-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpso.m
77 lines (63 loc) · 3.21 KB
/
pso.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [tss_best, x1_best, x2_best] = pso()
% -----------------------------------
% PSO Control Poles Optimization
% This function is written using PSO to solve control poles.
% Current version only support second-order systems!
%
% To increase the efficieny of the PSO this version is a vectorized version
% for MATLAB.
%
% -----------------------------------
% Xiaotian Dai, University of York
% Credit to: Reza Ahmadzadeh
% -----------------------------------
%% initialization
swarm_size = 64; % number of the swarm particles
maxIter = 50; % maximum number of iterations
inertia = 0.5;
correction_factor = 1.0;
% set the position of the initial swarm
a = linspace(-10, 1, 8);
b = linspace(1, 10, 8);
[X,Y] = meshgrid(a,b);
C = cat(2, X', Y');
D = reshape(C,[],2);
swarm(1:swarm_size,1,1:2) = D; % set the position of the particles in 2D
swarm(:,2,:) = 0; % set initial velocity for particles
swarm(:,4,1) = 1000; % set the best value so far
b_plot = 1; % set to zero if you do not need a final plot
%% The main loop of PSO
tic;
for iter = 1:maxIter
swarm(:, 1, 1) = swarm(:, 1, 1) + swarm(:, 2, 1)/1.3; % update x position with the velocity
swarm(:, 1, 2) = swarm(:, 1, 2) + swarm(:, 2, 2)/1.3; % update y position with the velocity
x = swarm(:, 1, 1); % get the updated position
y = swarm(:, 1, 2); % updated position
fval = pso_obj_func([x y]); % evaluate the function using the position of the particle
% compare the function values to find the best ones
for ii = 1:swarm_size
if fval(ii,1) < swarm(ii,4,1)
swarm(ii, 3, 1) = swarm(ii, 1, 1); % update best x position,
swarm(ii, 3, 2) = swarm(ii, 1, 2); % update best y postions
swarm(ii, 4, 1) = fval(ii,1); % update the best value so far
end
end
[~, gbest] = min(swarm(:, 4, 1)); % find the best function value (minimal) in total
% update the velocity of the particles
swarm(:, 2, 1) = inertia*(rand(swarm_size,1).*swarm(:, 2, 1)) + correction_factor*(rand(swarm_size,1).*(swarm(:, 3, 1) ...
- swarm(:, 1, 1))) + correction_factor*(rand(swarm_size,1).*(swarm(gbest, 3, 1) - swarm(:, 1, 1))); %x velocity component
swarm(:, 2, 2) = inertia*(rand(swarm_size,1).*swarm(:, 2, 2)) + correction_factor*(rand(swarm_size,1).*(swarm(:, 3, 2) ...
- swarm(:, 1, 2))) + correction_factor*(rand(swarm_size,1).*(swarm(gbest, 3, 2) - swarm(:, 1, 2))); %y velocity component
% plot the particles
if b_plot
clf;plot(swarm(:, 1, 1), swarm(:, 1, 2), 'bx'); % drawing swarm movements
axis([-10 10 -10 10]);
pause(.1); % un-comment this line to decrease the animation speed
end
tss_best = swarm(gbest, 4, 1);
x1_best = swarm(gbest, 1, 1);
x2_best = swarm(gbest, 1, 2);
disp(['iteration: ' num2str(iter) ', best: ' num2str(tss_best)]);
end
toc
end