forked from lrhyde/cs410-spam-identifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec.py
45 lines (42 loc) · 1.44 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import gensim
import gensim.downloader
def word2vec(train_set, train_labels, dataset):
model = gensim.models.Word2Vec(dataset + train_set, min_count=1, vector_size=500, window=5)
# word : [num of pos reviews, num of neg reviews]
words = dict()
total_pos_reviews = 0
total_neg_reviews = 0
total_pos_words = 0
total_neg_words = 0
for i in range(len(train_set)):
if(train_labels[i]==1):
total_pos_reviews+=1
for word in train_set[i]:
if(word in words.keys()):
words[word][0]+=1
else:
words[word] = [1, 0]
total_pos_words+=1
else:
total_neg_reviews+=1
for word in train_set[i]:
if(word in words.keys()):
words[word][1]+=1
else:
words[word] = [0, 1]
total_neg_words+=1
print(total_neg_reviews)
print(total_pos_reviews)
yhats = []
for q in dataset:
relevantWords = []
for word in q:
relevantWords+=[j[0] for j in model.wv.most_similar(word, topn=20)]
# print(word, relevantWords)
pos_count = sum([words[w][0] for w in relevantWords if w in words])
neg_count = sum([words[w][1] for w in relevantWords if w in words])
if(pos_count>neg_count):
yhats.append(1)
else:
yhats.append(0)
return yhats