forked from TUMFTM/LithiumIonCellMaterials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaterials.py
498 lines (426 loc) · 16.2 KB
/
materials.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Layers
# Kupfer cu
# Anode an
# Separator sep
# Cathode cat
# Aluminium al
# Cylindric cells
# Length spiral:
# https://www.giangrandi.org/soft/spiral/spiral.shtml
# prismatic / pouch
# Wickel-volume: length * width * height
# choose chemistry --> get w./vol. percent
# APPROX. FORMULA. We look for L (length of the tape)
# geht the length(N,h,D0)
# L = pi*N*(D0 + h*(N-1))
#
# # get the N(h, D0, L)
# N = (h-D0+math.sqrt((D0-h)**2 + ((4*h*L)/(pi))))/(2*h)
#
# # get the D1(N,h,D0)
# D1 = 2*N*h + D0
#
# # get N(D1, D0, h)
# N = (D1-D0) / (2*h)
import math
import matplotlib.pyplot as plt
import numpy as np
DENSITY_ALUMINIUM = 2.7 # g/cm³
DENSITY_STEEL = 7.85 # g/cm³
DENSITY_COPPER = 8.96 # g/cm³
############################### Cells #####################################################
# Werte aus Lain2019
housing_thickness = 0.2
samsung_25R = {
"name":"Samsung_25R",
"type": "18650",
"cat-chem":"NMC622",
"an-chem":"graphit-si",
"capacity": 2.57, # Ah
"specific_capacity_paper": 0.179, # Ah/g
"D0": 4 * 10**-3,
"D1": 18 * 10**-3,
"l": 65 * 10**-3,
"l_jellyroll": (60-housing_thickness)* 10**-3,
"housing_thickness": housing_thickness* 10**-3,
"porosity_Separator": 0.4,
"density_PP_PE": 0.95, # g/cm³
"tape_am_binder_carbon_ratio":{
"activematerial": 0.9,
"binder": 0.05,
"carbon": 0.05
},
"cat_porosity": 0.09,
"an_porosity": 0.2,
"cu" : 10 * 10**-6,
"an" : 43 * 10**-6,
"sep" :10 * 10**-6,
"cat": 38 * 10**-6,
"al" : 14 * 10**-6,
"sep2" :10 * 10**-6,
"buffer" : 0 * 10**-6
}
samsung_48G = {
"name":"Samsung_48G",
"type": "21700",
"cat-chem":"NCA",
"an-chem":"graphit-si",
"capacity": 4.838, # Ah
"specific_capacity_paper": 0.199, # Ah/g
"D0": 4 * 10**-3,
"D1": 21 * 10**-3,
"l": 70 * 10**-3,
"l_jellyroll": (65-(housing_thickness))* 10**-3,
"housing_thickness": housing_thickness* 10**-3,
"porosity_Separator": 0.4,
"density_PP_PE": 0.95, # g/cm³
"tape_am_binder_carbon_ratio": {
"activematerial": 0.9,
"binder": 0.05,
"carbon": 0.05
},
"cat_porosity": 0.13,
"an_porosity": 0.22,
"cu" : 10 * 10**-6,
"an" : 85 * 10**-6,
"sep" : 8 * 10**-6,
"cat": 71 * 10**-6,
"al" : 12 * 10**-6,
"sep2" :8 * 10**-6,
"buffer" : 0 * 10**-6
}
A123={
"name":"A123",
"type": "18650",
"cat-chem": "LFP",
"an-chem": "graphit",
"capacity": 1.1, # Ah
"D0": 4 * 10 ** -3,
"D1": 18 * 10 ** -3,
"l": 65 * 10 ** -3,
"l_jellyroll": (60 - 2 * housing_thickness) * 10 ** -3,
"housing_thickness": housing_thickness * 10 ** -3,
"porosity_Separator": 0.4,
"density_PP_PE": 0.95, # g/cm³
"tape_am_binder_carbon_ratio": {
"activematerial": 0.9,
"binder": 0.05,
"carbon": 0.05
},
"cat_porosity": 0.26,
"an_porosity": 0.25,
"cu": 10 * 10 ** -6,
"an": 36 * 10 ** -6,
"sep": 18 * 10 ** -6,
"cat": 81 * 10 ** -6,
"al": 19 * 10 ** -6,
"sep2": 18 * 10 ** -6,
"buffer": 0 * 10 ** -6
}
LG_HB4={
"name":"LG_HB4",
"type": "18650",
"cat-chem": "NMC111",
"an-chem": "graphit",
"capacity": 1.5, # Ah
"specific_capacity_paper": 0.133, #Ah/g
"D0": 4 * 10 ** -3,
"D1": 18 * 10 ** -3,
"l": 65 * 10 ** -3,
"l_jellyroll": (60 - 2 * housing_thickness) * 10 ** -3,
"housing_thickness": housing_thickness * 10 ** -3,
"porosity_Separator": 0.4,
"density_PP_PE": 0.95, # g/cm³
"tape_am_binder_carbon_ratio": {
"activematerial": 0.9,
"binder": 0.05,
"carbon": 0.05
},
"cat_porosity": 0.26,
"an_porosity": 0.24,
"cu": 15 * 10 ** -6,
"an": 43 * 10 ** -6,
"sep": 10 * 10 ** -6,
"cat": 50 * 10 ** -6,
"al": 25 * 10 ** -6,
"sep2": 10 * 10 ** -6,
"buffer": 0 * 10 ** -6
}
cell = LG_HB4
# cell= samsung_48G
cell=samsung_25R
##########################################################################################
############################### Conversions / Constants ##################################
# Cell-chemistry: NMC111, NMC622, NMC532, NMC811
# Electrical characteristics:
# NCA: 170-200 mAh/g
# NMC111: 160 mAh/g
# NMC532: 165 mAh/g
# NMC622: 170 mAh/g
# NMC811: 190 mAh/g
cathode_capacity_per_gram={
"NCA": 0.185, # literature: 0.185Ah/g
"NMC111": 0.160,
"NMC532": 0.165,
"NMC622": 0.170,
"NMC811": 0.190,
"LFP": 0.160
}
anode_capacity_per_gram={
"graphit": 0.220, # Ah/g
"graphit-si": 0.350 # Ah/g
}
cathode_densities={
"LFP": 3.6, # g/cm³ Landesfeind2016
"LNMO": 4.5, # g/cm³ Landesfeind2016
"NMC111": 4.7, # g/cm³ Landesfeind2016
"NMC811": 4.7, # g/cm³
"NMC532": 4.7, # g/cm³
"NMC622": 4.7, # g/cm³
"NCA": 4.7, # g/cm³
"LTO": 3.5 # g/cm³ Landesfeind2016
}
anode_densities={
"graphite": 2.3 # g/cm³ Landesfeind2016
}
cell_chemistry_shares={
"NCA": {
"N":0.8,
"C":0.15,
"A":0.05,
"O":2
},
"NMC111": {
"N":0.33,
"M":0.33,
"C":0.33,
"O":2
},
"NMC532": {
"N":0.5,
"M":0.3,
"C":0.2,
"O":2
},
"NMC622": {
"N":0.6,
"M":0.2,
"C":0.2,
"O":2
},
"NMC811": {
"N":0.8,
"M":0.1,
"C":0.1,
"O":2
},
"LFP":{
"F":1,
"P":1,
"O":4
}
}
def calculate_mass_percent_chemistry(chemistry):
#Atomic masses
am_Li = 6.941 #u
am_Ni = 58.6 #u
am_Mn = 54.93 #u
am_Co = 58.93 #u
am_O = 16 #u
am_Al = 26.98 #u
am_Fe = 55.85#u
am_P= 30.97#u
shares = cell_chemistry_shares[chemistry]
total_mass = am_Li
mNi = 0
mMn = 0
mCo = 0
mAl = 0
mFe=0
mP=0
for k,v in shares.items():
if k == "N":
mNi = am_Ni*v
total_mass = total_mass + am_Ni * v
if k == "M":
mMn = am_Mn * v
total_mass = total_mass + am_Mn * v
if k == "C":
mCo = am_Co * v
total_mass = total_mass + am_Co * v
if k == "A":
mAl = am_Al * v
total_mass = total_mass + am_Al * v
if k == "O":
mO = am_O * v
total_mass = total_mass + am_O * v
if k == "F":
mFe = am_Fe * v
total_mass = total_mass + am_Fe * v
if k == "P":
mP = am_P * v
total_mass = total_mass + am_P * v
return {"pNi": mNi/total_mass,
"pMn": mMn/total_mass,
"pCo": mCo/total_mass,
"pAl": mAl/total_mass,
"pFe": mFe/total_mass,
"pP": mP/total_mass,
"pLi": am_Li/total_mass}
##########################################################################################
############################### Geometric calculations ###################################
D0 = cell["D0"] # inner diameter of the roll in m
D1_inside = cell["D1"] - 2 * cell["housing_thickness"] # outer diameter of roll in m
#h = 0.1 * 10⁻3 # total thickness of the the tape in m
# h version 1
#h = cell["cu"]+cell["an"]+cell["sep"]+cell["cat"]+cell["al"]+cell["sep2"]+cell["buffer"] # total thickness of tape
# h version 2
h = cell["sep"]+cell["an"]+cell["cu"]+cell["an"]+cell["sep"]+cell["cat"]+cell["al"]+cell["cat"]
ease_packaging_factor = 1.05
N = (D1_inside - D0) / (2 * h*ease_packaging_factor)
L_tape = math.pi * N * (D0 + h * (N - 1))
# surface cathode
anode_overhang = 0.9
scat = anode_overhang* L_tape * cell["l_jellyroll"]*2
# volume cathode:
vc = scat*cell["cat"] # m³
# surface anode
s_anode = L_tape * cell["l_jellyroll"]*2
# volume anode
va = s_anode*cell["an"]
print(cell["name"])
print("* Doing the geometric calculations, based on the thickness od the layers.")
print("Turns: {turns:.2f}, length: {length:.2f} m, surface tape: {st:.3f} m², surface cat: {scat:.3f} m²"
" volume wickel: {vw:.2f} cm³, volume cat: {vc:.2f} cm³,"
" volume cell body: {vcb:.2f} cm³, h: {h:.2f} mm".format(turns=N, length=L_tape, st=L_tape * cell["l_jellyroll"],
scat=scat,
vw=(L_tape * cell["l_jellyroll"] * h) * 1000000,
vc=vc * 1000000,
vcb=(cell["l"]*((cell["D1"]/2)**2)*math.pi)*1000000, h=h*1000))
##########################################################################################
############################### Masses via Ah/g-relationship #############################
# Cathode Active Material
# calculate the mass of the cat-material via the Ah/g-relationship:
if "specific_capacity_paper" in cell:
cap_per_gram = cell["specific_capacity_paper"]
else:
cap_per_gram = cathode_capacity_per_gram[cell["cat-chem"]]
mass_cat_material = cell["capacity"] / cap_per_gram
shares = calculate_mass_percent_chemistry(cell["cat-chem"])
# Get the shares of the cathode tape mixture am/binder/C --> 90%/5%/5%
mass_active_cat_material = mass_cat_material * cell["tape_am_binder_carbon_ratio"]["activematerial"]
# Get the shares of the single objects
mLi = shares["pLi"]*mass_active_cat_material
mNi = shares["pNi"]*mass_active_cat_material
mMn = shares["pMn"]*mass_active_cat_material
mCo = shares["pCo"]*mass_active_cat_material
mAl = shares["pAl"]*mass_active_cat_material
mFe = shares["pFe"]*mass_active_cat_material
mP = shares["pP"]*mass_active_cat_material
print("* Mass calculation of active materials through the capacity/g entity from the cell-manufacturers data sheet:")
print("Cathode material total: {mtotal:.2f} g. active cat material: {macm:.2f} g, Li: {mli:.2f} g, Ni: {mni:.2f} g, Mn: {mmn:.2f} g, Co: {mco:.2f} g, Al: {mal:.2f} g, Fe: {mfe:.2f} g, P: {mp:.2f} g".format(mtotal=mass_cat_material, macm=mass_active_cat_material, mli=mLi, mni=mNi, mmn=mMn, mco=mCo, mal = mAl, mfe=mFe, mp=mP))
# calculate the Volume and the density of the cathode
vol_cat = vc
cat_porosity = cell["cat_porosity"]
vol_cat_without_porosity = (1-cat_porosity)*vol_cat
density_active_cat = mass_active_cat_material/(vol_cat_without_porosity*1000000) # g/cm^3
print("Calculated density of the cathode active material: {dens_cat:.2f} g/cm³, "
"vol cat: {vol_cat:.2f} cm³, vol cat without porosity: {vol_cat_without_porosity:.2f} cm³".format(dens_cat=density_active_cat,
vol_cat=vol_cat*1000000,
vol_cat_without_porosity=vol_cat_without_porosity*1000000))
# Anode Active Material
# calculate the mass of the anode
cap_per_gram = anode_capacity_per_gram[cell["an-chem"]]
mass_an_material = cell["capacity"] / cap_per_gram
print("Anode active material total: {mantotal:.2f} g.".format(mantotal=mass_an_material))
# calculate the density of the anode
an_porosity=cell["an_porosity"]
density_active_an = mass_an_material/((1-an_porosity) * va*1000000) # g/cm^3
print("Calculated density of the anode active material: {dens_an:.2f} g/cm³".format(dens_an=density_active_an))
##########################################################################################
################################### Masses of inactive parts ################################
# Mass of copper and aluminium in the collectors
# Round Cell
mAl_collector = ((L_tape * cell["al"] * cell["l_jellyroll"]) * 1000000) * DENSITY_ALUMINIUM # g
mCu_collector = ((L_tape * cell["cu"] * cell["l_jellyroll"]) * 1000000) * DENSITY_COPPER # g
print("* Mass calculation for aluminium and copper through the geometric estimation:")
print("Aluminium in collector: {mAl_collector:.2f} g, Copper in collector: {mCu_collector:.2f} g".format(mAl_collector=mAl_collector, mCu_collector=mCu_collector))
# Mass calculation of separator
vSeparator = L_tape * (cell["sep"] + cell["sep2"]) * cell["l_jellyroll"] * 1000000 # cm³
mSep = cell["density_PP_PE"]*cell["porosity_Separator"]*vSeparator # g
print("Mass of separator: {mSep:.2f} g".format(mSep=mSep))
# Mass of the casing of the cell
# Round Cell
vCasing = ((((cell["D1"]/2)**2)*math.pi*cell["housing_thickness"])*2 + 2*math.pi*(cell["D1"]/2) * cell["l"] * cell["housing_thickness"]) * 1000000
mSteelCasing = DENSITY_STEEL * vCasing
print("* Mass calculation of the casing. Material of case: steel. geometric.")
print("Steel in casing: {mSteelCasing:.2f} g.".format(mSteelCasing=mSteelCasing))
# Total mass
print("* Total mass of cell without electrolyte: {massCell:.2f} g".format(massCell=mSteelCasing + mSep + mAl_collector + mCu_collector + mass_cat_material + mass_an_material))
##########################################################################################
############ Plot the cell #################################################
# h+=0.00005
f = plt.figure(figsize=(12,12))
res = 9000
N = (D1_inside - D0) / (2 * h)
theta = np.linspace(0, N*2*math.pi, res)
s1 = cell["sep"]
s2 = cell["sep"] + cell["an"]
s3 = cell["sep"] + cell["an"] + cell["cu"]
s4 = cell["sep"] + cell["an"] + cell["cu"] + cell["an"]
s5 = cell["sep"] + cell["an"] + cell["cu"] + cell["an"]+cell["sep"]
s6 = cell["sep"] + cell["an"] + cell["cu"] + cell["an"]+cell["sep"] + cell["cat"]
s7 = cell["sep"] + cell["an"] + cell["cu"] + cell["an"]+cell["sep"] + cell["cat"]+cell["al"]
s8 = cell["sep"] + cell["an"] + cell["cu"] + cell["an"]+cell["sep"] + cell["cat"]+cell["al"]+cell["cat"]
r = np.linspace((D0/2), (D1_inside / 2) - h, res)
r_sep1 = np.linspace((D0/2)+s1, (D1_inside / 2) - h+s1, res)
r_an1 = np.linspace((D0/2)+s2, (D1_inside / 2) - h+s2, res)
r_cu = np.linspace((D0/2)+s3, (D1_inside / 2) - h+s3, res)
r_an2 = np.linspace((D0/2)+s4, (D1_inside / 2) - h+s4, res)
r_sep2 = np.linspace((D0/2)+s5, (D1_inside / 2) - h+s5, res)
r_cat1 = np.linspace((D0/2)+s6, (D1_inside / 2) - h+s6, res)
r_al = np.linspace((D0/2)+s7, (D1_inside / 2) - h+s7, res)
r_cat2 = np.linspace((D0/2)+s8, (D1_inside / 2) - h+s8, res)
# r_ = np.linspace((D0/2)+s8, (D1_inside / 2) - h+s8, res)
# r_cu = np.linspace((D0/2) + cell["cu"], (D1_inside / 2) - h + cell["cu"], res)
# r_an = np.linspace((D0/2) + cell["cu"] + cell["an"], (D1_inside / 2) - h + cell["cu"] + cell["an"], res)
# r_sep = np.linspace((D0/2) + cell["cu"] + cell["an"] + cell["sep"], (D1_inside / 2) - h + cell["cu"] + cell["an"] + cell["sep"], res)
# r_cat = np.linspace((D0/2) + cell["cu"] + cell["an"] + cell["sep"] + cell["cat"], (D1_inside / 2) - h + cell["cu"] + cell["an"] + cell["sep"] + cell["cat"], res)
# r_al = np.linspace((D0/2) + cell["cu"] + cell["an"] + cell["sep"] + cell["cat"] + cell["al"], (D1_inside / 2) - h + cell["cu"] + cell["an"] + cell["sep"] + cell["cat"] + cell["al"], res)
# r_sep2 = np.linspace((D0/2) + cell["cu"] + cell["an"] + cell["sep"] + cell["cat"] + cell["al"] + cell["sep2"], (D1_inside / 2), res)
# Plot wickel
plt.polar(theta, r, label="baseline", linewidth=0)
plt.polar(theta, r_sep1, label="sep", linewidth=0)
plt.fill_between(theta, r, r_sep1, facecolor="black")
#
plt.polar(theta, r_an1, label="an", linewidth=0)
plt.fill_between(theta, r_sep1, r_an1, facecolor="red")
#
plt.polar(theta, r_cu, label="cu", linewidth=0)
plt.fill_between(theta, r_an1, r_cu, facecolor="gold")
#
plt.polar(theta, r_an2, label="an", linewidth=0)
plt.fill_between(theta, r_cu, r_an2, facecolor="red")
#
plt.polar(theta, r_sep2,label="sep2", linewidth=0)
plt.fill_between(theta, r_an2, r_sep2, facecolor="black")
#
plt.polar(theta, r_cat1, label="cat", color="blue", linewidth=0)
plt.fill_between(theta, r_sep2, r_cat1, facecolor="blue")
plt.polar(theta, r_al, label="al", color="silver", linewidth=0)
plt.fill_between(theta, r_cat1, r_al, facecolor="silver")
plt.polar(theta, r_cat2, label="cat", color="blue", linewidth=0)
plt.fill_between(theta, r_al, r_cat2, facecolor="blue")
##################################
# Caseing
circle=np.linspace(0,2*math.pi,res)
r_case1=[(cell["D1"]/2) - cell["housing_thickness"] ]*res
r_case2=[(cell["D1"]/2)+ cell["housing_thickness"] ]*res
plt.polar(circle, r_case1, label="case",color='black')
plt.polar(circle, r_case2,color='black')
plt.fill_between(circle, r_case1, r_case2, facecolor='grey', hatch = "/////")
plt.legend()
plt.xlim([0,2*math.pi])
plt.ylim([0.0018,0.0024])
# plt.ylim([0.009,0.011])
# plt.show()