from the alpha_ini to 0
% along the function defined by alpha_type. If you want to change this,
% you can use the 'alpha' argument to specify the learning rate
% for each step separately:
% alpha = 0.2*(1 - log([1:100]));
% sM = som_seqtrain(sM,D,'alpha',alpha);
%
% You don't necessarily have to use the map struct, but you can operate
% directly with codebook matrices. However, in this case you have to
% specify the topology of the map in the optional arguments. The
% following commads are identical (M is originally a 200 x dim sized matrix):
% M = som_seqtrain(M,D,'msize',[20 10],'lattice','hexa','shape','cyl');
%
% M = som_seqtrain(M,D,'msize',[20 10],'hexa','cyl');
%
% sT= som_set('som_topol','msize',[20 10],'lattice','hexa','shape','cyl');
% M = som_seqtrain(M,D,sT);
%
% M = reshape(M,[20 10 dim]);
% M = som_seqtrain(M,D,'hexa','cyl');
%
% The som_seqtrain also returns a train struct with information on the
% accomplished training. This is the same one as is added to the end of the
% trainhist field of map struct, in case a map struct is given.
% [M,sTrain] = som_seqtrain(M,D,'msize',[20 10]);
%
% [sM,sTrain] = som_seqtrain(sM,D); % sM.trainhist{end}==sTrain
%
% SEE ALSO
%
% som_make Initialize and train a SOM using default parameters.
% som_batchtrain Train SOM with batch algorithm.
% som_train_struct Determine default training parameters.
% Copyright (c) 1997-2000 by the SOM toolbox programming team.
% http://www.cis.hut.fi/projects/somtoolbox/
% Version 1.0beta juuso 220997
% Version 2.0beta juuso 101199
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Check arguments
error(nargchk(2, Inf, nargin)); % check the number of input arguments
% map
struct_mode = isstruct(sMap);
if struct_mode,
sTopol = sMap.topol;
else
orig_size = size(sMap);
if ndims(sMap) > 2,
si = size(sMap); dim = si(end); msize = si(1:end-1);
M = reshape(sMap,[prod(msize) dim]);
else
msize = [orig_size(1) 1];
dim = orig_size(2);
end
sMap = som_map_struct(dim,'msize',msize);
sTopol = sMap.topol;
end
[munits dim] = size(sMap.codebook);
% data
if isstruct(D),
data_name = D.name;
D = D.data;
else
data_name = inputname(2);
end
D = D(find(sum(isnan(D),2) < dim),:); % remove empty vectors from the data
[dlen ddim] = size(D); % check input dimension
if dim ~= ddim, error('Map and data input space dimensions disagree.'); end
% varargin
sTrain = som_set('som_train','algorithm','seq','neigh', ...
sMap.neigh,'mask',sMap.mask,'data_name',data_name);
radius = [];
alpha = [];
tracking = 1;
sample_order_type = 'random';
tlen_type = 'epochs';
i=1;
while i<=length(varargin),
argok = 1;
if ischar(varargin{i}),
switch varargin{i},
% argument IDs
case 'msize', i=i+1; sTopol.msize = varargin{i};
case 'lattice', i=i+1; sTopol.lattice = varargin{i};
case 'shape', i=i+1; sTopol.shape = varargin{i};
case 'mask', i=i+1; sTrain.mask = varargin{i};
case 'neigh', i=i+1; sTrain.neigh = varargin{i};
case 'trainlen', i=i+1; sTrain.trainlen = varargin{i};
case 'trainlen_type', i=i+1; tlen_type = varargin{i};
case 'tracking', i=i+1; tracking = varargin{i};
case 'sample_order', i=i+1; sample_order_type = varargin{i};
case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i};
case 'radius_fin', i=i+1; sTrain.radius_fin = varargin{i};
case 'radius',
i=i+1;
l = length(varargin{i});
if l==1,
sTrain.radius_ini = varargin{i};
else
sTrain.radius_ini = varargin{i}(1);
sTrain.radius_fin = varargin{i}(end);
if l>2, radius = varargin{i}; tlen_type = 'samples'; end
end
case 'alpha_type', i=i+1; sTrain.alpha_type = varargin{i};
case 'alpha_ini', i=i+1; sTrain.alpha_ini = varargin{i};
case 'alpha',
i=i+1;
sTrain.alpha_ini = varargin{i}(1);
if length(varargin{i})>1,
alpha = varargin{i}; tlen_type = 'samples';
sTrain.alpha_type = 'user defined';
end
case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i};
case {'topol','sTopol','som_topol'},
i=i+1;
sTopol = varargin{i};
if prod(sTopol.msize) ~= munits,
error('Given map grid size does not match the codebook size.');
end
% unambiguous values
case {'inv','linear','power'}, sTrain.alpha_type = varargin{i};
case {'hexa','rect'}, sTopol.lattice = varargin{i};
case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i};
case {'gaussian','cutgauss','ep','bubble'}, sTrain.neigh = varargin{i};
case {'epochs','samples'}, tlen_type = varargin{i};
case {'random', 'ordered'}, sample_order_type = varargin{i};
otherwise argok=0;
end
elseif isstruct(varargin{i}) && isfield(varargin{i},'type'),
switch varargin{i}(1).type,
case 'som_topol',
sTopol = varargin{i};
if prod(sTopol.msize) ~= munits,
error('Given map grid size does not match the codebook size.');
end
case 'som_train', sTrain = varargin{i};
otherwise argok=0;
end
else
argok = 0;
end
if ~argok,
disp(['(som_seqtrain) Ignoring invalid argument #' num2str(i+2)]);
end
i = i+1;
end
% training length
if ~isempty(radius) || ~isempty(alpha),
lr = length(radius);
la = length(alpha);
if lr>2 || la>1,
tlen_type = 'samples';
if lr> 2 && la<=1, sTrain.trainlen = lr;
elseif lr<=2 && la> 1, sTrain.trainlen = la;
elseif lr==la, sTrain.trainlen = la;
else
error('Mismatch between radius and learning rate vector lengths.')
end
end
end
if strcmp(tlen_type,'samples'), sTrain.trainlen = sTrain.trainlen/dlen; end
% check topology
if struct_mode,
if ~strcmp(sTopol.lattice,sMap.topol.lattice) || ...
~strcmp(sTopol.shape,sMap.topol.shape) || ...
any(sTopol.msize ~= sMap.topol.msize),
warning('Changing the original map topology.');
end
end
sMap.topol = sTopol;
% complement the training struct
sTrain = som_train_struct(sTrain,sMap,'dlen',dlen);
if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% initialize
M = sMap.codebook;
mask = sTrain.mask;
trainlen = sTrain.trainlen*dlen;
% neighborhood radius
if length(radius)>2,
radius_type = 'user defined';
else
radius = [sTrain.radius_ini sTrain.radius_fin];
rini = radius(1);
rstep = (radius(end)-radius(1))/(trainlen-1);
radius_type = 'linear';
end
% learning rate
if length(alpha)>1,
sTrain.alpha_type ='user defined';
if length(alpha) ~= trainlen,
error('Trainlen and length of neighborhood radius vector do not match.')
end
if any(isnan(alpha)),
error('NaN is an illegal learning rate.')
end
else
if isempty(alpha), alpha = sTrain.alpha_ini; end
if strcmp(sTrain.alpha_type,'inv'),
% alpha(t) = a / (t+b), where a and b are chosen suitably
% below, they are chosen so that alpha_fin = alpha_ini/100
b = (trainlen - 1) / (100 - 1);
a = b * alpha;
end
end
% initialize random number generator
rand('state',sum(100*clock));
% distance between map units in the output space
% Since in the case of gaussian and ep neighborhood functions, the
% equations utilize squares of the unit distances and in bubble case
% it doesn't matter which is used, the unitdistances and neighborhood
% radiuses are squared.
Ud = som_unit_dists(sTopol).^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Action
update_step = 100;
mu_x_1 = ones(munits,1);
samples = ones(update_step,1);
r = samples;
alfa = samples;
qe = 0;
start = clock;
if tracking > 0, % initialize tracking
track_table = zeros(update_step,1);
qe = zeros(floor(trainlen/update_step),1);
end
printedbytes = 0;
for t = 1:trainlen,
% Every update_step, new values for sample indeces, neighborhood
% radius and learning rate are calculated. This could be done
% every step, but this way it is more efficient. Or this could
% be done all at once outside the loop, but it would require much
% more memory.
ind = rem(t,update_step); if ind==0, ind = update_step; end
if ind==1,
steps = [t:min(trainlen,t+update_step-1)];
% sample order
switch sample_order_type,
case 'ordered', samples = rem(steps,dlen)+1;
case 'random', samples = ceil(dlen*rand(update_step,1)+eps);
end
% neighborhood radius
switch radius_type,
case 'linear', r = rini+(steps-1)*rstep;
case 'user defined', r = radius(steps);
end
r=r.^2; % squared radius (see notes about Ud above)
r(r==0) = eps; % zero radius might cause div-by-zero error
% learning rate
switch sTrain.alpha_type,
case 'linear', alfa = (1-steps/trainlen)*alpha;
case 'inv', alfa = a ./ (b + steps-1);
case 'power', alfa = alpha * (0.005/alpha).^((steps-1)/trainlen);
case 'user defined', alfa = alpha(steps);
end
end
% find BMU
x = D(samples(ind),:); % pick one sample vector
known = ~isnan(x); % its known components
Dx = M(:,known) - x(mu_x_1,known); % each map unit minus the vector
[qerr bmu] = min((Dx.^2)*mask(known)); % minimum distance(^2) and the BMU
% tracking
if tracking>0,
track_table(ind) = sqrt(qerr);
if ind==update_step,
n = ceil(t/update_step);
qe(n) = mean(track_table);
printedbytes = trackplot(M,D,tracking,start,n,qe,printedbytes);
end
end
% neighborhood & learning rate
% notice that the elements Ud and radius have been squared!
% (see notes about Ud above)
switch sTrain.neigh,
case 'bubble', h = (Ud(:,bmu)<=r(ind));
case 'gaussian', h = exp(-Ud(:,bmu)/(2*r(ind)));
case 'cutgauss', h = exp(-Ud(:,bmu)/(2*r(ind))) .* (Ud(:,bmu)<=r(ind));
case 'ep', h = (1-Ud(:,bmu)/r(ind)) .* (Ud(:,bmu)<=r(ind));
end
h = h*alfa(ind);
% update M
M(:,known) = M(:,known) - h(:,ones(sum(known),1)).*Dx;
end; % for t = 1:trainlen
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Build / clean up the return arguments
if tracking, fprintf(1,'\n'); end
% update structures
sTrain = som_set(sTrain,'time',datestr(now,0));
if struct_mode,
sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh);
tl = length(sMap.trainhist);
sMap.trainhist(tl+1) = sTrain;
else
sMap = reshape(M,orig_size);
end
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% subfunctions
%%%%%%%%
function [count] = trackplot(M,D,tracking,start,n,qe, printedbytes)
l = length(qe);
elap_t = etime(clock,start);
tot_t = elap_t*l/n;
% Carriage return does not work as it should (even on UNIX) when printing
% to screen, so let's do this instead
fprintf(1, repmat('\b', 1, printedbytes));
count = fprintf(1,'Training: %3.0f/ %3.0f s',elap_t,tot_t);
switch tracking
case 1,
case 2,
plot(1:n,qe(1:n),(n+1):l,qe((n+1):l))
title('Quantization errors for latest samples')
drawnow
otherwise,
subplot(2,1,1), plot(1:n,qe(1:n),(n+1):l,qe((n+1):l))
title('Quantization error for latest samples');
subplot(2,1,2), plot(M(:,1),M(:,2),'ro',D(:,1),D(:,2),'b.');
title('First two components of map units (o) and data vectors (+)');
drawnow
end
% end of trackplot