forked from lrhyde/cs410-spam-identifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive_bayes.py
53 lines (49 loc) · 1.86 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
def naive_bayes(train_set, train_labels, dev_set, laplace=0.005, pos_prior=0.8, silently=False):
# word : [num of pos reviews, num of neg reviews]
words = dict()
total_pos_reviews = 0
total_neg_reviews = 0
total_pos_words = 0
total_neg_words = 0
for i in range(len(train_set)):
if(train_labels[i]==1):
total_pos_reviews+=1
for word in train_set[i]:
if(word in words.keys()):
words[word][0]+=1
else:
words[word] = [1, 0]
total_pos_words+=1
else:
total_neg_reviews+=1
for word in train_set[i]:
if(word in words.keys()):
words[word][1]+=1
else:
words[word] = [0, 1]
total_neg_words+=1
print(total_neg_reviews)
print(total_pos_reviews)
# total word types
v_pos = len([w for w in words.keys() if words[w][0]!=0])
v_neg = len([w for w in words.keys() if words[w][1]!=0])
yhats = []
for doc in dev_set:
pos_prob = math.log2(pos_prior)
neg_prob = math.log2(1-pos_prior)
for word in doc:
if(word in words.keys()):
print(word, words[word])
pos_prob+=math.log2((words[word][0] + laplace)/(total_pos_words + laplace*(v_pos+1)))
neg_prob+=math.log2((words[word][1] + laplace)/(total_neg_words + laplace*(v_neg+1)))
else:
# unk
pos_prob+=math.log2(laplace/(total_pos_words + laplace*(v_pos+1)))
neg_prob+=math.log2(laplace/(total_neg_words + laplace*(v_neg+1)))
if(pos_prob>neg_prob):
yhats.append(1)
else:
yhats.append(0)
return yhats
print("hello")