-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathsetup.py
40 lines (36 loc) · 1.15 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python
import os
from setuptools import find_packages, setup
install_requires = [
"torch>=1.11.0",
"torchvision>=0.11.0",
"lightning-bolts",
"matplotlib",
"numpy<2.0.0", # Due to pandas incompatibility
"scipy",
"scikit-learn",
"scprep",
"scanpy",
"torchdyn",
"pot<0.9.5",
"torchdiffeq",
"absl-py",
"clean-fid",
]
version_py = os.path.join(os.path.dirname(__file__), "torchcfm", "version.py")
version = open(version_py).read().strip().split("=")[-1].replace('"', "").strip()
readme = open("README.md", encoding="utf8").read()
setup(
name="torchcfm",
version=version,
description="Conditional Flow Matching for Fast Continuous Normalizing Flow Training.",
author="Alexander Tong, Kilian Fatras",
author_email="[email protected]",
url="https://github.com/atong01/conditional-flow-matching",
install_requires=install_requires,
license="MIT",
long_description=readme,
long_description_content_type="text/markdown",
packages=find_packages(exclude=["tests", "tests.*"]),
extras_require={"forest-flow": ["xgboost", "scikit-learn", "ForestDiffusion"]},
)