-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathcheckpoints.py
535 lines (448 loc) · 18.1 KB
/
checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
"""Export distributed checkpoints."""
import os
import pickle
import statistics
import time
import warnings
from enum import Enum, auto
from typing import Any, Dict, Optional
import numpy
# pylint: disable=import-error,no-name-in-module
import torch
import torch.distributed as dist
import torch.sagemaker.checkpoint.utils as tsm_checkpoint
from data.utils import is_s3_source, parse_s3_address
from logging_utils import get_logger
from torch.distributed import checkpoint
from torch.distributed._shard.api import load_with_process_group
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType
from torch.distributed.fsdp.api import FullStateDictConfig, ShardedOptimStateDictConfig
from torch.sagemaker.distributed.fsdp import checkpoint as tsm_fsdp_checkpoint
from torch.sagemaker.utils.process_group_utils import get_global_ranks
logger = get_logger()
# How to remove extra checkpoints, `regex` and `sort_fn` need to match for correctness.
# - Sort subdir by the **last** int, right before `steps` as shown in the regex.
_CHECKPOINT_DIR_REGEX = r"^.*\d+steps$"
_CHECKPOINT_SORT_FN = tsm_checkpoint.SORT_BY_LAST_INT
_DEFAULT_STATE_DICT_TYPE = StateDictType.SHARDED_STATE_DICT
_EXPORT_KEYS = (
"resume_from_sequence_number",
"start_train_path_index",
"total_steps",
)
_MAX_ATTEMPTS = 3
class CheckpointingMethod(Enum):
SHARDED = auto()
LOCAL = auto()
FULL = auto()
USE_PG_WITH_UTIL = auto()
def backward_compat_get_resume_from_sequence_number(args, state_dict):
if "resume_from_sequence_number" not in state_dict:
return state_dict["start_batch_index"] * args.train_batch_size
else:
return state_dict["resume_from_sequence_number"]
def compute_stats_of_metric(metric: float, key: str, group: Optional[Any] = None):
"""Compute metric stats."""
times = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(times, metric, group=group)
if dist.get_rank() == 0:
logger.info(
"Time taken (min, max, mean, stddev, median, len) = "
"(%7.2f, %7.2f, %7.2f, %7.2f, %7.2f, %02d): %s.",
numpy.min(times),
numpy.max(times),
statistics.mean(times),
statistics.stdev(times),
statistics.median(times),
len(times),
key,
)
def is_action_rank(global_rank):
from torch.sagemaker import state
return state.ranker.get_rep_rank(global_rank) == 0
def get_coordinator_rank(process_group):
model_pg_ranks = get_global_ranks(process_group)
return min(model_pg_ranks)
def _retry_write_to_disk(func, max_attempts=_MAX_ATTEMPTS):
for retry in range(max_attempts):
try:
func()
return
except (RuntimeError, pickle.UnpicklingError) as error:
if isinstance(error, pickle.UnpicklingError) or ("unexpected pos" in str(error)):
# TODO(sliuxl): Sometimes writes to fsx fail, not sure why yet, retry for now.
logger.error(error)
logger.error(
"Retry [%d/%d] failed to write to disk, in case it was due to transient error.",
retry,
max_attempts,
)
if retry < max_attempts - 1:
continue
raise error
def _save_with_util( # pylint: disable=too-many-arguments
model,
optimizer,
scheduler,
user_content,
sharding_strategy,
save_dir: str,
checkpointing_pg_metadata,
):
"""Save FSDP checkpoint: With process groups."""
# By default, it'll use process groups when exporting checkpoints.
tsm_fsdp_checkpoint.save_model_checkpoint(
model,
_DEFAULT_STATE_DICT_TYPE,
save_dir,
sharding_strategy,
checkpointing_pg_metadata,
log=dist.get_rank() == 0,
optimizer=optimizer,
scheduler=scheduler,
extra_exports=(
{key: user_content[key] for key in _EXPORT_KEYS} if user_content is not None else None
),
)
def _save_sharded( # pylint: disable=too-many-arguments
model,
optimizer,
scheduler,
user_content,
save_dir: str,
checkpointing_pg_metadata,
):
"""Save FSDP checkpoint: Without process groups."""
with FSDP.state_dict_type(model, _DEFAULT_STATE_DICT_TYPE):
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# pylint: disable=line-too-long
# torch/distributed/fsdp/_common_utils.py:291: UserWarning:
# An unexpected prefix is detected. This case should only happen when using DMP with FSDP.
# prefix = _checkpoint_wrapped_module.gpt_neox.layers.34., submodule_name = _fsdp_wrapped_module
# pylint: enable=line-too-long
# TODO(rubik) Not sure why this shows up
optim_state_dict = FSDP.optim_state_dict(model, optimizer)
state_dict = {
"model": model.state_dict(),
"optimizer": optim_state_dict,
"scheduler": scheduler.state_dict(),
}
# merge user content to state_dict
state_dict = state_dict | user_content
if dist.get_rank() == 0:
logger.info("Processed state dict to save. Starting write to disk now.")
process_group, coordinator_rank, action_rank = checkpointing_pg_metadata
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# torch/distributed/checkpoint/filesystem.py:157: UserWarning: TypedStorage is deprecated.
if action_rank:
checkpoint.save_state_dict(
state_dict=state_dict,
storage_writer=checkpoint.FileSystemWriter(save_dir),
planner=checkpoint.DefaultSavePlanner(),
process_group=process_group,
coordinator_rank=coordinator_rank,
)
def _save_full( # pylint: disable=too-many-arguments
model,
save_dir: str,
user_content: Dict,
):
"""Save FSDP checkpoint: Without process groups."""
if dist.get_rank() == 0:
logger.warning("Full checkpoint only saves the model")
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
):
state_dict = model.state_dict()
if dist.get_rank() == 0:
logger.info("Processed state dict to save. Starting write to disk now.")
os.makedirs(save_dir, exist_ok=True)
# this name is needed for HF from_pretrained API to work fine
torch.save(state_dict, os.path.join(save_dir, "pytorch_model.bin"))
user_content["model_config"].save_pretrained(save_dir)
dist.barrier()
def _save_local( # pylint: disable=too-many-arguments
model,
optimizer,
scheduler,
user_content,
save_dir: str,
):
"""Save FSDP checkpoint: Without process groups."""
os.makedirs(save_dir, exist_ok=True)
with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
optim_state_dict = optimizer.state_dict()
state_dict = {
"model": model.state_dict(),
"optimizer": optim_state_dict,
"scheduler": scheduler.state_dict(),
}
# merge user content to state_dict
state_dict = state_dict | user_content
if dist.get_rank() == 0:
logger.info("Processed state dict to save. Starting write to disk now.")
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# torch/distributed/checkpoint/filesystem.py:157: UserWarning: TypedStorage is deprecated.
def write_fn():
torch.save(state_dict, os.path.join(save_dir, f"{dist.get_rank()}.pt"))
_retry_write_to_disk(write_fn)
def save_checkpoint( # pylint: disable=too-many-arguments,too-many-locals
model,
optimizer,
scheduler,
user_content,
sharding_strategy,
root_dir: str,
subdir: str,
num_kept_checkpoints: int,
checkpointing_pg_metadata,
tensor_parallel_degree: int,
checkpoint_type=CheckpointingMethod.LOCAL,
):
"""Export checkpoint."""
from torch.sagemaker import state
# seeing a NCCL crash during broadcast in checkpointing sometimes
# seems like that happens when cached memory usage is at the limit
# so clearing cache
torch.cuda.empty_cache()
if not root_dir:
return
save_dir = os.path.join(root_dir, subdir)
if is_s3_source(root_dir):
save_dir = os.path.join(f"/tmp/checkpoint_{dist.get_rank()}", subdir)
if dist.get_rank() == 0:
logger.info("Checkpointing to %s ...", save_dir)
if isinstance(checkpoint_type, str):
checkpoint_type = CheckpointingMethod[checkpoint_type.upper()]
ckpt_start = time.process_time()
if checkpoint_type == CheckpointingMethod.SHARDED:
if tensor_parallel_degree > 1:
save_dir = os.path.join(save_dir, f"tp{tensor_parallel_degree}-{state.tp_rank}")
_save_sharded(
model, optimizer, scheduler, user_content, save_dir, checkpointing_pg_metadata
)
elif checkpoint_type == CheckpointingMethod.LOCAL:
if tensor_parallel_degree > 1:
raise NotImplementedError("Local checkpointing unsupported with tensor parallelism")
_save_local(model, optimizer, scheduler, user_content, save_dir)
elif checkpoint_type == CheckpointingMethod.FULL:
_save_full(model, save_dir, user_content)
elif checkpoint_type == CheckpointingMethod.USE_PG_WITH_UTIL:
_save_with_util(
model,
optimizer,
scheduler,
user_content,
sharding_strategy,
save_dir,
checkpointing_pg_metadata,
)
ckpt_time = time.process_time() - ckpt_start
dist.barrier()
process_group = None if checkpointing_pg_metadata is None else checkpointing_pg_metadata[0]
compute_stats_of_metric(ckpt_time, "saving checkpoint (s)", process_group)
if dist.get_rank() == 0:
logger.info("Finished checkpointing to %s.", save_dir)
if is_s3_source(root_dir):
s3_start = time.process_time()
bucket, bucketdir = parse_s3_address(root_dir)
bucketdir = os.path.join(bucketdir, subdir)
import boto3
s3_client = boto3.client("s3")
for fname in os.listdir(save_dir):
fpath = os.path.join(save_dir, fname)
bucketobj = os.path.join(bucketdir, fname)
s3_client.upload_file(fpath, bucket, bucketobj)
s3_time = time.process_time() - s3_start
logger.info("Rank %d: saved to %s in %f sec", dist.get_rank(), bucketdir, s3_time)
dist.barrier()
# Only limit subdirs when writing intermediate checkpoints, not the final checkpoint.
if not subdir:
return
# Limit checkpoints after writing the latest one.
tsm_checkpoint.limit_num_subdirs(
# Need to access the **full** path.
os.path.abspath(root_dir),
num_kept_checkpoints,
sort_fn=_CHECKPOINT_SORT_FN,
regex=_CHECKPOINT_DIR_REGEX,
# Both log messages and do the actual remove as needed for one single rank.
log=dist.get_rank() == 0,
)
# pylint: disable=too-many-arguments,too-many-locals
def _load_with_util(
model,
optimizer,
scheduler,
checkpoint_dir,
sharding_strategy,
checkpointing_pg_metadata,
):
"""Load FSDP checkpoint: With process groups."""
# By default, it'll use process groups when exporting checkpoints.
return tsm_fsdp_checkpoint.load_model_checkpoint(
model,
_DEFAULT_STATE_DICT_TYPE,
checkpoint_dir,
sharding_strategy,
checkpointing_pg_metadata,
log=dist.get_rank() == 0,
optimizer=optimizer,
scheduler=scheduler,
extra_imports={key: 0 for key in _EXPORT_KEYS},
)
def _load_sharded(model, optimizer, scheduler, checkpoint_dir, checkpointing_pg_metadata):
process_group, coordinator_rank, _ = checkpointing_pg_metadata
with FSDP.state_dict_type(
model,
_DEFAULT_STATE_DICT_TYPE,
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
):
state_dict = {
"model": model.state_dict(),
"scheduler": scheduler.state_dict(),
"epoch": 0,
"total_steps": 0,
"start_train_path_index": 0,
"resume_from_sequence_number": 0,
# cannot load the optimizer state_dict together with the model state_dict
}
def _load_from_disk():
# NOTE: `_{save, load}_sharded` need to be consistent using the `process_group`s.
checkpoint.load_state_dict(
state_dict=state_dict,
storage_reader=checkpoint.FileSystemReader(checkpoint_dir),
process_group=process_group,
coordinator_rank=coordinator_rank,
planner=checkpoint.DefaultLoadPlanner(),
)
try:
_load_from_disk()
except KeyError():
# when loading old checkpoints which had start_batch_index instead of resume_from_sequence_number
# replace the key in dummy state_dict, and retry
del state_dict["resume_from_sequence_number"]
state_dict["start_batch_index"] = 0
_load_from_disk()
if dist.get_rank() == 0:
logger.info("Loaded model state from disk")
model.load_state_dict(state_dict["model"])
scheduler.load_state_dict(state_dict["scheduler"])
optim_state = load_sharded_optimizer_state_dict(
model_state_dict=state_dict["model"],
optimizer_key="optimizer",
storage_reader=checkpoint.FileSystemReader(checkpoint_dir),
process_group=model.process_group,
)
if dist.get_rank() == 0:
logger.info("Loaded and sharded optimizer state from disk")
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
# UserWarning to replace all_gather_base with all_gather_into_tensor floods the logs
flattened_osd = FSDP.optim_state_dict_to_load(
optim_state["optimizer"], model, optimizer
)
if dist.get_rank() == 0:
logger.info("Converted optimizer state dict for FSDP")
optimizer.load_state_dict(flattened_osd)
return state_dict
def gather_and_log_param_buffer_norms(model):
with FSDP.state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=True),
):
sd = model.state_dict()
for k, v in sd.items():
if dist.get_rank() == 0:
print(k, torch.linalg.norm(v), v.sum())
for n, m in model.named_buffers():
if dist.get_rank() == 0:
print(dist.get_rank(), n, torch.linalg.norm(m), m.sum())
def _load_local(model, optimizer, scheduler, checkpoint_dir):
with load_with_process_group(model.process_group):
state_dict = torch.load(os.path.join(checkpoint_dir, f"{dist.get_rank()}.pt"))
with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
if dist.get_rank() == 0:
logger.info("Loaded model state from disk")
model.load_state_dict(state_dict["model"])
scheduler.load_state_dict(state_dict["scheduler"])
optimizer.load_state_dict(state_dict["optimizer"])
return state_dict
def load_checkpoint(
args,
model,
optimizer,
scheduler,
checkpoint_dir: str,
sharding_strategy,
checkpointing_pg_metadata,
tensor_parallel_degree: int,
checkpoint_type=CheckpointingMethod.LOCAL,
):
"""Load checkpoint."""
from torch.sagemaker import state
if dist.get_rank() == 0:
logger.info("Loading checkpoint from %s ...", checkpoint_dir)
load_start = time.process_time()
if isinstance(checkpoint_type, str):
checkpoint_type = CheckpointingMethod[checkpoint_type.upper()]
if checkpoint_type == CheckpointingMethod.USE_PG_WITH_UTIL:
loaded = _load_with_util(
model,
optimizer,
scheduler,
checkpoint_dir,
sharding_strategy,
checkpointing_pg_metadata,
)
elif checkpoint_type == CheckpointingMethod.SHARDED:
if tensor_parallel_degree > 1:
checkpoint_dir = os.path.join(
checkpoint_dir, f"tp{tensor_parallel_degree}-{state.tp_rank}"
)
loaded = _load_sharded(
model, optimizer, scheduler, checkpoint_dir, checkpointing_pg_metadata
)
elif checkpoint_type == CheckpointingMethod.LOCAL:
if tensor_parallel_degree > 1:
raise NotImplementedError("Local checkpointing unsupported with tensor parallelism")
loaded = _load_local(model, optimizer, scheduler, checkpoint_dir)
else:
raise NotImplementedError
load_time = time.process_time() - load_start
dist.barrier()
compute_stats_of_metric(load_time, "loading checkpoint (s)")
if dist.get_rank() == 0:
logger.info("Checkpoint loaded from %s.", checkpoint_dir)
if checkpoint_type == CheckpointingMethod.USE_PG_WITH_UTIL:
model = loaded[tsm_fsdp_checkpoint.EXPORT_KEY_MODEL]
optimizer = loaded[tsm_fsdp_checkpoint.EXPORT_KEY_OPTIMIZER]
scheduler = loaded[tsm_fsdp_checkpoint.EXPORT_KEY_SCHEDULER]
state_dict = loaded[tsm_fsdp_checkpoint.EXPORT_KEY_IDENTITY]
else:
state_dict = loaded
resume_from_sequence_number = backward_compat_get_resume_from_sequence_number(args, state_dict)
if dist.get_rank() == 0:
logger.info(
"Loaded state from disk: epoch %d, start_train_path_index %d, resume_from_sequence_number %d.",
state_dict["epoch"],
state_dict["start_train_path_index"],
resume_from_sequence_number,
)
return (
model,
optimizer,
scheduler,
state_dict["epoch"],
state_dict["total_steps"],
state_dict["start_train_path_index"],
resume_from_sequence_number,
)