diff --git a/object_detection/object_detection/Detectors/YOLOv5.py b/object_detection/object_detection/Detectors/YOLOv5.py old mode 100644 new mode 100755 index 3a7825d..4553004 --- a/object_detection/object_detection/Detectors/YOLOv5.py +++ b/object_detection/object_detection/Detectors/YOLOv5.py @@ -14,151 +14,52 @@ import os -import cv2 -import numpy as np +import torch from ..DetectorBase import DetectorBase class YOLOv5(DetectorBase): - def __init__(self, conf_threshold=0.7, - score_threshold=0.4, nms_threshold=0.25, - is_cuda=1): + def __init__(self, conf_threshold=0.7): super().__init__() + self.conf_threshold = conf_threshold - # opencv img input - self.frame = None - self.net = None - self.INPUT_WIDTH = 640 - self.INPUT_HEIGHT = 640 - self.CONFIDENCE_THRESHOLD = conf_threshold - - self.is_cuda = is_cuda - - # load model and prepare its backend to either run on GPU or CPU, - # see if it can be added in constructor def build_model(self, model_dir_path, weight_file_name): - model_path = os.path.join(model_dir_path, weight_file_name) - try: - self.net = cv2.dnn.readNet(model_path) + model_path = os.path.join(model_dir_path, weight_file_name) + self.model = torch.hub.load('ultralytics/yolov5:v6.0', 'custom', path=model_path, + force_reload=True) except Exception as e: - print("Loading the model failed with exception {}".format(e)) + print("Loading model failed with exception: {}".format(e)) raise Exception("Error loading given model from path: {}.".format(model_path) + - "Maybe the file doesn't exist?") + " Maybe the file doesn't exist?") - if self.is_cuda: - print("is_cuda was set to True. Attempting to use CUDA") - self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) - self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA_FP16) - else: - print("is_cuda was set to False. Running on CPU") - self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) - self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) - - # load classes.txt that contains mapping of model with labels - # TODO: add try/except to raise exception that tells the use to - # check the name if it is classes.txt def load_classes(self, model_dir_path): self.class_list = [] - with open(model_dir_path + "/classes.txt", "r") as f: - self.class_list = [cname.strip() for cname in f.readlines()] - return self.class_list - - def detect(self, image): - # convert image to 640x640 - blob = cv2.dnn.blobFromImage(image, 1/255.0, (self.INPUT_WIDTH, self.INPUT_HEIGHT), - swapRB=True, crop=False) - self.net.setInput(blob) - preds = self.net.forward() - return preds - - # extract bounding box, class IDs and confidences of detected objects - # YOLOv5 returns a 3D tensor of dimension 25200*(5 + n_classes) - def wrap_detection(self, input_image, output_data): - class_ids = [] - confidences = [] - boxes = [] - - rows = output_data.shape[0] - - image_width, image_height, _ = input_image.shape - - x_factor = image_width / self.INPUT_WIDTH - y_factor = image_height / self.INPUT_HEIGHT - - # Iterate through all the 25200 vectors - for r in range(rows): - row = output_data[r] - - # Continue only if Pc > conf_threshold - confidence = row[4] - if confidence >= self.CONFIDENCE_THRESHOLD: - # One-hot encoded vector representing class of object - classes_scores = row[5:] - - # Returns min and max values in a array alongwith their indices - _, _, _, max_indx = cv2.minMaxLoc(classes_scores) - - # Extract the column index of the maximum values in classes_scores - class_id = max_indx[1] - - # Continue of the class score is greater than a threshold - # class_score represents the probability of an object belonging to that class - if (classes_scores[class_id] > .25): - - confidences.append(confidence) - - class_ids.append(class_id) - - x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item() - left = int((x - 0.5 * w) * x_factor) - top = int((y - 0.5 * h) * y_factor) - width = int(w * x_factor) - height = int(h * y_factor) - box = np.array([left, top, width, height]) - boxes.append(box) - - # removing intersecting bounding boxes - indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45) - - result_class_ids = [] - result_confidences = [] - result_boxes = [] - - for i in indexes: - result_confidences.append(confidences[i]) - result_class_ids.append(class_ids[i]) - result_boxes.append(boxes[i]) - - return result_class_ids, result_confidences, result_boxes + with open(os.path.join(model_dir_path, 'classes.txt')) as f: + self.class_list = [cname.strip() for cname in f.readlines()] - # makes image square with dimension max(h, w) - def format_yolov5(self): - row, col, _ = self.frame.shape - _max = max(col, row) - result = np.zeros((_max, _max, 3), np.uint8) - result[0:row, 0:col] = self.frame - return result + return self.class_list def get_predictions(self, cv_image): - # Clear list - self.predictions = [] - if cv_image is None: # TODO: show warning message (different color, maybe) return None, None else: self.frame = cv_image + class_id = [] + confidence = [] + boxes = [] - # make image square - inputImage = self.format_yolov5() + results = self.model(self.frame) - outs = self.detect(inputImage) - class_ids, confidences, boxes = self.wrap_detection(inputImage, outs[0]) + for *xyxy, conf, label in results.xyxy[0]: + class_id.append(int(label)) + confidence.append(conf.item()) + boxes.append([int(xy) for xy in xyxy]) - super().create_predictions_list(class_ids, confidences, boxes) + super().create_predictions_list(class_id, confidence, boxes) return self.predictions