forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_tf_BatchToSpace.py
83 lines (67 loc) · 3.62 KB
/
test_tf_BatchToSpace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (C) 2018-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from common.tf_layer_test_class import CommonTFLayerTest
class TestBatchToSpace(CommonTFLayerTest):
def create_batch_to_space_net(self, in_shape, crops_value, block_shape_value, out_shape,
ir_version, use_new_frontend):
"""
Tensorflow net IR net
Input->BatchToSpace => Input->BatchToSpace
"""
import tensorflow as tf
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
x = tf.compat.v1.placeholder(tf.float32, in_shape, 'Input')
crops = tf.constant(crops_value)
block_shape = tf.constant(block_shape_value)
tf.compat.v1.batch_to_space(x, crops, block_shape, name='Operation')
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
#
# Create reference IR net
# Please, specify 'type': 'Input' for input node
# Moreover, do not forget to validate ALL layer attributes!!!
#
ref_net = None
return tf_net, ref_net
test_data_4D = [
dict(in_shape=[4, 1, 1, 3], block_shape_value=[1], crops_value=[[0, 0]],
out_shape=[4, 1, 1, 3]),
dict(in_shape=[4, 1, 1, 3], block_shape_value=[2, 2], crops_value=[[0, 0], [0, 0]],
out_shape=[1, 2, 2, 3]),
dict(in_shape=[60, 100, 30, 30], block_shape_value=[3, 2], crops_value=[[1, 5], [4, 1]],
out_shape=[2, 2, 1, 1]),
# todo: enable these tests after supporting the general case on CPU
# dict(in_shape=[4, 1, 1, 1], block_shape_value=[2, 1, 2], crops_value=[[0, 0], [0, 0], [0, 0]],
# out_shape=[]),
# dict(in_shape=[12, 1, 1, 3], block_shape_value=[3, 2, 2], crops_value=[[1, 0], [0, 1], [1, 1]],
# out_shape=[1, 2, 1, 4]),
# dict(in_shape=[36, 2, 2, 3], block_shape_value=[2, 3, 3], crops_value=[[1, 0], [0, 0], [2, 2]],
# out_shape=[2, 3, 6, 5])
]
@pytest.mark.parametrize("params", test_data_4D)
@pytest.mark.nightly
def test_batch_to_space_4D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_batch_to_space_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)
test_data_5D = [
dict(in_shape=[72, 2, 1, 4, 2], block_shape_value=[3, 4, 2],
crops_value=[[1, 2], [0, 0], [3, 0]],
out_shape=[3, 3, 4, 5, 2]),
# todo: enable these tests after supporting the general case on CPU
# dict(in_shape=[144, 2, 1, 4, 1], block_shape_value=[3, 4, 2, 2],
# crops_value=[[1, 2], [0, 0], [3, 0], [0, 0]], out_shape=[3, 3, 4, 5, 2]),
]
@pytest.mark.parametrize("params", test_data_5D)
@pytest.mark.nightly
def test_batch_to_space_5D(self, params, ie_device, precision, ir_version, temp_dir,
use_new_frontend, use_old_api):
self._test(*self.create_batch_to_space_net(**params, ir_version=ir_version,
use_new_frontend=use_new_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_new_frontend=use_new_frontend, use_old_api=use_old_api)