From 823441f03c741e3b0fc89d7abf6ac8262446f4c7 Mon Sep 17 00:00:00 2001 From: Aki Vehtari Date: Wed, 15 Nov 2023 12:12:13 +0200 Subject: [PATCH] updated lecture 10 video links --- Aalto2023.Rmd | 6 +++--- slides/BDA_lecture_10b.pdf | Bin 1522171 -> 1522319 bytes slides/BDA_lecture_10b.tex | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/Aalto2023.Rmd b/Aalto2023.Rmd index 92dc3301..20efc87a 100644 --- a/Aalto2023.Rmd +++ b/Aalto2023.Rmd @@ -199,7 +199,7 @@ the book chapters relaed to the next lecture and assignment. | 7\. Hierarchical models and exchangeability | [BDA3 Chapter 5](BDA3_notes.html#ch5) | [2023 Lecture 7.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c1014690-1133-4232-ad0f-b0a400ba228d),
[2023 Lecture 7.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=196c3a91-3ba2-4469-ab15-b0a400ca6074),
[2022 Project info](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8f0158f9-6abf-4ada-bdb7-af3800d139de),
[Slides 7](slides/BDA_lecture_7.pdf) | [Assignment 7](assignments/assignment7.html) | `r sdate("Lecture date", "Week8")` | `r sdate("Assignment closes (23:59)", "Week8")` | | 8\. Model checking & cross-validation | [BDA3 Chapter 6](BDA3_notes.html#ch6), [BDA3 Chapter 7](BDA3_notes.html#ch7), [Visualization in Bayesian workflow](https://doi.org/10.1111/rssa.12378), [Practical Bayesian cross-validation](https://arxiv.org/abs/1507.04544) | [2023 Lecture 8.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=785ece8a-16ef-4f64-8134-b0ab00cbd1e8),
[2023 Lecture 8.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=456afda7-0e6d-4903-b0df-b0ab00da8f1e),
[Slides 8a](slides/BDA_lecture_8a.pdf),[Slides 8b](slides/BDA_lecture_8b.pdf) | Start project work | `r sdate("Lecture date", "Week9")` | `r sdate("Assignment closes (23:59)", "Week9")` | | 9\. Model comparison, selection, and hypothesis testing | [BDA3 Chapter 7 (not 7.2 and 7.3)](BDA3_notes.html#ch7),
[Practical Bayesian cross-validation](https://arxiv.org/abs/1507.04544) | [2023 Lecture 9.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a4961b5a-7e42-4603-8aaf-b0b200ca6295),
[2023 Lecture 9.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a4796c79-eab2-436e-b55f-b0b200dac7ce),
[Slides 9](slides/BDA_lecture_9.pdf) | [Assignment 8](assignments/assignment8.html) | `r sdate("Lecture date", "Week10")` | `r sdate("Assignment closes (23:59)", "Week10")` | -| 10\. Decision analysis | [BDA3 Chapter 9](BDA3_notes.html#ch9) | [2022 Lecture 10.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a22aab9c-953c-4ea8-b6ec-af4d00c9fe58),
[Slides 10a](slides/BDA_lecture_10a.pdf), [Slides 10b](slides/BDA_lecture_10b.pdf) | [Assignment 9](assignments/assignment9.html) | `r sdate("Lecture date", "Week11")` | `r sdate("Assignment closes (23:59)", "Week11")` | +| 10\. Decision analysis | [BDA3 Chapter 9](BDA3_notes.html#ch9) | [2023 Lecture 10.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c4ab903a-bc22-416f-99c8-b0b900c9f3f7), [2023 Lecture 10.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=2a6d7c79-7797-4a6d-8efa-b0b900d8f24c),
[Slides 10a](slides/BDA_lecture_10a.pdf), [Slides 10b](slides/BDA_lecture_10b.pdf) | [Assignment 9](assignments/assignment9.html) | `r sdate("Lecture date", "Week11")` | `r sdate("Assignment closes (23:59)", "Week11")` | | 11\. Normal approximation, frequency properties | [BDA3 Chapter 4](BDA3_notes.html#ch4) | [2022 Lecture 11.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8cde4d40-1b77-4110-af98-af5400ca38b5),
[2022 Lecture 11.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=d83f6553-1516-475f-8898-af5400dd7b50),
[Slides 11](slides/BDA_lecture_11.pdf) | Project work | `r sdate("Lecture date", "Week12")` | `r sdate("Assignment closes (23:59)", "Week12")` | | 12\. Extended topics | Optional: BDA3 Chapters [8](BDA_notes.hml#ch8), [14-18](BDA_notes.hml#ch14), and 21 | Optional:
[Old Lecture 12.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=e998b5dd-bf8e-42da-9f7c-ab1700ca2702),
[Old Lecture 12.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c43c862a-a5a4-45da-9b27-ab1700e12012),
[Slides 12](slides/BDA_lecture_12.pdf) | Project work | `r sdate("Lecture date", "Week13")` | `r sdate("Assignment closes (23:59)", "Week13")` | | 13\. Project evaluation | | | | Project presentations: `r params$project_presentations` | Evaluation week | @@ -535,8 +535,8 @@ Decision analysis. BDA3 Ch 9. + Laplace approximation and asymptotics. BDA Ch 4. - see [reading instructions for Chapter 4](BDA3_notes.html#ch4) - **Lecture `r paste(sday("Lecture date", "Week11"), sdate("Lecture date", "Week11"))` 14:15-16, hall T2, CS building** - [Slides 10a](slides/BDA_lecture_10a.pdf), [Slides 10b](slides/BDA_lecture_10b.pdf) - - Videos: [2022 Lecture 10.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a22aab9c-953c-4ea8-b6ec-af4d00c9fe58) - on decision analysis. BDA3 Ch 9, and [2022 Lecture 11.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8cde4d40-1b77-4110-af98-af5400ca38b5) on normal approximation (Laplace approximation), large sample theory, and counter examples, BDA3 Ch 4. + - Videos: [2023 Lecture 10.1](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=c4ab903a-bc22-416f-99c8-b0b900c9f3f7) + on decision analysis. BDA3 Ch 9, and [2023 Lecture 10.2](https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=2a6d7c79-7797-4a6d-8efa-b0b900d8f24c) on Laplace approximation, and asymptotics, BDA3 Ch 4. - Make and submit [Assignment 9](assignments/assignment9.html). **`r sday("Assignment closes (23:59)", "Week11")` `r sdate("Assignment closes (23:59)", "Week11")` 23:59** - Review Assignment 8 done by your peers before 23:59 diff --git a/slides/BDA_lecture_10b.pdf b/slides/BDA_lecture_10b.pdf index 5854c3942adb0456fb4f061dcf0f0b548fed3be0..2714e61edb5226cf4c3275b657b54c4584f8c3dd 100644 GIT binary patch delta 5000 zcmb8wXEYpKw*X+HjS_>=JEJ7}=p`h2i5f(&DM}29-ojue61``1Mi0?TL=8erqKr;t z5Owe(j6@Be_j}j9cYW*rxaf3X%6W_!1LXO3^s4G~Xk%KF9{Uy$Q4JRNAMFRWZpXF8GZeUvC(nGPW}s&N z6Q>jpyB+=@h-0Do;P@2fR=N7=%53c8B|V_P=}QKYrht;-b7Qi!=S8-g+zWDuBRq(& z@z2Al!)98Z*TWuz=6xYaI{F)ep*j54J5elraH7=#W%8JVT)Gd!I}S`op-dV{AL3vP zH&t1>JZ8U5d++?3<_q(BwMe9}9XG&mBj1(0*Yh2@uHkC~k_RWznsF1a0-}pjX?4o5 z0ss*%!6f@8uN}I`+iUHV%khVS9F-zFWjK)k1A{u)&YtEw>nUS>+Z+k#H`R^yDiXP} zNAR%sbBb6BSwPVTGj437^)J2W0WJ0E^>;?xNT@YIGU^12bnOrDe%6wNYFVD@__WTH z-@PW_Rz01tqiNX@t5ow^*{Hnxsf1afcUHKl=WHv5jCL+nYA(MRg`XJ+6+u?pBrD8f zSUM{)(A4#Y4w)uqM3~+G>v6pK-rMW9jgu-_G-b(n`DKcX_wZ>T$PE$&bKUWL?GT z=qc=idbY=Ts%P{}=x#mwXJ08j*J#jan{Lo*H!i>=DKT`KhRiMIM$NNfqlR6#Y6S-w zp#;CFWDnBSV2+#RAM@Ay2d`WncK_CZwjFP2n&>p#wWpR^m}uVTC6>XCKsqBd@!Mw3 z{8$hFJ!D|=*dhTWkaorKLndDVbx^~|fO6YpWc-_u3zkd-K5dEdUVzedor?xnlWN^~ zm0S9VM3yYnbJ=czTOr+y1?+utni7UlYj*x@2266l1Kp}?-8&S2crgEg z{Rwt?*jv0L<(BGIVIJ_l!HDB33m$@0HolPjb%XN`{qkvad{Lhig}xFB_WlxTMfSmw z4E3lMvhYcNOuOz|OJK`FXh^`Y;{salBclD`0g*<@Ie-W5S$P_;Atz7HG%hz_pDz8a&5IRUZUc*ZIbUGZ z=Nr8tcqtf`p!oEJ8n_+~+?Q`<@4b=aZP?O!#qe0>yV~@_{6vvQ}+Ubm!Z-8)(S8Sb~T8ZMKQb?$}m`N}Zq zmoWlHOegXL`hEHI+QZxGCppP+6V8s7^24^PkBUU9TC9Gp^UR(fCdcJEFj$)8mN(6x zP+I+Pw)io6W+`<|Xugb|s~fDi%8hHW>)7Fj-T76;VK#9?%HAn==ix$-d)?V+7If5f z=`Z?(RWHtVVv{%L2wn8KBQZgyZ0rldXg^f?F#M|Rle@uW_aH@r+HB2FdRp|JK~$MW z#rOw~=JOXvEy1#oQ#jEgQPq=w6t!$KGLk4t$)eP;0AV=J>i@+^8ziNx>3g!_!yJ<; z=dwmf;7W|-Uk;9E*FkQ`GQ|DNFkjA*ee=%MY2WM2jh{@rFL@?PT8`z}GVjmV={r1UjT@L{)26p@;m8K2xu0@IId21={E4KaR#;3>1ipqX}J7jC{v z^qYinaE|s}ySt8A*7f+HVVlPbTNXGk*yP~d4JU4N62lcLlpIt@@$5cM( zq##MAm5=ATW%Nu6=u~dQbc9X9j-!V1TvY_~HY+n8I~JEIMYnLngXuY;5!RnSV&M!b z3QxMKqwVXWze-u9daaah7F+Gwc6{^d>Qr{E+r_dkt2;CVN1`jT)qk=#_0lt3OsFv# zKiBg)@>W&H4w09bxu+3jCV_Qp=UW4we{}H0k^a;UX`->n{59bXY_BR~X$?5$vlM$; zAs}wV!n(WX=P(@w&zWfGvV(EDljaa%?S*OGZQg|nv~}3d#o85aG)2ASi^(nuslpVi z3_}NRt%{6%UMUthXTs%067)=4q>fj-!nkc*N!0eqFFs>3OF@e*;^jR@kfOLQjJRVcSzxT0)i^DcVYU_6gr z!zo>ACY(M7$@Ph8o-Gv>ww1H)K|eWOy)B;b*LF}%?TBPzhjJ~71uYe3T3MFRHzix} zqwA%%t(xI;uql^p4b8N2su!YXua67$XSwotUpT30dq9IkIb3TFe9V}pzg3?xN9}~i zs|}3QQdUwU#;$e3`KDL&D_?%uNuUk_^W z46}RG8IJfwvp_!BWJA2duzcQQ8CQlkQ43hQ5?2+e@#Va6tv47>T9;0Sr~&$XMHfG5 z#6wv={#4Z^o~sv!D*OB4U&BUEyDJ6=okP1RER7EJLQ5Je|g#XX)7{~IP zzPpsknQ9g)lI06@NIvjkUsp&9rO$y`%uxnw>1&p=x86;BugnkmXds*hFJ<*u_7^Ku z54dZ6FD}Yg73%OUY$=pBE2=VYKd+>SE)uS0ytvmi0VgY6!S+B(Jq@X0@cw$Z@+~C9 zo1d(&=okf>r(4fZGKIhwV+o=2uv;&wvP2gPJp)Y1*X=i&a%eMG^8aKTS37f0eI!1R zu%GSKsN852vy4YucD@hV@u#0sXPAmV_Ra;d7v1lyrVi);=M0>?C3&OzsjP{`A!T*# zV~ypw@w9#X3;QuUs+xMk(z+3vR)_IkTXzPw*7n_Kx$mXj`MYo|-{DupUR*_5(q^ra z;|DtvN3v?P`PyTRX}-5>xas^lv$(hXCb9hk0WXjK3U5H?##EH@2!0?P{x5K4Jqf`k7Xb{qqAGaNg?2_ z9dV<9k;iYg2d2h0lagr#B#y8(Y7d$lSYw-(ElN1t0|D?xFDJxRQI zlmS^DhYEt9-md)Y{vF%K7a_wkw2(o9%e_~b_I%!@3m)A_gUKaRn<}^Miyv#Vvs2nW z85K8y@YAbiw;ARmQO~BueX`}$F3P#t1yr&&By!K<3nnO30OdA)9l!BXU*yHr24dny zqjYfS)YZt(JF=ZG$ zoeafUs+E;Suubf0WZiuG-f?#Kg*ETi2<>(ty@f&OBb2vi(VGs*w1g6d(071s0r)Bg zjFX57#n}2jcyCa2zcHs4-%6PySn=BkCxKwbyzMSsD8q_0*nIY1Apa`(Mx}OvsUB>p z+40Hv3BHKLvey=$F_+!5T||9kV7pZR3oG8BK)dD7b@WjOpE)<6&jpLT6Wc`~!6m8n ze3E#u9Y_)5a^1VGbC3@`Jp>OLc%LOkHGDq(d;EGR4480l&#oe%gR9(yBcWH(P*3G} z^lJ`MIM#}>9kv5f{ELlTogBdyJF8N>Ad7{0s65}q1@$*vaet0-{LC<)38k$9U4GNtK`j8V zOP;}seGI)7v1hFMM3l}`&A#{b$w81ml*)p|u($1mtY0}RQs41S1eHv^!v!SVlH?(c z{Q$a_t~!4ORZEx?fpotee?WyCsH>guA}vkSoOC!XEa2pdz1GE=dL{W^bB;wCib#_OIfTIDS2 zCs10EPdt}uz)VxJX{gf$CI!U&QN!D)t_Hz=P_aMbAublJV=Z<$dhBmXOM@jgT7h?& z07vRc-}J-H4uT4&)J4S*fzNxxJFJ1CXc}d-=EeU0c&~`{NX?e$HaTjMcYR~ zrK9!D%Vg%ABH)bX-L}i$Jmcy-Fr+w?_p-!8d5$#Kh1EU@xHsEt$r>&7T#38A9C3ec zux1MgC9B2o_bcZUd6^Ni0kdo49Lo9RIn8{QwQ!7EMDIrt2&O-ICr+rw^YFCZ+hby) zbp4g>?An0`7q+xa-ynTP?sS6kI-Zv7q_RYMIAqlY;xnLL+$kjiN(I;$F(q5y<~4VR zq?^fGk(}ax?<91uNAsFHX8h3G8nrs#rOYe*^_3fDyq$CDtO_(VZt3IMUaY^91HZ7V zG4_~{AiXa6+_N+V_^+$>FZKUjpLYF3Hym|cl2#(9yW`ubZ1CUb5y6{YH+2^VYYy71 zbDC>0SIqbfq1~svx*bV`6IStQo2sTYcLkzeo9LztcVOgemwM z8?85Rd2d~T2ECHjk~DmXjn#s{LFVnvMEw=COglU3Qv<-kNN>fWrB+DLr{%ttd75E% zN%d};SeTL3WE$-2)HFyxsk^9}O@Fc4qyQ(3sW?^W+f(pSpVu%++ce&pnLZug@jh?Z zJQ2Vh*c7Z%A1~YqX&UzNoI6-A*^@pk;SYrmrFJi*;(iPfxGr^*q6taGvq!H+5vTP; zM_=`>L>)-ZPz#Vs#K7NuLt%uyVNgVNq~LJfF6;HgmeCR2yI4TAT91b^n)=A3z6DEj zrhoh~6#tS23*3s#@Hfmgn Rg_lY}L550DP}@X@>R-PEf0qCN delta 4846 zcmajhXD}Sxy8!U4-plH%vxw*{LUbX~Meik1774);C9=Y5A*>RMge*dcnh-r$CA<1A zQKAP?6T$Kl^-Au2=l;LkxgXBVGiRRXoHJ+Ucb=1W;B-QCibensBnVOj8G;-^fuKZC zA*c~F2wDUkf*!$uU_>w>m=Qn(OFgU93P2g)?)!CGrbF_*9FK_mWzQl62>&DojnH+GEO1!&ZoiBNCc_%yPc_aIh<)V zQ;s^FehrS|SnH;CZ~^l$Egj8=%D_^Q7)3Z=7#kHdKuJz^rG_-vSvivX)Qk5j)=9tg zd8T%$ijpAVJb*&?49&$ z8CTd$fnwG3AtnNgO3gl`NAKFdl9z9Kd4?7{g?`U>9_vUJNp5MrEip%_cXF@l0m~bB zdH(cC(3X}ko-CT(B0{UeS6u)@Xn-g<@MkCAiIYpPH%vB8|L`QNo3l7&pfab$)1*NB z{W_ScK;mEDh5>%xuD^2@>HaEbm`C(@Y+6ZG94_y^5ZhM!tiQpn;0WmxE+#9CKx!2X8Ia4Tq8dI*uxzEdIu8PhG{gIrQ63ofWbO1_=vE z!xws};j4#7EBRZUMW-ErGa?)iiQ27VWkKbvv9kUz36r!xB-U(?Y>@0V*eQxs=W@sL z#_Axy$lAnAf!+7CZ)VOUNf((;8KJtVy2@)_vncNnc7LAm!3<}K~-Ze1Jy2VF0d$*R~6{QP# z4YY8{4mBZOv2E0Ka)!Smz?UNWI%Ddjk%^?%*Mg_o6>bkd!6@7?)|WB*BSPP@fN5Ca zkBEmQmm(P8Vc)2s-b#X(BGiMO6)v)tpyGs${S2VwH z{3fMQucC{wwWGJ;95DjCIEvAYnIJ^yp!+~6&+O8v%4#$00zwqY-9aHQX`St`CzadOiNx%Qe`mJJM`V zQwZ0WWlVh6rcIW+{2&rIok^F~W5I7OsE1n1S<8=9*yNwEZxVA?wYlfmO4T#{!WCBF zApIxKO^MXn6foWQ69}q?P>^VfKk-5O*52LhYz2tSH;$ijMb^B7jEuhD z+s^WY51~3w;Dqjcvy8&|dxI2_L5p#q$BgW9*;R%yMt)gQkM~zYJ?@-q0`gM;<^N5B zbBmRgR9Ojv(#8YC;d3@de^9jlpD3otM;}~7VW+@IkJrxS<9r!h6p=@(M72R&yzE{$ zCKZe(%X$QL2iv?VeGgXq#@ZxQCAif)nQ3xiY=P{#FpxHA6~val3~seDJax@$F;N&8 zauo7p$L%oJ6dhK;zc1~9u24~dXnXsDOu~GvyF}h{8TAF}wUbX4BDMXtLrb@ls~Lq0 z-e5+C`y_ZjOCIqCvFG@ozuRam{n^DoAd_Z}O*#=tecCNd($>aK4T!%jU%OaI176a4 z(a+QHi!P(ibtj!ysW@9i_vl{~kV_Q!F(3v+32)m0K*cUmq`02oLdJji)+qb&2jM*3 zre#4*oW`xgm5)lsCb2(4)FVhw&0SX*W%nTpR4(p{c6T2;(UkRY@Bp)u1rN3uy&{7SATWu;ggq|5d^AuZrydRKY1$E&f?yzgbzWA3YjH_+s`& z+AV=XGC{dw?r`n*-wA z*45KffXK-~Gz8TC-xOyW8Dmd>Zx~cSUS35O_3Z+16)rLvdEdsHw{w>mDf4NpabG>k zXrO9e$H;Mdl$$)_DZ8O~iPXN1_yh4O(=HfGe$(^bKE!$({a}u21JcuRb~%GfG;fG3 z^IJoL0QNmbzVG4SQ_~8JyLn&Y67g(zL~Mk3KI}6xLsSoN93cud>bl@UJ00xS!d>HfS{hLuVXwG$j2TcVh$UU%cIPo#64ySxQy3-~K| z6<&1j$oH3?e$`6UP|{(%AMcV* z)Ev|1-|uF+&m110MM)}4HREQtvZTR#KaQC*;Z8c^lgikivY%fPBtyFpxECy{bAU`^ z>M7`J;9Vno%9$UWZ$U96kld?4V*MPRY?j`hWLlk8Ry}Kgm{@g ze*4T#qLeGt=)bPj5zda%9*O5~?PG6_a(LSl@R(XpOr1Jp=m6|wk0yG6?&Q_D>q9BwtcitTpZ;72mE;TG$l)*vaCy zDbnVb)~^4xl(}rm{JlM(Cm?ZQ$0~hqs8_ z852pL^PY?Qb=KOtR(z(47KM*Vr8|$TXXg!a;;T2(acgg3T3<^!pp*D&LEk!Z+yt_U zD+9XlGUBr=vP#fVcf`x8h^0!k#8N?!;QR=Pwk*zXX}vbE{>9i}f7>D7l$a;Bt3DE0 zS;UmF9#ylYM8|wP4xBXKVMf`9<{z@J^wQ3|$^UNLN7bYAJ}zs$8_vHeKoOzO;9<1S zowgyspy4WGR+M(G=Qgk~m{2!4n|72Rd_4Uahgxs;pBs(~&wwq`wm6f~ zf_*OdVXaIw;ATPm18P>opgD>;cJ24z3z;`FBDHoI0iQ}|EUspLIZlAJvi6I7Y|w3F zGw&N;Gn#%c7xjS43T`kxMua)iD`pTLS~t?0OK^qQ!W=0NGVFh6``c<2dt|$Q`56Sw zn0mzln<0@9$-Z7aV~wZtLtEbsDBVEQ+jOf!QB%1K8)(vfT?e=uH`?-U054%9Vm-zL zFZG^wS#^p^9T<7x*D^=*3D{~^IU~p!ud$vmRIB&lN#L44oW2w7k>CEqU?NT@>Va6w z?TMMUA+4mM?%XL|p`4jv6Zwsb3@kvI{@|}Ryg^e6bTJSLOJGfyRiili>uA_wYU@SI z@}dj2&>w4A$1`#PTZ*;oi>%2=wrUudmf{jkQG+{{U4PeJ3q_J~F3EF64OzKJN=sZ=y?7MV~|$#2S{xIFunTKip5z6jav*_M<~%BcO;E=3={M zHCq@Ht@nUClmp=>5!w*0dYv1Uz=f@G1*p8h1Ux#6RF!^0M+~N$a75rZa5JR44M8tO ztH$!J$4S-RIo)Sf&)Fn-M+;R(_e6`v0(R?450Kgd6VXjERZG}~Neq>_vn*hycZ7EW z!Qt8Yy4KF$t4KU5)v+~TV()0X*~pxz0|FzO9ss5Y16x6%FCYh_IEJ(ql& zE{n1_-`%&Gcx`&gSp71Vi(qxtvIGh{IQ2m9LX;t;NiB&3hWxO%Srr=34oy(n?f7tu zvcjDnRr;%p#VLZZz1s5p_l6ziT&>G#jqMhiR!K{y>70RYT$}NJj1*q%{E-C=&-l`v z(ew(S4snpXCSNuK8 z$Z4ks-bKuF8D&l={gfR2v7DKXf}Qwy}9g!mkg)+DmIJ8-O4 zJWv%ezQK(nwD6eu>SpsusW=4HOJgl%)}#L?z7=UlxdQDY?2Xk*W9v>}S{B(az56cn z7tSjgaD?oKJ}pHCTkyQcjTUbqKBy}y4yff{0h|ApV~sipfIo|_K%Giwd5enzA&D>=NYv%1{SpDd=1%v+rB51`84q3$M> zGJ5a_@@VpA2ex*_0}AgCtyrH82*8(^c8S>E*DEzx6FQaGPs3kAEr|xlD?TN`N$DJmz zq~MU2kdX6_mml}g#^vd#)GbC8f1Zb@YptnfuED2=3)_(Lhd1HsxB6RCQ(min;0ry9 zO?5hS_4R*J{)EtLPUDH@*FUa-k*~Y@8x_*LE2PNQminTt4$%@`4`>m!1N`Zp2#@WzCwT{JIy^osxy}fWe eo5%X=Lav464I1UC${|3bBoCnx5z#Z#r};0XSS`^2 diff --git a/slides/BDA_lecture_10b.tex b/slides/BDA_lecture_10b.tex index 10c58708..cb8af74e 100644 --- a/slides/BDA_lecture_10b.tex +++ b/slides/BDA_lecture_10b.tex @@ -1163,7 +1163,7 @@ \item a consistent way to add prior information \end{itemize} \item<3-> A lot of machine learning is not pure frequentist or - Bayesian + Bayesian, but there is often a probabilistic flavor \end{itemize} \end{frame}