-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstats_output_with_v2g.py
519 lines (436 loc) · 22.9 KB
/
stats_output_with_v2g.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import numpy as np
from tqdm import tqdm
from pprint import pprint
import pandas as pd
import pdb
import argparse
def get_input_args():
"""
Returns input arguments for main file execution
"""
parser = argparse.ArgumentParser()
parser.add_argument('--n', type = int, default = 500,
help = 'Number of episodes to run')
parser.add_argument('--id_run', type = str, default = 'test_run',
help = 'id of run')
parser.add_argument('--pen', type = float, default = 0.1,
help = 'market penetration of evs')
parser.add_argument('--avg_param', type = int, default = 1,
help = 'if avg == 1, non-one avg and non-zero max are used')
parser.add_argument('--alpha', type = float, default = 0.01,
help = 'alpha for learning')
parser.add_argument('--scale', type = int, default = 1000,
help = 'scale')
return parser.parse_args()
# Get args
n_episodes = get_input_args().n
id_run = get_input_args().id_run
pen = get_input_args().pen
avg = get_input_args().avg_param
alpha = get_input_args().alpha
scale = get_input_args().scale
# Get Alberta Average demand and prices
df = pd.read_csv('AESO_2020_demand_price.csv')
HE = []
end_index = df.shape[0]//(48 * 2) + 1
for day in range(1, end_index):
for hour in range(1, (2 * 48) + 1):
HE.append(hour)
df['HE'] = HE
df = df.drop(df.columns[[0, 2]], axis = 1)
df = df.set_index('HE', drop = True)
df = df.groupby('HE', as_index=True).mean()
df_to_plot = df.drop(df.columns[[0]], axis = 1)
alberta_avg_power_price = np.array(df.iloc[:, 0])
alberta_avg_demand = np.array(df.iloc[:, 1])/scale
# https://open.alberta.ca/dataset/d6205817-b04b-4360-8bb0-79eaaecb9df9/
# resource/4a06c219-03d1-4027-9c1f-a383629ab3bc/download/trans-motorized-
# vehicle-registrations-select-municipalities-2020.pdf
total_cars_in_alberta = 100
ev_market_penetration = 0.1
min_soc_by_8_am = 0.5
max_soc_allowed = 1
min_soc_allowed = 0.1
charging_soc_addition_per_time_unit_per_ev = 0.15
discharging_soc_reduction_per_time_unit_per_ev = -0.15
charging_soc_mw_addition_to_demand_per_time_unit_per_ev = 0.01
discharging_soc_mw_reduction_from_demand_per_time_unit_per_ev = 0.01
driving_soc_reduction_per_time_unit_per_ev = 0.005
forecast_flag = False
n_percent_honesty = ['0.25', '0.5', '0.75']
# Time conversion
index_of_time = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
time_of_day = [17,18,19,20,21,22,23,0,1,2,3,4,5,6,7]
index_to_time_of_day_dict = {}
for item in range(len(index_of_time)):
index_to_time_of_day_dict[index_of_time[item]] = time_of_day[item]
pprint(index_to_time_of_day_dict)
# Define experiment params
experiment_params = {'n_episodes': n_episodes,
'n_hours': 15,
'n_divisions_for_soc': 4,
'n_divisions_for_percent_honesty': 3,
'max_soc_allowed': 1,
'min_soc_allowed': 0.1,
'alpha': 0.01,
'epsilon': 0.1,
'gamma': 1,
'total_cars_in_alberta': 1000000/scale,
'ev_market_penetration': pen,
'charging_soc_addition_per_time_unit_per_ev': 0.15,
'discharging_soc_reduction_per_time_unit_per_ev': 0.15,
'charging_soc_mw_addition_to_demand_per_time_unit_per_ev': 0.01,
'discharging_soc_mw_reduction_from_demand_per_time_unit_per_ev': 0.01,
'driving_soc_reduction_per_km_per_ev': 0.0035,
'alberta_average_demand': alberta_avg_demand,
'index_to_time_of_day_dict': index_to_time_of_day_dict,
'forecast_flag': forecast_flag,
'n_percent_honesty': n_percent_honesty,
'which_avg_param': avg
}
# Experiment function
class Experiment():
def __init__(self, experiment_params={}):
# Initialize all experiment params
self.n_episodes = experiment_params.get('n_episodes')
self.n_hours = experiment_params.get('n_hours')
self.n_divisions_for_soc = experiment_params.get('n_divisions_for_soc')
self.n_divisions_for_percent_honesty = experiment_params.get('n_divisions_for_percent_honesty')
self.max_soc_allowed = experiment_params.get('max_soc_allowed')
self.min_soc_allowed = experiment_params.get('in_soc_allowed')
self.alpha = experiment_params.get('alpha')
self.epsilon = experiment_params.get('epsilon')
self.gamma = experiment_params.get('gamma')
self.total_cars_in_alberta = experiment_params.get('total_cars_in_alberta')
self.ev_market_penetration = experiment_params.get('ev_market_penetration')
self.charging_soc_addition_per_time_unit_per_ev = experiment_params.get('charging_soc_addition_'\
'per_time_unit_per_ev')
self.discharging_soc_reduction_per_time_unit_per_ev = experiment_params.get('discharging_'\
'soc_reduction_per_time_unit_per_ev')
self.charging_soc_mw_addition_to_demand_per_time_unit_per_ev = experiment_params.get('charging_'\
'soc_mw_addition_to_demand_'\
'per_time_unit_per_ev')
self.discharging_soc_mw_reduction_from_demand_per_time_unit_per_ev = experiment_params.get('discharging_'\
'soc_mw_reduction_'\
'from_demand_per_'
'time_unit_per_ev')
self.driving_soc_reduction_per_km_per_ev = experiment_params.get('driving_soc_reduction_per_km_per_ev')
self.alberta_average_demand = experiment_params.get('alberta_average_demand')
self.index_to_time_of_day_dict = experiment_params.get('index_to_time_of_day_dict')
self.forecast_flag = experiment_params.get('forecast_flag')
self.n_percent_honesty = experiment_params.get('n_percent_honesty')
self.which_avg_param = experiment_params.get('which_avg_param')
# Initialize q-value table
self.Q = np.load('final_presentation/Q_value/' + str(pen) + '.npy')
self.v_get_soc_bin = np.vectorize(self.get_soc_bin)
self.v_get_soc_and_charging_load = np.vectorize(self.get_soc_and_charging_load)
self.v_get_soc_and_discharging_load = np.vectorize(self.get_soc_and_discharging_load)
self.v_get_soc_from_driving = np.vectorize(self.get_soc_from_driving)
# Display params
print('Experiment parameters are: ')
print(*experiment_params.items(), sep='\n')
def start_experiment(self):
"""Initialize the experiment"""
# Calculate the number of EVs in the province
self.num_of_evs = self.total_cars_in_alberta * self.ev_market_penetration
# Initialize an array of SOCs for each EV
self.soc_of_evs = abs(np.random.normal(0.3, 0.1, int(self.num_of_evs)))
# Initialize the last total load and average
if self.which_avg_param == 1:
self.last_max_load = 10139.13/scale #alberta_avg_demand[8:17].max()
self.last_average = 10052.55/scale #alberta_avg_demand[8:17].mean()
else:
self.last_max_load = 0 #alberta_avg_demand[8:17].max()
self.last_average = 1 #alberta_avg_demand[8:17].mean()
self.last_percent_honest = np.random.choice(self.n_percent_honesty)
self.last_Q = self.Q.copy()
def run(self):
"""Main method to run the experiment with initialized params"""
# Monitor the trace as the program runs
#pdb.set_trace()
# Initialize stats lists
self.reward_list = []
self.average_list = []
self.PAR_list = []
self.max_load_list = []
self.Q_change_list = []
self.evs_mean_list = []
self.load_episode_list = []
# Repeat for every episode
for episode in tqdm(range(self.n_episodes), ncols=100):
# Initialize the experiment
self.start_experiment()
# Calculate the percent honesty of people
#percent_honest = np.random.choice(self.n_percent_honesty) #self.last_percent_honest
#Initialize load list
load_list = []
# Repeat for every hour in the number of hours
for hour in range(0, self.n_hours):
# Calculate the percent honesty of people
percent_honest = self.last_percent_honest
#print('Percent honest: ', percent_honest)
if forecast_flag:
next_percent_honest = np.random.choice(self.n_percent_honesty, p = [0.25, 0.25, 0.25, 0.25])
else:
if hour >= 9:
next_percent_honest = self.n_percent_honesty[-1]
else:
next_percent_honest = np.random.choice(self.n_percent_honesty)
# Get the SOC division for each EV
soc_div_index = self.v_get_soc_bin(self.soc_of_evs)
# Get the indicator which shows whether each EV is
# keeping to its original intention and make sure
# its applied randomly to each EV via shuffling
status_evs = np.concatenate((np.ones(int(self.num_of_evs * float(percent_honest))), np.zeros(int(self.num_of_evs * (1 - float(percent_honest))))), axis = 0)
# status_evs = ([0] * int(self.num_of_evs * (1 - float(percent_honest)))
# + [1] * int(self.num_of_evs * float(percent_honest)))
np.random.shuffle(status_evs)
# Dictionary keeping track of what actions
# were taken for each SOC division
div_to_action_dict = {}
# Loop for every SOC division
for soc_bin in range(0, self.n_divisions_for_soc):
# Extract the q-value for the division, hour,
# and percent of EVs st
Q = self.Q[soc_bin][hour][int(float(percent_honest)/0.25 - 1)]
# Choose an action using a policy
# (ex: epsilon-greedy)
action = self.choose_action(Q)
# Calculate the load for each SOC division
if self.index_to_time_of_day_dict[hour] in [17,18,19,20,21,22,23,0,1,2]:
charging_load = 0
discharging_load = 0
driving_distance_of_evs = abs(np.random.normal(5, 5, int(self.num_of_evs)))
soc_reduction_for_evs = self.driving_soc_reduction_per_km_per_ev * driving_distance_of_evs
if action == 0:
self.soc_of_evs, charging_load_index = self.v_get_soc_and_charging_load(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
charging_load = self.charging_soc_mw_addition_to_demand_per_time_unit_per_ev * charging_load_index.sum()
elif action == 1:
self.soc_of_evs, discharging_load_index = self.v_get_soc_and_discharging_load(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
discharging_load = self.discharging_soc_mw_reduction_from_demand_per_time_unit_per_ev * discharging_load_index.sum()
else:
self.soc_of_evs = self.v_get_soc_from_driving(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
e_evs = charging_load - discharging_load
elif self.index_to_time_of_day_dict[hour] in [3,4,5,6,7]:
charging_load = 0
discharging_load = 0
driving_distance_of_evs = abs(np.random.normal(0, 0, int(self.num_of_evs)))
soc_reduction_for_evs = self.driving_soc_reduction_per_km_per_ev * driving_distance_of_evs
if action == 0:
self.soc_of_evs, charging_load_index = self.v_get_soc_and_charging_load(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
charging_load = self.charging_soc_mw_addition_to_demand_per_time_unit_per_ev * charging_load_index.sum()
elif action == 1:
self.soc_of_evs, discharging_load_index = self.v_get_soc_and_discharging_load(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
discharging_load = self.discharging_soc_mw_reduction_from_demand_per_time_unit_per_ev * discharging_load_index.sum()
else:
self.soc_of_evs = self.v_get_soc_from_driving(soc_bin, self.soc_of_evs, soc_div_index, status_evs, soc_reduction_for_evs)
e_evs = charging_load - discharging_load
#print(f'Divsion {division}, hour {hour}, load = {load_from_division}')
# Populate division-to-action dictionary
# to preserve the action that was picked
# for each SOC division
div_to_action_dict[soc_bin] = (action, e_evs)
# Get next hour based on current hour
next_hour = self.get_next_hour(hour)
# Calculate the total load based on
# the loads from each SOC division
total_load = 0
for div in div_to_action_dict.keys():
total_load += div_to_action_dict[div][1]
# Calculate the total power demand by adding the
# power demand with the additional demand from EVs
total_load = max(total_load + self.alberta_average_demand[self.index_to_time_of_day_dict[hour]], 0)
load_list.append(scale * total_load)
# Calculate the PAR ratio, the reward, the average
# and the penalty
#pdb.set_trace()
average = ((hour + 9) * self.last_average + total_load) / (hour + 1 + 9)
average_charge_penalty = self.get_final_soc_penalty(hour)
new_max_load = max(total_load, self.last_max_load)
if average > 0:
PAR = new_max_load / average
else:
PAR = 1
reward = -PAR + average_charge_penalty
# Update the qction-value function for each
# SOC division, hour, and percent honesty
# for soc_bin in range(0, self.n_divisions_for_soc):
# if hour < self.n_hours - 1:
# delta = (reward
# + self.gamma * np.max(self.Q[soc_bin][next_hour][int(float(next_percent_honest)/0.25-1)])
# - self.Q[soc_bin][hour][int(float(percent_honest)/0.25-1)][div_to_action_dict[soc_bin][0]])
# self.Q[soc_bin][hour][int(float(percent_honest)/0.25-1)][div_to_action_dict[soc_bin][0]] += self.alpha * delta
# else:
# delta = reward - self.Q[soc_bin][hour][int(float(percent_honest)/0.25-1)][div_to_action_dict[soc_bin][0]]
# self.Q[soc_bin][hour][int(float(percent_honest)/0.25-1)][div_to_action_dict[soc_bin][0]] += self.alpha * delta
# Store the total load, PAR, and
# last percent honest
self.last_max_load = new_max_load
self.last_average = average
self.last_percent_honest = next_percent_honest
# print stats
print('\n')
print('Last max load: ', self.last_max_load)
print('Last average: ', self.last_average)
print('Reward: ', reward)
print('PAR: ', PAR)
print('EVs mean SOC: ', self.soc_of_evs.mean())
# Record stats
self.reward_list.append(reward)
# self.average_list.append(average)
self.PAR_list.append(PAR)
self.evs_mean_list.append(np.array(self.soc_of_evs).mean())
self.load_episode_list.append(load_list)
# self.max_load_list.append(new_max_load)
# self.Q_change_list.append(self.compare_Q())
# self.last_Q = self.Q.copy()
#print(self.Q)
# Save statistics
# np.save(id_run + '_reward_list.npy', self.reward_list)
# np.save(id_run + '_average_list.npy', self.average_list)
# np.save(id_run + '_Q.npy', self.Q)
# np.save(id_run + '_PAR_list.npy', self.PAR_list)
# np.save(id_run + '_max_list.npy', self.max_load_list)
# np.save(id_run + '_Q_change_list.npy', self.Q_change_list)
print(f'Mean reward over {self.n_episodes} episodes is: ', np.array(self.reward_list).mean())
print(f'Mean PAR over {self.n_episodes} episodes is: ', np.array(self.PAR_list).mean())
print(f'Mean EV SOC over {self.n_episodes} episodes is: ', np.array(self.evs_mean_list).mean())
print(f'Mean load list over {self.n_episodes} episodes is: ', np.append(scale * self.alberta_average_demand[8:17], np.array(self.load_episode_list).mean(axis = 0)))
#print(f'Average alberta demand is: ', scale * self.alberta_average_demand[8:17])
# Initialize action-values array
def initialize_action_value(self):
Q = np.zeros(shape = (self.n_divisions_for_soc, self.n_hours, self.n_divisions_for_percent_honesty, 3))
return Q
# Choose action using epsilon-greedy
def choose_action(self, Q):
if np.random.random() < self.epsilon:
action = np.random.choice([0, 1, 2])
else:
action = self.argmax(Q)
return action
def argmax(self, q_values):
"""argmax with random tie-breaking
Args:
q_values (Numpy array): the array of action values
Returns:
action (int): an action with the highest value
"""
top = float("-inf")
ties = []
for i in range(len(q_values)):
if q_values[i] > top:
top = q_values[i]
ties = []
if q_values[i] == top:
ties.append(i)
return np.random.choice(ties)
# Get the next hour based on
# the current hour
def get_next_hour(self, hour):
if hour < 23:
next_hour = hour + 1
else:
next_hour = 0
return next_hour
# Get the SOC bin
# based on the SOC
def get_soc_bin(self,x):
if x <= 0.25:
index = 0
elif x <= 0.5:
index = 1
elif x <= 0.75:
index = 2
elif x <= 1.0:
index = 3
return index
def get_soc_and_charging_load(self,division,
soc_of_evs,
soc_div_index,
status_evs,
soc_reduction_for_evs):
if soc_div_index == division:
if status_evs == 1:
if soc_of_evs < 1:
new_soc = min(1, soc_of_evs + self.charging_soc_addition_per_time_unit_per_ev)
return new_soc, 1
else:
return soc_of_evs, 0
elif status_evs == 0:
if soc_of_evs > 0.1:
new_soc = soc_of_evs - soc_reduction_for_evs
return new_soc, 0
else:
return soc_of_evs, 0
else:
return soc_of_evs, 0
def get_soc_and_discharging_load(self, division,
soc_of_evs,
soc_div_index,
status_evs,
soc_reduction_for_evs):
if soc_div_index == division:
if status_evs == 1:
if soc_of_evs >= 0.1:
new_soc = soc_of_evs - self.charging_soc_addition_per_time_unit_per_ev
return new_soc, 1
else:
return soc_of_evs, 0
elif status_evs == 0:
if soc_of_evs > 0.1:
new_soc = soc_of_evs - soc_reduction_for_evs
return new_soc, 0
else:
return soc_of_evs, 0
else:
return soc_of_evs, 0
def get_soc_from_driving(self, division,
soc_of_evs,
soc_div_index,
status_evs,
soc_reduction_for_evs):
if soc_div_index == division:
if status_evs == 1:
return soc_of_evs
elif status_evs == 0:
if soc_of_evs > 0.1:
new_soc = soc_of_evs - soc_reduction_for_evs
return new_soc
else:
return soc_of_evs
else:
return soc_of_evs
def get_final_soc_penalty(self, hour):
penalty = 0
if hour >= 12 and hour < 15:
mu = np.mean(self.soc_of_evs)
if mu >= 0.48 - (14 - hour) * self.charging_soc_addition_per_time_unit_per_ev:
penalty = 3
else:
penalty = -1
return penalty
def compare_Q(self):
change_sum = 0
for i in range(3):
l_2 = []
for row in self.last_Q:
l = []
for column in row:
max_action = np.argmax(column[i])
l.append(max_action)
l_2.append(np.array(l))
l_Q1 = np.array(l_2)
l_2 = []
for row in self.Q:
l = []
for column in row:
max_action = np.argmax(column[i])
l.append(max_action)
l_2.append(np.array(l))
l_Q2 = np.array(l_2)
change_sum += np.count_nonzero(l_Q1-l_Q2)
return change_sum
if __name__ == '__main__':
# Run experiment
experiment = Experiment(experiment_params)
experiment.run()