diff --git a/planning/planning_debug_tools/README.md b/planning/planning_debug_tools/README.md index e7b86638..d2cf75d1 100644 --- a/planning/planning_debug_tools/README.md +++ b/planning/planning_debug_tools/README.md @@ -193,8 +193,15 @@ PlotCurrentVelocity('localization_kinematic_state', '/localization/kinematic_sta This script can overlay the perception results from the rosbag on the planning simulator synchronized with the simulator's ego pose. -In detail, the ego pose in the rosbag which is closest to the current ego pose in the simulator is calculated. -The perception results at the timestamp of the closest ego pose is extracted, and published. +### How it works + +Whenever the ego's position changes, a chronological `reproduce_sequence` queue is generated base on its position with a search radius (default to 2 m). +If the queue is empty, the nearest odom message in the rosbag is added to the queue. +When publishing perception messages, the first element in the `reproduce_sequence` is popped and published. + +This design results in the following behavior: +- When ego stops, the perception messages are published in chronological order until queue is empty. +- When the ego moves, a perception message close to ego's position is published. ### How to use @@ -215,6 +222,10 @@ ros2 run planning_debug_tools perception_reproducer.py -b Instead of publishing predicted objects, you can publish detected/tracked objects by designating `-d` or `-t`, respectively. +You can use `-r` option to set the search radius in meters for the perception messages. If it is set to 0, the reproducer always publishes the nearest perception message as how did the old perception_reproducer work. + `-c`(`--reproduce-cool-down`) option is to set the cool down time in seconds, aiming to prevent republishing recently published messages. + + ## Perception replayer A part of the feature is under development. diff --git a/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py b/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py index e4db8a92..ae770e68 100755 --- a/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py +++ b/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py @@ -15,6 +15,7 @@ # limitations under the License. import argparse +from collections import deque import pickle import numpy as np @@ -24,19 +25,52 @@ from utils import create_empty_pointcloud from utils import translate_objects_coordinate +dist_eps = 1e-2 # (meters) + class PerceptionReproducer(PerceptionReplayerCommon): + """ + PerceptionReproducer is used reproduces perception topic data from rosbag, specifically optimized for use with simulators. + """ + def __init__(self, args): + self.rosbag_ego_odom_search_radius = ( + args.search_radius + ) # (m) the range of the ego odom to search, + self.ego_odom_search_radius = ( + self.rosbag_ego_odom_search_radius + ) # it may be set by an individual parameter. + + self.reproduce_cool_down = ( + args.reproduce_cool_down if args.search_radius != 0. else 0.0 + ) # (sec) the cool down time for republishing published data, please make sure that it's greater than the ego's stopping time. + super().__init__(args, "perception_reproducer") + self.reproduce_sequence_indices = deque() # contains ego_odom_idx + self.cool_down_indices = deque() # contains ego_odom_idx + self.ego_odom_id2last_published_timestamp = dict() # for checking last published timestamp. + + self.prev_ego_pos = None + self.prev_ego_odom_msg = None + self.perv_objects_msg = None self.prev_traffic_signals_msg = None + self.stopwatch = StopWatch(self.args.verbose) # for debug # to make some data to accelerate computation self.preprocess_data() # start main timer callback - self.timer = self.create_timer(0.1, self.on_timer) + time_diffs = [] + prev_stamp = self.rosbag_ego_odom_data[0][0] + for stamp, _ in self.rosbag_ego_odom_data[1:]: + time_diff = (stamp - prev_stamp) / 1e9 + time_diffs.append(time_diff) + prev_stamp = stamp + + average_ego_odom_interval = 0.1#sum(time_diffs) / len(time_diffs) + self.timer = self.create_timer(average_ego_odom_interval, self.on_timer) # kill perception process to avoid a conflict of the perception topics self.timer_check_perception_process = self.create_timer(3.0, self.on_timer_kill_perception) @@ -60,70 +94,159 @@ def on_timer(self): print("\n-- on_timer start --") self.stopwatch.tic("total on_timer") - timestamp = self.get_clock().now().to_msg() + timestamp = self.get_clock().now() + timestamp_msg = timestamp.to_msg() if self.args.detected_object: - pointcloud_msg = create_empty_pointcloud(timestamp) + pointcloud_msg = create_empty_pointcloud(timestamp_msg) self.pointcloud_pub.publish(pointcloud_msg) if not self.ego_pose: print("No ego pose found.") return - # find nearest ego odom by simulation observation - self.stopwatch.tic("find_nearest_ego_odom_by_observation") - ego_odom = self.find_nearest_ego_odom_by_observation(self.ego_pose) - pose_timestamp = ego_odom[0] - log_ego_pose = ego_odom[1].pose.pose - self.stopwatch.toc("find_nearest_ego_odom_by_observation") + ## Update reproduce list if ego_pos is moved. + if ( + self.ego_pose is None + or self.prev_ego_pos is None + or ( + (self.ego_pose.position.x - self.prev_ego_pos.position.x) ** 2 + + (self.ego_pose.position.y - self.prev_ego_pos.position.y) ** 2 + ) + > dist_eps**2 + ): + # find the nearest ego odom by simulation observation + self.stopwatch.tic("find_nearest_ego_odom_by_observation") + nearby_ego_odom_indies = self.find_nearby_ego_odom_indies( + [self.ego_pose], self.ego_odom_search_radius + ) + nearby_ego_odom_indies = [ + self.rosbag_ego_odom_data[idx][1].pose.pose for idx in nearby_ego_odom_indies + ] + if not nearby_ego_odom_indies: + nearest_ego_odom_ind = self.find_nearest_ego_odom_index(self.ego_pose) + nearby_ego_odom_indies += [ + self.rosbag_ego_odom_data[nearest_ego_odom_ind][1].pose.pose + ] + self.stopwatch.toc("find_nearest_ego_odom_by_observation") - # extract message by the nearest ego odom timestamp - self.stopwatch.tic("find_topics_by_timestamp") - msgs_orig = self.find_topics_by_timestamp(pose_timestamp) - self.stopwatch.toc("find_topics_by_timestamp") + # find a list of ego odom around the nearest_ego_odom_pos. + self.stopwatch.tic("find_nearby_ego_odom_indies") + ego_odom_indices = self.find_nearby_ego_odom_indies( + nearby_ego_odom_indies, self.rosbag_ego_odom_search_radius + ) + self.stopwatch.toc("find_nearby_ego_odom_indies") - # copy the messages - self.stopwatch.tic("message deepcopy") - if self.args.detected_object: - msgs = pickle.loads(pickle.dumps(msgs_orig)) # this is x5 faster than deepcopy - objects_msg = msgs[0] - traffic_signals_msg = msgs[1] - else: - # NOTE: No need to deepcopy since only timestamp will be changed and it will be changed every time correctly. - objects_msg = msgs_orig[0] - traffic_signals_msg = msgs_orig[1] - self.stopwatch.toc("message deepcopy") + # update reproduce_sequence with those data not in cool down list. + while self.cool_down_indices: + last_timestamp = self.ego_odom_id2last_published_timestamp[ + self.cool_down_indices[0] + ] + if (timestamp - last_timestamp).nanoseconds / 1e9 > self.reproduce_cool_down: + self.cool_down_indices.popleft() + else: + break + + self.stopwatch.tic("update reproduce_sequence") + ego_odom_indices = [ + idx for idx in ego_odom_indices if idx not in self.cool_down_indices + ] + ego_odom_indices = sorted(ego_odom_indices) + self.reproduce_sequence_indices = deque(ego_odom_indices) + + self.stopwatch.toc("update reproduce_sequence") + + self.prev_ego_pos = self.ego_pose + + ## get data to publish + repeat_trigger = len(self.reproduce_sequence_indices) == 0 + if not repeat_trigger: # pop data from reproduce_sequence if sequence is not empty. + ego_odom_idx = self.reproduce_sequence_indices.popleft() + pose_timestamp, ego_odom_msg = self.rosbag_ego_odom_data[ego_odom_idx] + # extract message by the nearest ego odom timestamp + self.stopwatch.tic("find_topics_by_timestamp") + objects_msg, traffic_signals_msg = self.find_topics_by_timestamp(pose_timestamp) + self.stopwatch.toc("find_topics_by_timestamp") + # if self.args.verbose: + # print("reproduce_sequence_indices: ", list(self.reproduce_sequence_indices)[:20]) + else: # get perv data to publish if reproduce_sequence is empty. + ego_odom_msg = self.prev_ego_odom_msg + objects_msg = self.perv_objects_msg + traffic_signals_msg = self.prev_traffic_signals_msg + + ## transform and publish current data. self.stopwatch.tic("transform and publish") + + # ego odom + self.recorded_ego_pub.publish(ego_odom_msg) + # objects if objects_msg: - objects_msg.header.stamp = timestamp + objects_msg.header.stamp = timestamp_msg if self.args.detected_object: - translate_objects_coordinate(self.ego_pose, log_ego_pose, objects_msg) - self.objects_pub.publish(objects_msg) + # copy the messages + self.stopwatch.tic("message deepcopy") + objects_msg_copied = pickle.loads( + pickle.dumps(objects_msg) + ) # this is x5 faster than deepcopy + self.stopwatch.toc("message deepcopy") - # ego odom - self.recorded_ego_pub.publish(ego_odom[1]) + log_ego_pose = ego_odom_msg.pose.pose + translate_objects_coordinate(self.ego_pose, log_ego_pose, objects_msg_copied) + else: + objects_msg_copied = objects_msg + self.objects_pub.publish(objects_msg_copied) # traffic signals if traffic_signals_msg: - traffic_signals_msg.stamp = timestamp + traffic_signals_msg.stamp = timestamp_msg self.traffic_signals_pub.publish(traffic_signals_msg) self.prev_traffic_signals_msg = traffic_signals_msg elif self.prev_traffic_signals_msg: - self.prev_traffic_signals_msg.stamp = timestamp + self.prev_traffic_signals_msg.stamp = timestamp_msg self.traffic_signals_pub.publish(self.prev_traffic_signals_msg) self.stopwatch.toc("transform and publish") - self.stopwatch.toc("total on_timer") + if not repeat_trigger: + # save data for repeat publication. + self.prev_ego_odom_msg = ego_odom_msg + self.perv_objects_msg = ( + objects_msg if objects_msg is not None else self.perv_objects_msg + ) + self.prev_traffic_signals_msg = ( + traffic_signals_msg + if traffic_signals_msg is not None + else self.prev_traffic_signals_msg + ) + + # update cool down info. + self.ego_odom_id2last_published_timestamp[ego_odom_idx] = timestamp + self.cool_down_indices.append(ego_odom_idx) + + self.stopwatch.toc("total on_timer") - def find_nearest_ego_odom_by_observation(self, ego_pose): + def find_nearest_ego_odom_index(self, ego_pose): # nearest search with numpy format is much (~ x100) faster than regular for loop self_pose = np.array([ego_pose.position.x, ego_pose.position.y]) dists_squared = np.sum((self.rosbag_ego_odom_data_numpy - self_pose) ** 2, axis=1) nearest_idx = np.argmin(dists_squared) + return nearest_idx - return self.rosbag_ego_odom_data[nearest_idx] + def find_nearby_ego_odom_indies(self, ego_poses, search_radius: float): + """ + Find the indices of the ego odom that are within a certain distance of any ego_pose in the list. + Inputs: + ego_poses: the list of ego poses to search around. + search_radius: the radius to search around the ego_poses. + """ + ego_poses_np = np.array([[pose.position.x, pose.position.y] for pose in ego_poses]) + dists_squared = np.sum( + (self.rosbag_ego_odom_data_numpy[:, None] - ego_poses_np) ** 2, axis=2 + ) + nearby_indices = np.where(np.any(dists_squared <= search_radius**2, axis=1))[0] + + return nearby_indices if __name__ == "__main__": @@ -141,6 +264,20 @@ def find_nearest_ego_odom_by_observation(self, ego_pose): parser.add_argument( "-v", "--verbose", help="output debug data", action="store_true", default=False ) + parser.add_argument( + "-r", + "--search-radius", + help="the search radius for searching rosbag's ego odom messages around the nearest ego odom pose (default is 2 meters), if the search radius is set to 0, it will always publish the closest message, just as the old reproducer did.", + type=float, + default=2.0, + ) + parser.add_argument( + "-c", + "--reproduce-cool-down", + help="The cool down time for republishing published messages (default is 15.0 seconds)", + type=float, + default=15.0, + ) args = parser.parse_args() rclpy.init()