From 4c83966871819efd32d54861ff9bfbb445e898a2 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Sat, 1 Aug 2020 11:29:09 +0200 Subject: [PATCH 01/13] Add files via upload numpy implementation for linear regression using tensorflow and a data file loaded into a pandas dataframe --- ...nsorFlow_pandasData_loaded_from_file.ipynb | 388 ++++++++++++++++++ 1 file changed, 388 insertions(+) create mode 100644 tensorflow_v2/notebooks/2_BasicModels/linear_regression_tensorFlow_pandasData_loaded_from_file.ipynb diff --git a/tensorflow_v2/notebooks/2_BasicModels/linear_regression_tensorFlow_pandasData_loaded_from_file.ipynb b/tensorflow_v2/notebooks/2_BasicModels/linear_regression_tensorFlow_pandasData_loaded_from_file.ipynb new file mode 100644 index 00000000..98d013f0 --- /dev/null +++ b/tensorflow_v2/notebooks/2_BasicModels/linear_regression_tensorFlow_pandasData_loaded_from_file.ipynb @@ -0,0 +1,388 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from __future__ import absolute_import, division, print_function" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "import tensorflow as tf\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "rng = np.random" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameters.\n", + "learning_rate = 0.000001\n", + "training_steps = 10000\n", + "display_step = 50" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# Training Data.\n", + "df=pd.read_csv('./linear_reg_exam_dataset.csv',usecols = [0,1],skiprows = [0],header=None)\n", + "d = df.values\n", + "data = np.float32(d)\n", + "\n", + "dataset = pd.DataFrame({'x': data[:, 0], 'y': data[:, 1]})\n", + "\n", + "\n", + "\n", + "Y = dataset['y'].values.tolist() # define the target variable (dependent variable) as y\n", + "X = dataset['x'].values.tolist()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "# Weight and Bias, initialized randomly.\n", + "W = tf.Variable(rng.randn(), name=\"weight\")\n", + "b = tf.Variable(rng.randn(), name=\"bias\")\n", + "\n", + "# Linear regression (Wx + b).\n", + "def linear_regression(x):\n", + " return W * x + b\n", + "\n", + "# Mean square error.\n", + "def mean_square(y_pred, y_true):\n", + " return tf.reduce_mean(tf.square(y_pred - y_true))\n", + "\n", + "# Stochastic Gradient Descent Optimizer.\n", + "optimizer = tf.optimizers.SGD(learning_rate)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Optimization process. \n", + "def run_optimization():\n", + " # Wrap computation inside a GradientTape for automatic differentiation.\n", + " with tf.GradientTape() as g:\n", + " pred = linear_regression(X)\n", + " loss = mean_square(pred, Y)\n", + "\n", + " # Compute gradients.\n", + " gradients = g.gradient(loss, [W, b])\n", + " \n", + " # Update W and b following gradients.\n", + " optimizer.apply_gradients(zip(gradients, [W, b]))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "step: 50, loss: 37.193291, W: 75.018303, b: -0.207481\n", + "step: 100, loss: 37.192348, W: 75.018303, b: -0.207177\n", + "step: 150, loss: 37.201679, W: 75.018303, b: -0.206872\n", + "step: 200, loss: 37.200729, W: 75.018303, b: -0.206567\n", + "step: 250, loss: 37.197868, W: 75.018303, b: -0.206262\n", + "step: 300, loss: 37.192211, W: 75.018303, b: -0.205958\n", + "step: 350, loss: 37.191154, W: 75.018303, b: -0.205653\n", + "step: 400, loss: 37.188828, W: 75.018303, b: -0.205348\n", + "step: 450, loss: 37.187111, W: 75.018295, b: -0.205043\n", + "step: 500, loss: 37.186165, W: 75.018295, b: -0.204739\n", + "step: 550, loss: 37.183731, W: 75.018295, b: -0.204434\n", + "step: 600, loss: 37.182785, W: 75.018295, b: -0.204129\n", + "step: 650, loss: 37.176594, W: 75.018295, b: -0.203825\n", + "step: 700, loss: 37.174267, W: 75.018295, b: -0.203520\n", + "step: 750, loss: 37.173210, W: 75.018295, b: -0.203215\n", + "step: 800, loss: 37.172844, W: 75.018295, b: -0.202910\n", + "step: 850, loss: 37.169983, W: 75.018295, b: -0.202606\n", + "step: 900, loss: 37.169041, W: 75.018295, b: -0.202301\n", + "step: 950, loss: 37.163284, W: 75.018295, b: -0.201996\n", + "step: 1000, loss: 37.162338, W: 75.018295, b: -0.201691\n", + "step: 1050, loss: 37.159481, W: 75.018295, b: -0.201387\n", + "step: 1100, loss: 37.158367, W: 75.018295, b: -0.201082\n", + "step: 1150, loss: 37.157314, W: 75.018295, b: -0.200777\n", + "step: 1200, loss: 37.154987, W: 75.018295, b: -0.200473\n", + "step: 1250, loss: 37.148796, W: 75.018295, b: -0.200168\n", + "step: 1300, loss: 37.147854, W: 75.018295, b: -0.199864\n", + "step: 1350, loss: 37.145416, W: 75.018295, b: -0.199560\n", + "step: 1400, loss: 37.144478, W: 75.018295, b: -0.199256\n", + "step: 1450, loss: 37.153324, W: 75.018288, b: -0.198951\n", + "step: 1500, loss: 37.151001, W: 75.018288, b: -0.198647\n", + "step: 1550, loss: 37.149944, W: 75.018288, b: -0.198342\n", + "step: 1600, loss: 37.144295, W: 75.018288, b: -0.198037\n", + "step: 1650, loss: 37.141434, W: 75.018288, b: -0.197733\n", + "step: 1700, loss: 37.140491, W: 75.018288, b: -0.197428\n", + "step: 1750, loss: 37.139267, W: 75.018288, b: -0.197123\n", + "step: 1800, loss: 37.138321, W: 75.018288, b: -0.196819\n", + "step: 1850, loss: 37.135460, W: 75.018288, b: -0.196515\n", + "step: 1900, loss: 37.129807, W: 75.018288, b: -0.196211\n", + "step: 1950, loss: 37.128754, W: 75.018288, b: -0.195907\n", + "step: 2000, loss: 37.126431, W: 75.018288, b: -0.195603\n", + "step: 2050, loss: 37.125526, W: 75.018288, b: -0.195300\n", + "step: 2100, loss: 37.124584, W: 75.018288, b: -0.194996\n", + "step: 2150, loss: 37.122147, W: 75.018288, b: -0.194692\n", + "step: 2200, loss: 37.121208, W: 75.018288, b: -0.194388\n", + "step: 2250, loss: 37.115025, W: 75.018288, b: -0.194084\n", + "step: 2300, loss: 37.112694, W: 75.018288, b: -0.193780\n", + "step: 2350, loss: 37.111641, W: 75.018288, b: -0.193476\n", + "step: 2400, loss: 37.110538, W: 75.018280, b: -0.193171\n", + "step: 2450, loss: 37.107681, W: 75.018280, b: -0.192866\n", + "step: 2500, loss: 37.106735, W: 75.018280, b: -0.192562\n", + "step: 2550, loss: 37.100975, W: 75.018280, b: -0.192258\n", + "step: 2600, loss: 37.100033, W: 75.018280, b: -0.191955\n", + "step: 2650, loss: 37.097748, W: 75.018280, b: -0.191651\n", + "step: 2700, loss: 37.106640, W: 75.018280, b: -0.191347\n", + "step: 2750, loss: 37.105698, W: 75.018280, b: -0.191043\n", + "step: 2800, loss: 37.103264, W: 75.018280, b: -0.190739\n", + "step: 2850, loss: 37.102322, W: 75.018280, b: -0.190435\n", + "step: 2900, loss: 37.096142, W: 75.018280, b: -0.190131\n", + "step: 2950, loss: 37.093815, W: 75.018280, b: -0.189827\n", + "step: 3000, loss: 37.092762, W: 75.018280, b: -0.189523\n", + "step: 3050, loss: 37.091797, W: 75.018272, b: -0.189219\n", + "step: 3100, loss: 37.088936, W: 75.018272, b: -0.188915\n", + "step: 3150, loss: 37.087997, W: 75.018272, b: -0.188611\n", + "step: 3200, loss: 37.082233, W: 75.018272, b: -0.188307\n", + "step: 3250, loss: 37.081291, W: 75.018272, b: -0.188003\n", + "step: 3300, loss: 37.078438, W: 75.018272, b: -0.187699\n", + "step: 3350, loss: 37.078072, W: 75.018272, b: -0.187395\n", + "step: 3400, loss: 37.077015, W: 75.018272, b: -0.187091\n", + "step: 3450, loss: 37.074696, W: 75.018272, b: -0.186787\n", + "step: 3500, loss: 37.068508, W: 75.018272, b: -0.186483\n", + "step: 3550, loss: 37.067566, W: 75.018272, b: -0.186179\n", + "step: 3600, loss: 37.065132, W: 75.018272, b: -0.185875\n", + "step: 3650, loss: 37.064194, W: 75.018272, b: -0.185571\n", + "step: 3700, loss: 37.062550, W: 75.018272, b: -0.185267\n", + "step: 3750, loss: 37.060226, W: 75.018272, b: -0.184963\n", + "step: 3800, loss: 37.059174, W: 75.018272, b: -0.184659\n", + "step: 3850, loss: 37.053528, W: 75.018272, b: -0.184355\n", + "step: 3900, loss: 37.050667, W: 75.018272, b: -0.184051\n", + "step: 3950, loss: 37.049744, W: 75.018272, b: -0.183747\n", + "step: 4000, loss: 37.058975, W: 75.018265, b: -0.183443\n", + "step: 4050, loss: 37.058041, W: 75.018265, b: -0.183139\n", + "step: 4100, loss: 37.055180, W: 75.018265, b: -0.182835\n", + "step: 4150, loss: 37.049530, W: 75.018265, b: -0.182531\n", + "step: 4200, loss: 37.048477, W: 75.018265, b: -0.182227\n", + "step: 4250, loss: 37.046158, W: 75.018265, b: -0.181923\n", + "step: 4300, loss: 37.044506, W: 75.018265, b: -0.181619\n", + "step: 4350, loss: 37.043571, W: 75.018265, b: -0.181315\n", + "step: 4400, loss: 37.041138, W: 75.018265, b: -0.181011\n", + "step: 4450, loss: 37.040195, W: 75.018265, b: -0.180707\n", + "step: 4500, loss: 37.034016, W: 75.018265, b: -0.180403\n", + "step: 4550, loss: 37.031693, W: 75.018265, b: -0.180099\n", + "step: 4600, loss: 37.030643, W: 75.018265, b: -0.179795\n", + "step: 4650, loss: 37.030273, W: 75.018265, b: -0.179491\n", + "step: 4700, loss: 37.027416, W: 75.018265, b: -0.179187\n", + "step: 4750, loss: 37.026482, W: 75.018265, b: -0.178883\n", + "step: 4800, loss: 37.020725, W: 75.018265, b: -0.178579\n", + "step: 4850, loss: 37.019787, W: 75.018265, b: -0.178275\n", + "step: 4900, loss: 37.016930, W: 75.018265, b: -0.177971\n", + "step: 4950, loss: 37.015915, W: 75.018257, b: -0.177667\n", + "step: 5000, loss: 37.014866, W: 75.018257, b: -0.177363\n", + "step: 5050, loss: 37.012543, W: 75.018257, b: -0.177059\n", + "step: 5100, loss: 37.006367, W: 75.018257, b: -0.176755\n", + "step: 5150, loss: 37.005421, W: 75.018257, b: -0.176451\n", + "step: 5200, loss: 37.002991, W: 75.018257, b: -0.176147\n", + "step: 5250, loss: 37.002094, W: 75.018257, b: -0.175843\n", + "step: 5300, loss: 37.011509, W: 75.018257, b: -0.175539\n", + "step: 5350, loss: 37.008656, W: 75.018257, b: -0.175235\n", + "step: 5400, loss: 37.007713, W: 75.018257, b: -0.174931\n", + "step: 5450, loss: 37.001961, W: 75.018257, b: -0.174627\n", + "step: 5500, loss: 37.001019, W: 75.018257, b: -0.174323\n", + "step: 5550, loss: 36.998165, W: 75.018257, b: -0.174019\n", + "step: 5600, loss: 36.997040, W: 75.018250, b: -0.173716\n", + "step: 5650, loss: 36.995983, W: 75.018250, b: -0.173412\n", + "step: 5700, loss: 36.993664, W: 75.018250, b: -0.173108\n", + "step: 5750, loss: 36.987488, W: 75.018250, b: -0.172804\n", + "step: 5800, loss: 36.986546, W: 75.018250, b: -0.172500\n", + "step: 5850, loss: 36.984116, W: 75.018250, b: -0.172196\n", + "step: 5900, loss: 36.983177, W: 75.018250, b: -0.171892\n", + "step: 5950, loss: 36.982277, W: 75.018250, b: -0.171588\n", + "step: 6000, loss: 36.979954, W: 75.018250, b: -0.171284\n", + "step: 6050, loss: 36.978905, W: 75.018250, b: -0.170980\n", + "step: 6100, loss: 36.973267, W: 75.018250, b: -0.170676\n", + "step: 6150, loss: 36.970406, W: 75.018250, b: -0.170372\n", + "step: 6200, loss: 36.969467, W: 75.018250, b: -0.170068\n", + "step: 6250, loss: 36.968250, W: 75.018250, b: -0.169764\n", + "step: 6300, loss: 36.967312, W: 75.018250, b: -0.169461\n", + "step: 6350, loss: 36.964458, W: 75.018250, b: -0.169158\n", + "step: 6400, loss: 36.958828, W: 75.018250, b: -0.168854\n", + "step: 6450, loss: 36.957783, W: 75.018250, b: -0.168551\n", + "step: 6500, loss: 36.955456, W: 75.018250, b: -0.168248\n", + "step: 6550, loss: 36.964516, W: 75.018242, b: -0.167945\n", + "step: 6600, loss: 36.963573, W: 75.018242, b: -0.167641\n", + "step: 6650, loss: 36.961143, W: 75.018242, b: -0.167337\n", + "step: 6700, loss: 36.960201, W: 75.018242, b: -0.167033\n", + "step: 6750, loss: 36.954033, W: 75.018242, b: -0.166729\n", + "step: 6800, loss: 36.951710, W: 75.018242, b: -0.166425\n", + "step: 6850, loss: 36.950665, W: 75.018242, b: -0.166121\n", + "step: 6900, loss: 36.949551, W: 75.018242, b: -0.165817\n", + "step: 6950, loss: 36.946701, W: 75.018242, b: -0.165514\n", + "step: 7000, loss: 36.945759, W: 75.018242, b: -0.165211\n", + "step: 7050, loss: 36.940014, W: 75.018242, b: -0.164908\n", + "step: 7100, loss: 36.939075, W: 75.018242, b: -0.164604\n", + "step: 7150, loss: 36.936218, W: 75.018242, b: -0.164301\n", + "step: 7200, loss: 36.935852, W: 75.018242, b: -0.163998\n", + "step: 7250, loss: 36.934799, W: 75.018242, b: -0.163695\n", + "step: 7300, loss: 36.932522, W: 75.018242, b: -0.163391\n", + "step: 7350, loss: 36.931587, W: 75.018242, b: -0.163088\n", + "step: 7400, loss: 36.925415, W: 75.018242, b: -0.162785\n", + "step: 7450, loss: 36.923100, W: 75.018242, b: -0.162482\n", + "step: 7500, loss: 36.922047, W: 75.018242, b: -0.162178\n", + "step: 7550, loss: 36.921040, W: 75.018234, b: -0.161875\n", + "step: 7600, loss: 36.918186, W: 75.018234, b: -0.161572\n", + "step: 7650, loss: 36.917248, W: 75.018234, b: -0.161269\n", + "step: 7700, loss: 36.911499, W: 75.018234, b: -0.160965\n", + "step: 7750, loss: 36.910561, W: 75.018234, b: -0.160662\n", + "step: 7800, loss: 36.907711, W: 75.018234, b: -0.160359\n", + "step: 7850, loss: 36.917118, W: 75.018234, b: -0.160056\n", + "step: 7900, loss: 36.916069, W: 75.018234, b: -0.159752\n", + "step: 7950, loss: 36.913750, W: 75.018234, b: -0.159449\n", + "step: 8000, loss: 36.907585, W: 75.018234, b: -0.159146\n", + "step: 8050, loss: 36.906639, W: 75.018234, b: -0.158843\n", + "step: 8100, loss: 36.904228, W: 75.018234, b: -0.158540\n", + "step: 8150, loss: 36.903290, W: 75.018234, b: -0.158236\n", + "step: 8200, loss: 36.900631, W: 75.018227, b: -0.157933\n", + "step: 8250, loss: 36.898315, W: 75.018227, b: -0.157630\n", + "step: 8300, loss: 36.897266, W: 75.018227, b: -0.157327\n", + "step: 8350, loss: 36.891628, W: 75.018227, b: -0.157023\n", + "step: 8400, loss: 36.888779, W: 75.018227, b: -0.156720\n", + "step: 8450, loss: 36.887840, W: 75.018227, b: -0.156417\n", + "step: 8500, loss: 36.887367, W: 75.018227, b: -0.156114\n", + "step: 8550, loss: 36.886425, W: 75.018227, b: -0.155810\n", + "step: 8600, loss: 36.883575, W: 75.018227, b: -0.155507\n", + "step: 8650, loss: 36.877937, W: 75.018227, b: -0.155204\n", + "step: 8700, loss: 36.876892, W: 75.018227, b: -0.154901\n", + "step: 8750, loss: 36.874569, W: 75.018227, b: -0.154597\n", + "step: 8800, loss: 36.872936, W: 75.018227, b: -0.154294\n", + "step: 8850, loss: 36.872002, W: 75.018227, b: -0.153991\n", + "step: 8900, loss: 36.869728, W: 75.018227, b: -0.153688\n", + "step: 8950, loss: 36.868675, W: 75.018227, b: -0.153384\n", + "step: 9000, loss: 36.863178, W: 75.018219, b: -0.153081\n", + "step: 9050, loss: 36.860329, W: 75.018219, b: -0.152778\n", + "step: 9100, loss: 36.859390, W: 75.018219, b: -0.152475\n", + "step: 9150, loss: 36.868675, W: 75.018219, b: -0.152172\n", + "step: 9200, loss: 36.867737, W: 75.018219, b: -0.151868\n", + "step: 9250, loss: 36.864887, W: 75.018219, b: -0.151565\n", + "step: 9300, loss: 36.859253, W: 75.018219, b: -0.151262\n", + "step: 9350, loss: 36.858208, W: 75.018219, b: -0.150959\n", + "step: 9400, loss: 36.855892, W: 75.018219, b: -0.150655\n", + "step: 9450, loss: 36.854252, W: 75.018219, b: -0.150352\n", + "step: 9500, loss: 36.853313, W: 75.018219, b: -0.150049\n", + "step: 9550, loss: 36.850887, W: 75.018219, b: -0.149746\n", + "step: 9600, loss: 36.849945, W: 75.018219, b: -0.149442\n", + "step: 9650, loss: 36.843784, W: 75.018219, b: -0.149139\n", + "step: 9700, loss: 36.841476, W: 75.018219, b: -0.148836\n", + "step: 9750, loss: 36.840431, W: 75.018219, b: -0.148533\n", + "step: 9800, loss: 36.840061, W: 75.018219, b: -0.148229\n", + "step: 9850, loss: 36.837215, W: 75.018219, b: -0.147926\n", + "step: 9900, loss: 36.836273, W: 75.018219, b: -0.147623\n", + "step: 9950, loss: 36.830936, W: 75.018211, b: -0.147320\n", + "step: 10000, loss: 36.830002, W: 75.018211, b: -0.147016\n" + ] + } + ], + "source": [ + "# Run training for the given number of steps.\n", + "for step in range(1, training_steps + 1):\n", + " # Run the optimization to update W and b values.\n", + " run_optimization()\n", + " \n", + " if step % display_step == 0:\n", + " pred = linear_regression(X)\n", + " loss = mean_square(pred, Y)\n", + " print(\"step: %i, loss: %f, W: %f, b: %f\" % (step, loss, W.numpy(), b.numpy()))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD4CAYAAADsKpHdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZyNdfvA8c9lZhj72GMGY2sxQkzaVcYy06YFqZRKeRoyenrCINJO9eRn71FiMEIknkLZyiOiUdlTRAyyr9lmxvX749yj45yDGTNmOXO9X6/zmnO+577u8/2Omutc9/29v7eoKsYYY0yh3O6AMcaYvMESgjHGGMASgjHGGIclBGOMMYAlBGOMMY7A3O7ApSpfvryGh4fndjeMMSZfWbly5T5VreDrvXybEMLDw0lKSsrtbhhjTL4iIn+c7z07ZGSMMQawhGCMMcZhCcEYYwyQj88h+JKSkkJycjInT57M7a4YIDg4mLCwMIKCgnK7K8aYDPCrhJCcnEzJkiUJDw9HRHK7OwWaqrJ//36Sk5OpUaNGbnfHGJMBfnXI6OTJk5QrV86SQR4gIpQrV86qNWOyS2IilC8PIq5H+fKutmzkVxUCYMkgD7F/C2OySUQErF9/btv+/fD0067njz2WLR/jVxWCMcb4lcREVzXgJIMTgUV4+/YnSS7lXFd2+jT07ZttH2cJIZslJyfTunVr6tSpQ61atejevTunT5/2ue3OnTtp06bNRfd51113cejQoUvqz4ABA3jvvfcuul2JEiUu+P6hQ4cYOXLkJfXBGHMJIiKgQ4ezL5dWu5ZWTw/nPze2YVHNyL+327Yt2z6yYCeExEQID4dChVw/s3g8TlV58MEHuf/++/ntt9/49ddfOXbsGH19ZPDU1FSqVKnCtGnTLrrf2bNnExISkqW+ZZUlBGNyiEdVcKRwMXq3ep5HH3mbQqpMnhTP4z/P+Xv7atWy7aMLbkJITITOneGPP0DV9bNz5ywlhYULFxIcHMxTTz0FQEBAAIMHD+bjjz/m+PHjjBs3jrZt23LvvffSsmVLtm7dSr169QA4fvw47dq1o379+jz88MPccMMNZ5fmCA8PZ9++fWzdupVrrrmGZ599loiICFq2bMmJEycA+PDDD7n++utp0KABDz30EMePH79gX7ds2cJNN93E9ddfT79+/c62Hzt2jKioKBo1asS1117LzJkzAYiPj2fz5s00bNiQHj16nHc7Y0wWeFQF82o3ocUzo5hSvwX/+H4ac8c+z43b154b8+ab2ff5qpovH40bN1ZP69ev92o7r+rVVV2p4NxH9eoZ34eHIUOG6AsvvODV3rBhQ121apWOHTtWQ0NDdf/+/aqqumXLFo2IiFBV1XfffVc7d+6sqqpr1qzRgIAA/eGHH5yuVte9e/fqli1bNCAgQH/66SdVVW3btq1OmDBBVVX37dt39vP69u2rQ4cOVVXVV155Rd99912vPt17772akJCgqqrDhw/X4sWLq6pqSkqKHj58WFVV9+7dq7Vq1dIzZ86c09cLbecpU/8mxhRUEyee83dob7HS2vW+nlq91xfa6qlhuuqK2r7/XkVFZfqjgCQ9z99Vv5tllGHnO+6WheNxqupzZo17e4sWLShbtqzXNkuWLKF79+4A1KtXj/r16/v8jBo1atCwYUMAGjduzNatWwFYu3YtL7/8MocOHeLYsWO0atXqgn397rvvmD59OgCPP/44vXr1OtvXPn36sHjxYgoVKsSOHTvYvXu3zzH52u6KK6644OcaYzy4zSBSYGbdO3g16ln+KlyMfy2ewD+WT6fwmVTvuKgomD8/W7tScA8Zne+4WxaOx0VERHitwHrkyBG2b99OrVq1AChevLjPWFfivrgiRYqcfR4QEEBqqus/lCeffJLhw4ezZs0aXnnllQzN//eVvBITE9m7dy8rV67k559/plKlSj73ldHtjDHn0aXLOecKdpYsT6eH+vPCvS8RfnAXX46Lo9uyKd7JICAAJk7M9mQABTkhvPkmFCt2bluxYlk6HhcVFcXx48cZP348AGlpafzrX//iySefpJjnZ3m49dZbmTp1KgDr169nzZo1mfrso0ePUrlyZVJSUkjMwHmQW265hcmTJwOcs/3hw4epWLEiQUFBLFq0iD/+cK2UW7JkSY4ePXrR7YwxGRAaCqNGAXAGYWLDGFp2GsmyavXpP3800xJ7Umf/du+42FhITc226w48FdyE8NhjMHo0VK/uytLVq7teZ+EXLSLMmDGDTz/9lDp16nDllVcSHBzMW2+9ddHYLl26sHfvXurXr8+gQYOoX78+pUuXzvBnv/7669xwww20aNGCq6+++qLbDxkyhBEjRnD99ddz+PDhs+2PPfYYSUlJREZGkpiYeHZf5cqV45ZbbqFevXr06NHjvNsZYy4gvSrYuROALWWq0P6Rt3i5VVca7trI1x935emVswjQM+fGhYS4zhpc5pl+ktFDFXlNZGSkeh6e2bBhA9dcc00u9Shr0tLSSElJITg4mM2bNxMVFcWvv/5K4cKFc7trWZKf/02MyVahoWcTQaoU4qPrH2DwrY9SOC2FfgvH0HbNPHxe2x8bm62JQERWqmqkr/cK7knlPOb48ePceeedpKSkoKqMGjUq3ycDYwyuqsA5PASwvkINesXEsaZyHVr+uozX542i0rED3nEhIXDwYA52NAMJQUSuAqa4NdUE+gPjnfZwYCvQTlUPOjG9gU5AGhCnql857Y2BcUBRYDbQXVVVRIo4+2sM7AceVtWtWR5dPlKyZEm7Jagx/qZMGXBWGTgVEMjwm9sz6oY2hJw8yojP3+aujd/lSFWQURc9h6CqG1W1oao2xPUH+zgwA4gHFqhqHWCB8xoRqQu0ByKAaGCkiAQ4uxsFdAbqOI9op70TcFBVawODgUHZMzxjjMkF6ecKnGSwssrV3P3kUIbd3J771n/LvI+6cLevZFClSo6cKzifzJ5UjgI2q+ofQGsgwWlPAO53nrcGJqvqKVXdAmwCmohIZaCUqi5zLo4Y7xGTvq9pQJTYUpnGmPwmfdkJ5xDR8aAivBr1LG06vMOJoGDGTe3P+7MHU+bkUe/Y2FjYsSOHO3yuzJ5DaA984jyvpKq7AFR1l4hUdNpDge/dYpKdthTnuWd7esx2Z1+pInIYKAfsc/9wEemMq8KgWjau32GMMVnmsUT1kuoNiI/uRnLIFTyx8gt6Lk6gxOkT3nFVquR6IkiX4QpBRAoD9wGfXmxTH216gfYLxZzboDpaVSNVNbJChQoX6YYxxuQAjwvMDhcpTs+YODq0f5PCaalMTezFa/M/8J0M8kBV4C4zh4xigB9VNX0dg93OYSCcn3uc9mSgqltcGLDTaQ/z0X5OjIgEAqUBH6fd876AgAAaNmx49rF161ZuvvlmALZu3cqkSZPObvvzzz8ze/bsTH/GHXfc4fMEtHt7VpbMNsZkkNsFZgBz69xE82dGMb1eFLHLPmX22G40SV7nHVe3bq6eKzifzCSER/j7cBHALKCj87wjMNOtvb2IFBGRGrhOHq9wDi8dFZEbnfMDT3jEpO+rDbBQ8+kFEkWLFuXnn38++wgPD2fp0qVA9iWEjMgLS2Yb47c8LjDbWyyErq178dyDfanw10Fmjn+RXosTCE5LOTdOxLXsxDofSSIPyNA5BBEpBrQA/uHWPBCYKiKdgG1AWwBVXSciU4H1QCrQVVXTnJhY/p52Osd5AIwBJojIJlyVQfssjCnPKVGiBMeOHSM+Pp4NGzbQsGFDHnnkEUaMGMGJEydYsmQJvXv35p577qFbt26sWbOG1NRUBgwYQOvWrTlx4gRPPfUU69ev55prrjm75PWFhIeHk5SUxLFjx4iJieHWW29l6dKlhIaGMnPmTIoWLcrmzZvp2rUre/fupVixYnz44Yd2xbExF+M2lVSBzyKa8VrUs5wICqbHtwl0XvEZQWfSvOPq1s2ziSBdhhKCqh7HdZLXvW0/rllHvrZ/E/BaFEhVk4B6PtpP4iSU7PLqf9exfueR7NwldauU4pV7Iy64zYkTJ86uRlqjRg1mzJhx9r2BAwfy3nvv8cUXXwBQqVIlkpKSGD58OAB9+vShWbNmfPzxxxw6dIgmTZrQvHlz/vOf/1CsWDFWr17N6tWradSoUab6/dtvv/HJJ5/w4Ycf0q5dO6ZPn06HDh3o3LkzH3zwAXXq1GH58uV06dKFhQsXZmrfxhQYHheY7ShZgT7RXfm2ZiSNk9czaM5Qah9I9o4TgQkTLtv6Q9nJrlTOZumHjC7F119/zaxZs87e8vLkyZNs27aNxYsXExcXB0D9+vXPuzT2+fhaMvvYsWMsXbqUtm3/zsOnTp26pH4b4/fcqoIzCBOvu4tBt3dERXh13gc8/uOXFPKeB5NrF5hdKr9NCBf7Jp8XqSrTp0/nqquu8novK5dleC6ZfeLECc6cOUNISMglJy9jCgSPqmBz2VDio+P4oWoEt235kbfmDqfqkT3ecXloKmlmFNzVTnOB5xLSnq9btWrFsGHDzt4b4aeffgKgadOmZ5eoXrt2LatXr85yX0qVKkWNGjX49FPXLGJVZdWqVVnerzF+ITHRda91JxmkFApg5A1tiHlqGL+Wr8Z7X77P+Kn9fSeDPDaVNDMsIeSg+vXrExgYSIMGDRg8eDB33nkn69evp2HDhkyZMoV+/fqRkpJC/fr1qVev3tl7HcfGxnLs2DHq16/PO++8Q5MmTbKlP4mJiYwZM4YGDRoQERFh90U2BqB5c9d9jZ0vZmsr1uT+x//NO3c8SdTmH5g3JpY2axd6XzyVR6eSZoYtf20uK/s3MflGYiI8/vjZRHAyIIhhN7fngxvbUOb4EV6fN4qYX5d6x+Wjk8Zgy18bY8yFNW8OCxacfZkUeg09Y+L4vVxV2q6eR99FYwg5ecw7Lh9MJc0MSwjGmILLoyo4Vrgo7zZ9gvGN7qbKkb2Mn9KPplt/8o7LZ1VBRvldQlDVLM3IMdknvx6ONAWEx2J039ZoRJ9Wz7OzVHk6rvyCHovHUzzlpHecn1UF7vwqIQQHB7N//37KlStnSSGXqSr79+8nODg4t7tizLkSE10njR2HgkvwerNnmH5tc2rt386nib2I3LHBO85PqwJ3fpUQwsLCSE5OZu/evbndFYMrQYeFhV18Q2NyikdVMOfKm+nXIpaDxUrx/NLJPL90ivf6Q+DXVYE7v0oIQUFB1KhRI7e7YYzJazyqgj3Fy9C/xXPMveoW6v25iYRP+xOxZ4t3XAGoCtz5VUIwxphzJCZCx46Q5lpsToFp9aJ4PepZTgYWptc3Y3l2xQwC9Yx3bAGpCtxZQjDG+CePqaTbS1WkT/Tz/K9GI5psX8vAOUOpeXCnd1xAACQkFJiqwJ0lBGOMf/GYSpomhRjf6G7ebfoEosrrX4/ksZ/m+F6MLioK5s/P4Q7nHZYQjDH+w6Mq2FQujF7RcawMq8vtvyfx1twRhB71MemkAFcF7iwhGGPyP4+qIKVQAP+54SGG3vwIxVJO8P4X/+aBdYt83ry9oFcF7iwhGGPyN4+ppGsq1aJnTHc2VKrJ3RsWM2D+aCoc93F/casKvFhCMMbkTx5TSU8GFub/bnmED5s8SLm/DvGfz96g1W/f+47NZzeuySkZvadyCPARrttfKvA0sBGYAoQDW4F2qnrQ2b430AlIA+JU9SunvTF/31N5NtBdVVVEigDjgcbAfuBhVd2aHQM0xvghj6pgeVgE8TFxbCkbysOrvqLPoo8pfeov77gCOJU0MzJ6P4QhwFxVvRpoAGwA4oEFqloHWOC8RkTqAu2BCCAaGCkiAc5+RgGdgTrOI9pp7wQcVNXawGBgUBbHZYzxR4mJrovFnGRwtHBR+rV4jocfG0RqoQASJ/dl0Nxh3slABCZOtGRwERetEESkFNAUeBJAVU8Dp0WkNXCHs1kC8A3QC2gNTFbVU8AWEdkENBGRrUApVV3m7Hc8cD8wx4kZ4OxrGjBcRERtdTRjTDqPqmBRzcb0bdWVXSXL8/QPn/PS/yZQLMXHfcGtKsiwjFQINYG9wFgR+UlEPhKR4kAlVd0F4Pys6GwfCmx3i0922kKd557t58SoaipwGCjn2RER6SwiSSKSZOsVGVNAeFQFB4NL8uLdL/JU21cpfvoE0yf2oP/Cj7yTQUCAVQWZlJFzCIFAI6Cbqi4XkSE4h4fOw9fMLr1A+4Vizm1QHQ2MBtcd0y7UaWOMH3CrChT48upbeaX5cxwOLkHcd5PoumwqRdJSveNsKuklyUiFkAwkq+py5/U0XAlit4hUBnB+7nHbvqpbfBiw02kP89F+ToyIBAKlgQOZHYwxxk906XJOVbC7RFk6P9CX51vHE3pkD/9NeIEXl0zyTgbpVYElg0ty0QpBVf8Uke0icpWqbgSigPXOoyMw0PmZfof2WcAkEXkfqILr5PEKVU0TkaMiciOwHHgCGOYW0xFYBrQBFtr5A2MKqNBQ2On6rqjA1PoteOPOTpwOCKLPojE8/cNM34vRWVWQZRm9DqEbkCgihYHfgadwVRdTRaQTsA1oC6Cq60RkKq6EkQp0VdU0Zz+x/D3tdI7zABgDTHBOQB/ANUvJGFOQdOkCo0adfbmtdCXio+NYGt6AG7atYdCcoYQf2uUdZxeYZRvJr1/EIyMjNSkpKbe7YYzJDm5VQZoUYlzje3jvticI0DP0XvQxj6z6yvdidHaBWaaJyEpVjfT1nl2pbIzJPR5Vwa/lq9EzJo6fq1xNs00rePPrEVQ+ut87LiQEDh7MwY4WDJYQjDG5o0wZOORaY+h0oUBG3diG4Tc/TIlTxxky613u2/Ct78XorCq4bCwhGGNylscS1auuqEOvmDh+qViD+9Z/wyvzR1PuxBHvuCpVYMeOHOxowWMJwRiTMzwWozsRWITBtz7KR9ffT8W/DvLRtNdovnmF71irCnKEJQRjzOXnsezEsqrX0ju6G1vLVuGRn+fQe9FYSp0+7h1nVUGOyujidsYYk3keF5gdKVyMPi278sijb6MCkz7pzdtfjfCdDGJjLRnkMKsQjDGXh9tUUoAFta6nb6uu7ClehmdXfMaL/0ukaKotRpeXWIVgjMle6VWBkwz2Fy1F3L0v0anNK5Q+eYzPJvag76KPvZOBLVGd66xCMMZkH49lJ2Zd05RXm/+Do0WK8c//TST2+2kUPmOL0eVVlhCMMVnncYHZrpLleLllVxbUbkKDnRt5Z85Qrtr3h3ecXWCWp1hCMMZkjdsFZmcQJjdoydt3Pk1KoQBeXvAhT638LwG+FqOzqaR5jiUEY8yl8agKtoZUJj66G99Xr89Nf6xi4NxhVD/0p3ecTSXNsywhGGMyz60qSJVCjI1szb9ve4ygM2kMnDOUh1d/bctO5EOWEIwxGedRFfxSvjq9YrqzqsqVNP/te974ehRXHPOxGJ1VBfmCJQRjzMUlJsLjj4OzXP6pgEBG3NSOkTe2o/TJYwybOYh7fvmfVQX5nCUEY8yFeSxG91PlK+kV051fK1TngbUL6bfwI8r6WozOLjDLdywhGGN886gKjgcV4d+3Pc7HkfdxxdH9fPzpAJr97uMmVSIwYYLdwSwfylBCEJGtwFEgDUhV1UgRKQtMAcKBrUA7VT3obN8b6ORsH6eqXzntjfn7Fpqzge6qqiJSBBgPNAb2Aw+r6tZsGaExJvM8qoKl1eoTH92NbWUq0+HHL+n17ThKnj7hHWdVQb6WmaUr7lTVhm63XosHFqhqHWCB8xoRqYvrnsgRQDQwUkQCnJhRQGegjvOIdto7AQdVtTYwGBh06UMyxlyyxEQoVOhsMjhcpDjx0d149JG3CNAzTJ4UzxvzRnknA1t2wi9k5ZBRa+AO53kC8A3Qy2mfrKqngC0isglo4lQZpVR1GYCIjAfuB+Y4MQOcfU0DhouIaH694bMx+ZHHEtVf176Bl1t2YV/xEP7x/TT++d0kglNPe8dZVeA3MlohKPC1iKwUkc5OWyVV3QXg/KzotIcC291ik522UOe5Z/s5MaqaChwGynl2QkQ6i0iSiCTt3bs3g103xlyQxxLV+4qV5vn7etL5oX6UPXGEzyf8i97fjvNOBlYV+J2MVgi3qOpOEakIzBORXy6wra+ZZ3qB9gvFnNugOhoYDRAZGWnVgzFZ4XHSWIHP697Bq807czyoKP9aPIHnlk8j6Eyad6xVBX4pQwlBVXc6P/eIyAygCbBbRCqr6i4RqQzscTZPBqq6hYcBO532MB/t7jHJIhIIlAYOXNqQjDEX5XHSeGfJ8vRt1ZVFta7nuh2/8M6cIdTZv907zmYQ+bWLHjISkeIiUjL9OdASWAvMAjo6m3UEZjrPZwHtRaSIiNTAdfJ4hXNY6aiI3CgiAjzhEZO+rzbAQjt/YMxl4HHS+AzChIYxtOw0ku+rXkv/+aOZltjTdzKoWxfOnLFk4McyUiFUAma4/oYTCExS1bki8gMwVUQ6AduAtgCquk5EpgLrgVSgq6qm15yx/D3tdI7zABgDTHBOQB/ANUvJGJOdPKqC38tUIT4mjhVV63Hr1p94e+5wqh7e7R0XEAAJCZYICgDJr1/EIyMjNSnJx0UxxphzeZwrSJVCfHT9Awy+9VGKpKXw8sKPaLtmvu9lJ+zGNX5HRFa6XT5wDrtS2Rh/5jGVdH2FGvS8qztrr6hNq41LeX3eKCr+5eMGNYGBMG6cVQUFjCUEY/xRYiJ06HD25amAQIbf3J5RN7Qh5ORRRn7+NjEbv/OuCuykcYFmCcEYf+NRFawMvZpe0XFsKl+NB9csoN/Cjyhz8qh3nE0lLfAsIRjjLzyqgr+Cgnm36RMkNL6HKkf2MW5qf+7Y8qN3nFUFxmEJwRh/4FEV/C+8Ib1bPU9yyBV0XPlfeiweTwlbjM5chCUEY/Izj6rgcJHivNHsGT6t34Ka+7fz6cSeXL9jvXecTSU1PlhCMCa/8qgK5ta5iX4tYzlQrDRdlk0l7rtPCE5L8Y6zqaTmPCwhGJPfeFQFe4qHMKD5c8y++lbq7t7M2GmvUm/3Zu84qwrMRVhCMCY/casKFJherxmvN3uWE0FF6PFtAp1XfOZ7MTqrCkwGWEIwJj/o0gVGjTr7MrlUBfq0ep7FNRsTmbyOgXOGUftAsnecVQUmEywhGJPXhYbCTtfCwGcQJjS6m0G3u9aCfHXeBzz+45cU8l4tHmJjYeTInOypyecsIRiTV3lUBZvLhtIrJo6ksAia/r6St74aTtgRHzeKCgmBgz6WozDmIiwhGJPXeCxGl1IogNFNHmTILY9QNOUU7335Pg+tXeh7MTqrCkwWWEIwJi/xmEq6tmJNet7VnfWVanHXL0sYMP8DKv51yDvOqgKTDTJ6T2VjzOWUmHjOfY1PBgQxqGlHWncczJ7iZflgxpuMnDnQdzKIjbVkYLKFVQjG5DaPquCH0Lr0ionj93JhtF09j5cXfkTpU395x1WpAjt25GBHjb+zCsGY3OJRFRwrXJT+zZ+jbYd3OB0QyIQpL/PunCG+k0FsrCUDk+0yXCGISACQBOxQ1XtEpCwwBQgHtgLtVPWgs21voBOQBsSp6ldOe2P+voXmbKC7qqqIFAHGA42B/cDDqro1G8ZnTN7kURV8W6MRfVo9z85S5XkyaRY9Fo+neMpJ7zirCsxllJkKoTuwwe11PLBAVesAC5zXiEhdXPdEjgCigZFOMgEYBXQG6jiPaKe9E3BQVWsDg4FBlzQaY/K6Ll3OqQoOBZfgxbv+Scd2rxGceoppiT0ZsGC072RgVYG5zDJUIYhIGHA38CbwotPcGrjDeZ4AfAP0ctonq+opYIuIbAKaiMhWoJSqLnP2OR64H5jjxAxw9jUNGC4iovn1hs/G+OJ2gZkCc666hf4tnuNQcEmeXzqZ55dO8b0YnU0lNTkko4eM/g/oCZR0a6ukqrsAVHWXiFR02kOB7922S3baUpznnu3pMdudfaWKyGGgHLAv40MxJo/yuMBsT/Ey9GsRy1dX3Uy9PzeRMLU/EXu2eMfZVFKTwy6aEETkHmCPqq4UkTsysE9f18voBdovFOPZl864DjlRrVq1DHTFmFzmURV8em1z3mj2DKcCgohfNJZnfphBoJ7xjrOqwOSCjFQItwD3ichdQDBQSkQmArtFpLJTHVQG9jjbJwNV3eLDgJ1Oe5iPdveYZBEJBEoDBzw7oqqjgdEAkZGRdjjJ5F0eVcH20pXoHf08S8Kvo8n2tQycM5SaB3d6x1lVYHLRRU8qq2pvVQ1T1XBcJ4sXqmoHYBbQ0dmsIzDTeT4LaC8iRUSkBq6Txyucw0tHReRGERHgCY+Y9H21cT7D/uCb/KlMmbPJIE0KMbbxvbR8egQ/Vb6K178aweRJvX0nA7vAzOSyrFyYNhCYKiKdgG1AWwBVXSciU4H1QCrQVVXTF2iP5e9pp3OcB8AYYIJzAvoArsRjTP7iURVsKhdGz5ju/Bh6DXdsTuLNr0YQetTHYnQ2ldTkEZJfv4hHRkZqUlJSbnfDGJ+L0X1wQxuG3dyeYikneGX+aO5f/40tRmfyBBFZqaqRvt6zpSuMyYrmzWHBgrMv11SqRY+7XuCXijW4Z8NiBsz/D+WPH/aOs6rA5EGWEIy5FB5VwcnAwgy+5VE+bPIA5f86xOjpr9Ny03LfsVYVmDzKEoIxmeVRFSwPiyA+Jo4tZUNpv+orei/62Pf6Q3Xrwrp1OdhRYzLHEoIxGeVRFRwtXJRBtz/JxEZ3U/XQnyRO7sstf6zyjhOBCRPsvsYmz7OEYExGeCxGt6hmJH1adeXPkuXo9MPn/Ot/EyiWcso7zqoCk49YQjDmQjymkh4oWorXop7l84g7qbPvD6ZPHEijnRu946wqMPmQJQRjzqdMGTjkukOZAl9cfRsDmv+Dw8EliPtuEl2XTaVIWqp3nFUFJp+yhGCMJ4+qYHeJsvRt2YX5dW6k/q5fSZzcl6v3/eEdZ1WByecsIRiTzuOksQJT6rfkzTuf5nRAEH0XjuGppJm+F6OzqsD4AUsIxoDXVNJtpSsRHx3H0vAG3LBtDYPmDCX80C7vuIAASEiwqsD4BUsIpmDzqArSF6N7r+njBJ45w1tzh9F+1dcU8l6NHaKiYP78HChbd1UAABfBSURBVO6wMZePJQRTcHlUBRvLV6dnTByrqlxFs00rePPrEVQ+ut87LjAQxo2zqsD4HUsIpuDxqApOFwpk5E1tGXFTO0qeOs6QWe9w34bF3ovR2Ulj4+csIZiCxeMCs1VX1KHnXd3ZWCGc1uu+of+C0ZQ7ccQ7zk4amwLAEoIpGBIToUOHsy9PBBbh/dseY0xkayr+dZCPpr1G880rvOOsKjAFiCUE4/88qoKl1a6ld3Q3/ihThUd/mkP8N2Mpdfq4d5xVBaaAsYRg/JdHVXCkcDHevvMpPmkYQ/WDO5n0SW9u3rbGO86qAlNAWUIw/smjKphfqwl9W3Vlb/EQOi+fzj+XTKJoqi1GZ4y7QhfbQESCRWSFiKwSkXUi8qrTXlZE5onIb87PMm4xvUVkk4hsFJFWbu2NRWSN895QERGnvYiITHHal4tIePYP1RQIiYmub/hOMthftBRx977EM236U+bEEWZMeIk+34z1TgYBATBxoiUDU6BlpEI4BTRT1WMiEgQsEZE5wIPAAlUdKCLxQDzQS0TqAu2BCKAKMF9ErlTVNGAU0Bn4HpgNRANzgE7AQVWtLSLtgUHAw9k6UuP/3KoCBWZdczsDmnfmWJFi/PN/E4n9fhqFz/hYjM4uMDMGyECFoC7HnJdBzkOB1kCC054A3O88bw1MVtVTqroF2AQ0EZHKQClVXaaqCoz3iEnf1zQgKr16MOaiPKqCXSXL8cxD/el+Xw+qH9rFl+O6033pZO9kkF4VWDIwBsjgOQQRCQBWArWBEaq6XEQqqeouAFXdJSIVnc1DcVUA6ZKdthTnuWd7esx2Z1+pInIYKAfs8+hHZ1wVBtWqVcvoGI0/c6sKziB80qAVb9/5NKmFCvHygg95auV/CfC1GJ1VBcZ4yVBCcA73NBSREGCGiNS7wOa+vtnrBdovFOPZj9HAaIDIyEgfi8uYAsNjieotZaoQH92N5dWu5eatqxg4dyjVDu/2jrPF6Iw5r0zNMlLVQyLyDa5j/7tFpLJTHVQG9jibJQNV3cLCgJ1Oe5iPdveYZBEJBEoDBzI5FlMQeCw7kSqF+Pj61vz71g4UTkth0JwhtFs9z+c3DGJjYeTIHO2uMfnJRROCiFQAUpxkUBRojuuk7yygIzDQ+TnTCZkFTBKR93GdVK4DrFDVNBE5KiI3AsuBJ4BhbjEdgWVAG2Chc57BmL95TCXdUCGcXjFxrK58JS1+XcYb80ZR6ZiP7xEhIXDwYA521Jj8KSMVQmUgwTmPUAiYqqpfiMgyYKqIdAK2AW0BVHWdiEwF1gOpQFfnkBNALDAOKIprdtEcp30MMEFENuGqDNpnx+CMn/C4wOxUQCAjbmrHyBvbUfrkMYbPHMjdvyyxqsCYLJL8+kU8MjJSk5KScrsb5nLzqAp+rHIVvWLi+K18dR5Yu5D+Cz6kzMmj3nFWFRjjk4isVNVIX+9ddNqpMbnCYyrp8aAivNbsGR7q8C7HChdj7KcDGPzl+76TQWysJQNjLoEtXWHyHo+q4LvqDYiP7sb2kCvo8OOX9Pp2HCVPn/COq1IFduzIwY4a41+sQjB5R5cu51QFh4sUp1d0Nx5r/yaBZ9KYktiLN+aN8p0MYmMtGRiTRVYhmLwhNBR27jz78uvaN/Byyy7sLx7Cc99/ygvffUJw6mnvODtpbEy2sYRgcpfHBWZ7i4UwoHlnvrymKdfs/p0x01/j2t2bvePspLEx2c4Sgsk9blWBAjMi7uS1qGc5HlSUlxaP5x/LpxN0Js07zqoCYy4LSwgm53lUBTtKVqBvq658UyuSRjs28M6cIdTen+wdZ1WBMZeVJQSTs8qUgUOHANdidInXxTDw9ic5I4V4Zf5/eOLHL30vRmdVgTGXnSUEkzM8qoLfy1QhPiaOFVXrcduWH3nrqxFU9bUYnU0lNSbHWEIwl59bVZAqhfiwyQMMvvUxglNP8+6Xg2mzdoEtO2FMHmAJwVw+HlXB+go16HlXd9ZeUZtWG5fy+rxRVPzLxzkBqwqMyRWWEEz281ii+mRAEMNvfpgPbmhDyImjjJrxFjG/LvUda1WBMbnGEoLJXs2bw4IFZ1+uDL2anjHd2VyuKg+tmU+/hR8RcvKYd1zdunaDe2NymSUEkz08qoK/goJ5t+kTJDS+hypH9pEwtT+3b/nRO04EJkywO5gZkwdYQjBZ57EY3eLw6+gd/Tw7S1XgiR+/pMfi8ZTwtf6QVQXG5CmWEMyl8zhpfLhIcV6PeoZp17ag5v7tTE2M5/od673jrCowJk+yhGAujdtUUoC5V95EvxaxHChWmi7LphL33ScEp6V4x1lVYEyeddHlr0WkqogsEpENIrJORLo77WVFZJ6I/Ob8LOMW01tENonIRhFp5dbeWETWOO8NFRFx2ouIyBSnfbmIhGf/UE22SF+i2kkGe4qHEHt/b557oC8V/jrIzIR/0nPxeO9kIAITJ1oyMCYPy0iFkAr8S1V/FJGSwEoRmQc8CSxQ1YEiEg/EA71EpC6ueyJHAFWA+SJypXNf5VFAZ+B7YDYQjeu+yp2Ag6paW0TaA4OAh7NzoCYbuFUFCkyrF8UbzZ7hRFARenybQOcVn/lejM6qAmPyhYtWCKq6S1V/dJ4fBTYAoUBrIMHZLAG433neGpisqqdUdQuwCWgiIpWBUqq6TF03ch7vEZO+r2lAVHr1YPIAj6pge6mKPNHuNXrc/U/q7N/G7LFxdP3+U+9kYFWBMflKps4hOIdyrgOWA5VUdRe4koaIVHQ2C8VVAaRLdtpSnOee7ekx2519pYrIYaAcsM/j8zvjqjCoVq1aZrpuLoXHVNIzCOMb3c07t3dEVHnt61F0+Gk2hVDv2KgomD8/hztsjMmKDCcEESkBTAdeUNUjF/gC7+sNvUD7hWLObVAdDYwGiIyM9PFXyGQbjwvMNpUNIz6mG0lhETT9fSVvfTWcsCN7vePs8JAx+VaGEoKIBOFKBomq+pnTvFtEKjvVQWVgj9OeDFR1Cw8DdjrtYT7a3WOSRSQQKA0cuITxmKzyqApSCgUwusmDDLnlUYqmnOTfX7zPg+sWemdwm0pqTL530YTgHMsfA2xQ1ffd3poFdAQGOj9nurVPEpH3cZ1UrgOsUNU0ETkqIjfiOuT0BDDMY1/LgDbAQuc8g8lJHheYra1Ui54xcayvVIu7flnCq/M+oMLxQ95xVhUY4xcyUiHcAjwOrBGRn522PrgSwVQR6QRsA9oCqOo6EZkKrMc1Q6mrM8MIIBYYBxTFNbtojtM+BpggIptwVQbtszgukxmJidChw9mXJwMLM+TmRxh9w4OUPX6YD2a8SfSvy7zjrCowxq9Ifv0iHhkZqUlJSbndjfzPoyr4IbQuvWLi+L1cGO1Wf03fhWMofeov7zirCozJl0RkpapG+nrPrlQuqDyqgmOFi/JO046Mb3wPYYf+ZOLkvtz6xyrvOKsKjPFblhAKIo+qYFHNxvRt1ZVdJcvzVNJMXlo8geIpJ73jrCowxq9ZQihIPKqCg8EleT3qWT6r14za+7YxbWJPGu/8xTsuIAASEqwqMMbPWUIoKNyqAgVmX3ULr7R4jkPBJem2dDLPL51MkbRU7zi7wMyYAsMSgr/zqAr2FC/Dyy278PWVN3Htrt8YP6U/dfdu8Y6zqsCYAscSgj/zqAo+vbYFrzfrxOmAIHov+phOP3xOoJ7xjrOqwJgCyRKCP/JYdmJ76Ur0jn6eJeHX0WTbGgbOHUbNgzu946wqMKZAs4TgTzwOD6VJIRIa3cO7TZ8gQM/wxlcjePTnub4Xo4uNhZEjc7Czxpi8xhKCv/CYSvpbuar0jOnOT6FXc8fmJN76ajhVju7zjgsJgYMHc7Cjxpi86qL3QzB5XGKi62IxJxmcLhTI0Jvbc/eTQ9lapjL/99/3GDttgO9kEBtrycAYc5ZVCPmZR1Ww+ora9Izpzi8Va3Dv+m95ZcFoyh8/7B1nVYExxgerEPIjj6rgZGBh3r7jKe5//N8cLFqKD6e/xrD/vus7GVhVYIw5D6sQ8huPquD7qvWIj45ja9kqPPLzXOK/GWuL0RljLoklhPzCYwbR0cJFGXjHUyRedxfVDu5i0id9uHnbau84m0pqjMkgSwj5gUdVsLBmJH1bdWV3ibI8s2IGLy6ZSLGUU95xdoGZMSYTLCHkZV26wKhRZ18eKFqK16Ke5fOIO6mz7w9GTnyb63b96h1nVYEx5hJYQsirQkNhp+tqYgX+e01TBjT/B0eLFKP7kkl0+X6q78Xo7AIzY8wlsoSQ13hUBX+WKMfLLWOZX+dGGuz8lUFzhnD1vj+842wqqTEmiy467VREPhaRPSKy1q2trIjME5HfnJ9l3N7rLSKbRGSjiLRya28sImuc94aKiDjtRURkitO+XETCs3eI+Uho6NlkoMAnDVrR4pmRLAlvSN+FY/hs4ku+k4FNJTXGZIOMXIcwDoj2aIsHFqhqHWCB8xoRqQu0ByKcmJEiEuDEjAI6A3WcR/o+OwEHVbU2MBgYdKmDybe6dHFdV+AcIvoj5Aoebf8mvaO7EfHnZuZ+3I1nf5hBgOfKpCEhoGqHiIwx2eKih4xUdbGPb+2tgTuc5wnAN0Avp32yqp4CtojIJqCJiGwFSqnqMgARGQ/cD8xxYgY4+5oGDBcRUVUfK7D5oTJl4NAhwLUY3djI+3jvtg4EnUnjrbnDaL/qa1uMzhiTIy71HEIlVd0FoKq7RKSi0x4KfO+2XbLTluI892xPj9nu7CtVRA4D5QCvxXdEpDOuKoNq1apdYtfzCI9zBRvLV6dnTByrqlxF1KYVvPH1CCof3e8dV6UK7NiRgx01xhQU2X1SWXy06QXaLxTj3ag6GhgNEBkZmX8rCLeq4HShQEbe1JYRN7Wj5KnjDJ31DvduWOzzl2JVgTHmcrrUhLBbRCo71UFlYI/TngxUddsuDNjptIf5aHePSRaRQKA0cOAS+5W3eVQFP1e+kl4xcWysEE7rdd/wyoLRlD1xxDvOqgJjTA641MXtZgEdnecdgZlu7e2dmUM1cJ08XuEcXjoqIjc6s4ue8IhJ31cbYKHfnT9IP2nsJIMTgUV4485OPNjhXQ4Hl2DMtFcZ8sV7vpNBbKwlA2NMjrhohSAin+A6gVxeRJKBV4CBwFQR6QRsA9oCqOo6EZkKrAdSga6qmubsKhbXjKWiuE4mz3HaxwATnBPQB3DNUvIfbheYASytdi3x0XFsK1OZR3+aQ/w3Yyl1+rh3nC1GZ4zJYZJfv4xHRkZqUlJSbnfj/DwODx0pXIy373yaTxpGU/3gTgbOGcZN29d4x4nAhAm27IQx5rIQkZWqGunrPbtS+XJwO2kMML9WE/q26sre4iF0Xj6dfy6ZRNFUH4vRWVVgjMlFdoOc7JR+rsBJBvuLlqLbvT14pk1/ypw4wowJL9Hnm7HeyUAEJk60ZGCMyVVWIWQXt6pAgZl17+DVqGc5VqQYL/5vIs99P43CZ3wsRmdVgTEmj7AKIas8qoKdJcvT6aH+vHDvS1Q/tIsvx3Unbulk72QQEGBVgTEmT7EK4VIlJsLjj7vWEgLOIExqGM3AO54iTQrRb8Fonlz5hff6Q2AXmBlj8iRLCJeieXNYsODsyy1lqhAf3Y3l1a7llq0/8/bcYVQ7vNs7zg4PGWPyMEsImeFRFaRKIcZcfz/v3/oYhdNSGDRnCO1Wz/NedsKmkhpj8gFLCBnlURVsqBBOr5g4Vle+kha/LuONeaOodMzHihtWFRhj8glLCBfjURWcCghkxE0PM/LGtoScPMqIz9/mro3fWVVgjMn3LCFcSEQErF9/9uXKKlfTKyaOTeWr8eDahfRb8CFlTh71jrOqwBiTD1lC8CUxETp0OPvyeFAR3m36BOMa30vlo/sY++kr3Pn7Su84qwqMMfmYJQRPHlXBkuoNiI/uRnLIFTz+4xf0/DaBkqdPeMdZVWCMyecsIaTzqAoOFynOm806MbV+S2oc2MGUxF7ckOzjD75VBcYYP2EJAbyqgq/q3Ei/FrHsLx5C7LJP6b70E4JTT3vHWVVgjPEjBTsheFQFe4uFMKDFP/jy6tu4ZvfvjJn+Gtfu3uwdFxAACQlWFRhj/ErBTAiJidCxI6S57t2jwGcRzXgt6llOBAXT49sEOq/4jKAzad6xUVEwf37O9tcYY3JAwUsIHheY7ShZgT7RXfm2ZiSNdmzgnTlDqL0/2TvOqgJjjJ/LMwlBRKKBIUAA8JGqDsz2D3FLBmcQJl53F4Nu74iKMGDeBzz+02zfi9FZVWCMKQDyREIQkQBgBNACSAZ+EJFZqrr+wpGZkJh4NhlsLhtKfHQcP1SN4LYtP/LW3OFUPbLHO8aqAmNMAZInEgLQBNikqr8DiMhkoDWQfQmhb18Apl7bgpdbxhKcepp3vxxMm7ULvJedAFui2hhT4OSVhBAKbHd7nQzc4LmRiHQGOgNUq1Ytc5+wbRsANQ7sIGrzD7w6bxQV/zrkvV1ICBw8mLl9G2OMH8grd0zz9SVdvRpUR6tqpKpGVqhQIXOf4CSQ63esZ9Tnb/tOBrGxlgyMMQVWXkkIyUBVt9dhwM5s/YQ334SgIN/v1a3rWs3UDhEZYwqwvJIQfgDqiEgNESkMtAdmZesnPPYYjB0L5cr93VaunN3X2BhjHHniHIKqporI88BXuKadfqyq2f9X+rHHbMaQMcacR55ICACqOhuYndv9MMaYgiqvHDIyxhiTyywhGGOMASwhGGOMcVhCMMYYA4Coel3/lS+IyF7gj0sMLw/sy8bu5Ac25oLBxlwwZGXM1VXV55W9+TYhZIWIJKlqZG73IyfZmAsGG3PBcLnGbIeMjDHGAJYQjDHGOApqQhid2x3IBTbmgsHGXDBcljEXyHMIxhhjvBXUCsEYY4wHSwjGGGOAApYQRCRaRDaKyCYRic/t/mQXEakqIotEZIOIrBOR7k57WRGZJyK/OT/LuMX0dn4PG0WkVe71PmtEJEBEfhKRL5zXfj1mEQkRkWki8ovz731TARjzP53/rteKyCciEuxvYxaRj0Vkj4isdWvL9BhFpLGIrHHeGyoiPu8QfF6qWiAeuJbV3gzUBAoDq4C6ud2vbBpbZaCR87wk8CtQF3gHiHfa44FBzvO6zviLADWc30tAbo/jEsf+IjAJ+MJ57ddjBhKAZ5znhYEQfx4zrtvrbgGKOq+nAk/625iBpkAjYK1bW6bHCKwAbsJ1F8o5QExm+lGQKoQmwCZV/V1VTwOTgda53Kdsoaq7VPVH5/lRYAOu/5Fa4/oDgvPzfud5a2Cyqp5S1S3AJly/n3xFRMKAu4GP3Jr9dswiUgrXH44xAKp6WlUP4cdjdgQCRUUkECiG626KfjVmVV0MHPBoztQYRaQyUEpVl6krO4x3i8mQgpQQQoHtbq+TnTa/IiLhwHXAcqCSqu4CV9IAKjqb+cvv4v+AnsAZtzZ/HnNNYC8w1jlM9pGIFMePx6yqO4D3gG3ALuCwqn6NH4/ZTWbHGOo892zPsIKUEHwdS/OrObciUgKYDrygqkcutKmPtnz1uxCRe4A9qroyoyE+2vLVmHF9U24EjFLV64C/cB1KOJ98P2bnuHlrXIdGqgDFRaTDhUJ8tOWrMWfA+caY5bEXpISQDFR1ex2Gq/T0CyIShCsZJKrqZ07zbqeMxPm5x2n3h9/FLcB9IrIV1+G/ZiIyEf8eczKQrKrLndfTcCUIfx5zc2CLqu5V1RTgM+Bm/HvM6TI7xmTnuWd7hhWkhPADUEdEaohIYaA9MCuX+5QtnJkEY4ANqvq+21uzgI7O847ATLf29iJSRERqAHVwnYzKN1S1t6qGqWo4rn/LharaAf8e85/AdhG5ymmKAtbjx2PGdajoRhEp5vx3HoXrHJk/jzldpsboHFY6KiI3Or+rJ9xiMia3z67n8Jn8u3DNwNkM9M3t/mTjuG7FVRquBn52HncB5YAFwG/Oz7JuMX2d38NGMjkTIa89gDv4e5aRX48ZaAgkOf/WnwNlCsCYXwV+AdYCE3DNrvGrMQOf4DpHkoLrm36nSxkjEOn8njYDw3FWo8jow5auMMYYAxSsQ0bGGGMuwBKCMcYYwBKCMcYYhyUEY4wxgCUEY4wxDksIxhhjAEsIxhhjHP8P5JVmlm8VHwMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Graphic display\n", + "plt.plot(X, Y, 'ro', label='Original data')\n", + "plt.plot(X, np.array(W * X + b), label='Fitted line')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From ed0c51fe189749870fd9f7b4ace97bba0cac9ea4 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Mon, 3 Aug 2020 22:48:51 +0200 Subject: [PATCH 02/13] Add files via upload This is a multillayer perceptron with live data stats when performing analysis --- .../Multilayer_Perceptron.ipynb | 456 ++++++++++++++++++ 1 file changed, 456 insertions(+) create mode 100644 tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb new file mode 100644 index 00000000..d35f4de4 --- /dev/null +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Neural Network Example\n", + "\n", + "Build a 2-hidden layers fully connected neural network (a.k.a multilayer perceptron) with TensorFlow v2.\n", + "\n", + "This example is using a low-level approach to better understand all mechanics behind building neural networks and the training process.\n", + "\n", + "- Author: Miguel Tomás\n", + "- Project: https://github.com/aeonSolutions/TensorFlow-Examples" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Neural Network Overview\n", + "\n", + "\"nn\"\n", + "\n", + "This example is using a file csv dataset. \n", + "\n", + "In this example, each dataset will be converted to float32, normalized to [0, 1] and flattened to a 1-D array of \"num_features\" features \n", + "\n", + "More info: https://github.com/aeonSolutions/TensorFlow-Examples" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from __future__ import absolute_import, division, print_function\n", + "\n", + "import tensorflow as tf\n", + "from tensorflow.keras import Model, layers\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "# Visualize predictions.\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters initialization.\n", + "num_classes = 0 # total classes : number of output varibales\n", + "num_features = 1 # data features : number of input variables > load from the dataset bellow\n", + "\n", + "# Training parameters.\n", + "learning_rate = 0.001\n", + "training_steps = 1000\n", + "batch_size = 256\n", + "display_step = 100\n", + "\n", + "# Network parameters.\n", + "n_hidden_1 = 64 # 1st layer number of neurons.\n", + "n_hidden_2 = 64 # 2nd layer number of neurons." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# make predictions Data.\n", + "df_predict_ds=pd.read_csv('./week3_exam_dataset_test.csv')\n", + "\n", + "data_predict_x = np.float32(df_predict_ds.values)\n", + "\n", + "# Training Data.\n", + "df_tr=pd.read_csv('./week3_exam_dataset_train.csv')\n", + "\n", + "df_tr_raw_y= df_tr['y']\n", + "num_classes= df_tr_raw_y.shape[0]\n", + "if num_features==0:\n", + " num_features= df_tr_raw_y.shape[0]\n", + "\n", + "df_tr_raw_values_y = df_tr_raw_y.values\n", + "data_tr_y = np.float32(df_tr_raw_values_y)\n", + "\n", + "df_tr_raw_x= df_tr.drop('y',1)\n", + "df_tr_raw_values_x = df_tr_raw_x.values\n", + "data_tr_x = np.float32(df_tr_raw_values_x)\n", + "\n", + "x_train, x_test, y_train, y_test = train_test_split(df_tr_raw_x, df_tr_raw_y, test_size=0.33, random_state=42)\n", + "\n", + "# Convert to float32.\n", + "x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)\n", + "# Convert to float32.\n", + "y_train, y_test = np.array(y_train, np.float32), np.array(y_test, np.float32)\n", + "\n", + "# Normalize data values to [0, 1] interval.\n", + "maxVal=max(np.amax(x_train),np.amax(x_test))\n", + "x_train, x_test = x_train / maxVal, x_test / maxVal" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Use tf.data API to shuffle and batch data.\n", + "train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", + "train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create TF Model.\n", + "class NeuralNet(Model):\n", + " # Set layers.\n", + " def __init__(self):\n", + " super(NeuralNet, self).__init__()\n", + " # First fully-connected hidden layer.\n", + " self.fc1 = layers.Dense(n_hidden_1, activation=tf.nn.relu)\n", + " # First fully-connected hidden layer.\n", + " self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.relu)\n", + " # Second fully-connecter hidden layer.\n", + " self.out = layers.Dense(num_classes)\n", + "\n", + " # Set forward pass.\n", + " def call(self, x, is_training=False):\n", + " x = self.fc1(x)\n", + " x = self.fc2(x)\n", + " x = self.out(x)\n", + " if not is_training:\n", + " # tf cross entropy expect logits without softmax, so only\n", + " # apply softmax when not training.\n", + " x = tf.nn.softmax(x)\n", + " return x\n", + "\n", + "# Build neural network model.\n", + "neural_net = NeuralNet()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Cross-Entropy Loss.\n", + "# Note that this will apply 'softmax' to the logits.\n", + "def cross_entropy_loss(x, y):\n", + " # Convert labels to int 64 for tf cross-entropy function.\n", + " y = tf.cast(y, tf.int64)\n", + " # Apply softmax to logits and compute cross-entropy.\n", + " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n", + " # Average loss across the batch.\n", + " return tf.reduce_mean(loss)\n", + "\n", + "# Accuracy metric.\n", + "def accuracy(y_pred, y_true):\n", + " # Predicted class is the index of highest score in prediction vector (i.e. argmax).\n", + " correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))\n", + " return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1)\n", + "\n", + "# Accuracy metric.\n", + "def accuracyAvg(y_pred):\n", + " print(y_pred.numpy().shape)\n", + " \n", + " #convert to 1D array\n", + " y_pred_1d_array= y_pred.ravel()\n", + " \n", + " accCalc= np.full(y_pred_1d_array.shape, 0)\n", + " delta=np.amax(real_y_1d_array)-np.amin(real_y_1d_array)\n", + " \n", + " for i in range(len(y_pred_1d_array)):\n", + " accCalc[i]= abs(delta-y_pred_1d_array[i] - real_y_1d_array[i])\n", + " \n", + " return accCalc\n", + "\n", + "# Stochastic gradient descent optimizer.\n", + "optimizer = tf.optimizers.SGD(learning_rate)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Optimization process. \n", + "def run_optimization(x, y):\n", + " # Wrap computation inside a GradientTape for automatic differentiation.\n", + " with tf.GradientTape() as g:\n", + " # Forward pass.\n", + " pred = neural_net(x, is_training=True)\n", + " # Compute loss.\n", + " loss = cross_entropy_loss(pred, y)\n", + " \n", + " # Variables to update, i.e. trainable variables.\n", + " trainable_variables = neural_net.trainable_variables\n", + "\n", + " # Compute gradients.\n", + " gradients = g.gradient(loss, trainable_variables)\n", + " \n", + " # Update W and b following gradients.\n", + " optimizer.apply_gradients(zip(gradients, trainable_variables))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from IPython.display import clear_output\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline\n", + "from datetime import datetime\n", + "from datetime import timedelta\n", + "\n", + "def live_plot(steps, accuracy, figsize=(7,5), title=''):\n", + " clear_output(wait=True)\n", + " plt.figure(figsize=figsize)\n", + " plt.xlim(0, training_steps)\n", + " plt.ylim(0, 100)\n", + " steps= [float(i) for i in steps]\n", + " accuracy= [float(i) for i in accuracy]\n", + " \n", + " if len(steps) > 1:\n", + " plt.scatter(steps,accuracy, label='accuracy', color='k') \n", + " m, b = np.polyfit(steps, accuracy, 1)\n", + " plt.plot(steps, [x * m for x in steps] + b)\n", + "\n", + " plt.title(title)\n", + " plt.grid(True)\n", + " plt.xlabel('epoch')\n", + " plt.ylabel('accuracy %')\n", + " #plt.legend(loc='center left') # the plot evolves to the right\n", + " plt.show();\n", + " \n", + "def ETC(start, steps):\n", + " time_elapsed = datetime.now() - start\n", + " eta= (training_steps-steps) / display_step * time_elapsed\n", + " #avgString = str(avg).split(\".\")[0]\n", + " \n", + " hours= int(eta.seconds/3600)\n", + " minutes= int((eta.seconds/60)-hours*60)\n", + " seconds = int(eta.seconds - minutes*60 -hours*3600)\n", + " return \"%sh, %s min and %s sec\" % (hours, minutes, seconds)\n", + "\n", + "def elapsedTime(elapsed):\n", + " hours= int(elapsed.seconds/3600)\n", + " minutes= int((elapsed.seconds/60)-hours*60)\n", + " seconds = int(elapsed.seconds - minutes*60 -hours*3600)\n", + " return \"%sh, %s min and %s sec\" % (hours, minutes, seconds)\n", + "\n", + "def progress(percent=0, width=30):\n", + " left = width * percent // 100\n", + " right = width - left\n", + " print('\\r[', '#' * left, ' ' * right, ']',\n", + " f' {percent:.0f}%\\n',\n", + " sep='', end='', flush=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAFBCAYAAAAc3FTEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaP0lEQVR4nO3df5TddX3n8ed7EiDEQEM0YJaYCdQQpe2qBD0oWzqU9tgqCp5TurQBUxfN7tYCunVbaNZFPeaU7bpu21NrmwPaqLNoFCrUtihGBuvZ9Qfhh4Ahhh9JCASCJVAi5ee894/7neTOZD4zNzdz53tn5vk4Z8693+987/f7nnfy/b7u98f93shMJEnSgXrqLkCSpG5lSEqSVGBISpJUYEhKklRgSEqSVGBISpJU0LGQjIjPRMTuiLi7adyCiLgpIrZWj8c0/e7yiLgvIrZExFs7VZckSa3q5J7k3wC/NmLcZcDGzFwGbKyGiYiTgfOBn6te85cRMauDtUmSNK6OhWRmfht4YsToc4D11fP1wLlN47+Ymc9l5oPAfcCbOlWbJEmtmOxzksdl5i6A6vHYavzxwENN0+2sxkmSVJvZdRdQiVHGjXq/vIhYDawGmDNnzoolS5Z0sq5paXBwkJ4er9lqh71rj31rj31rz49//OOfZObCiZjXZIfkYxGxKDN3RcQiYHc1fifwqqbpFgOPjDaDzFwHrANYvnx5btmypZP1TksDAwP09fXVXcaUZO/aY9/aY9/aExHbJ2pek/0W5QZgVfV8FXB90/jzI+KIiDgBWAZ8f5JrkyRpmI7tSUbENUAf8IqI2AlcAVwJbIiIi4AdwHkAmXlPRGwAfgS8CLw/M1/qVG2SJLWiYyGZmb9V+NVZhenXAms7VY8kSQfLM8KSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBXUEpIR8cGIuCci7o6IayJiTkQsiIibImJr9XhMHbVJkjRk0kMyIo4HLgFOzcyfB2YB5wOXARszcxmwsRqWJKk2dR1unQ0cGRGzgbnAI8A5wPrq9+uBc2uqTTXp7+9n6dKl9PT0sHTpUvr7++suSarF0LqwadMm14WDMNQ3YMVEzTMyc6Lm1fpCIy4F1gL/CnwjM1dGxJOZOb9pmj2ZecAh14hYDawGWLhw4YoNGzZMVtnTxt69e5k3b17dZQzzxBNPsH37dgYHB/eN6+npobe3lwULFtRY2XDd2LupwL61rnldWLx4MTt37uzKdaHbNPftQx/6EJkZEzLjzJzUH+AY4FvAQuAw4KvABcCTI6bbM968TjrppNTBu/nmm+su4QC9vb0JHPDT29tbd2nDdGPvpgL71rrmdeETn/hE164L3WbkNiQnKLPqONz6K8CDmfl4Zr4AXAe8BXgsIhYBVI+7a6hNNdmxY8dBjZemK9eF9nSqP3WE5A7gtIiYGxEBnAVsBm4AVlXTrAKur6E21WTJkiUHNV6arlwX2tOp/kx6SGbm94CvALcBd1U1rAOuBH41IrYCv1oNa4ZYu3Ytc+fOHTZu7ty5rF27tqaKpHq4LrRntL5NhNkTPscWZOYVwBUjRj9HY69SM9DKlSsBWLNmDTt27GDJkiWsXbt233hppmheFwB6e3tdF1rQ3Lft27dP2Hxrubp1oixfvjy3bNlSdxlTzsDAAH19fXWXMSXZu/bYt/bYt/ZExKbMPHUi5uVt6SaYn/WTpOmjlsOt01V/fz+rV6/mmWeeAWD79u2sXr0awEMlkjQFuSc5gdasWbMvIIc888wz+84tSJKmFkNyAvn5JkmaXjzcOoGWLFky6lVVfr5JUmYymPsfB6uLJgdHjG/c6aUx/qnnkt1PP7tvuPlx6Plg5tAtZqrXN41vGk6GXjs0n+Z5Va+lqbYs1Dai5szRh1udbmi5mTA4OM7rmqYbNjxiuolkSE6gtWvXDjsnCX6+aSoZWiH3r6QHboyeeSF56pkXRmwEhjYoTRuHwQM3FqNtnPYto2nj1LzRamcj1jxdqxsxmpZXmm6susab7qGdz7HxybuLdR3w9xzQs/0BkFXPh6YbGh62kRwRIKMt84k9e3js0Ud5/sWXOPyww3nFsQs56qijRwmj4b1hxL9VqRcj/03advPGQ3jx1NYTEBH7HgPoaR6OxvDQY08ATMwtW4f4EZAJ1t/fz5qP/wm7nz+MY489jgvf/W5+6Zf6xl/BSAYHD1zBDthINm9UGL7xGH1DPPKdGWzfsYPFixcPm27/vPa/ftQNLCOGR30X18LfOEYwNE9HYXnN0432N+7bcDJ6YI22IZ3Cq0Jt9m2k2L+x2r/BaownYPClFzn8sMOqaYY2avunA+jpGW1esW86qvHN0zVvQA/YkPZAMPqG9OGHH+aO22/npRdfJHMQSGb19PCmN76RE05Yun/57F9+T0/jj+kZMb9h0/WMrIt9f3PPiOn2/T0jpmvU35jH/fdt5aSTTho2XTT1dqgX++e1v7cjpxseMsP/rRrTjBZGI6aLA3s/shfF3oz4Nx3133bEdO3/v5y4j4AYkh1w7aad/P6X76y7jH1GbkRycJDZs2aN+26sJ5pX4tIKMHJlKqwQTdMxYgM52nQjN6TNG4fWptu/cjbXvm+lbP7bCtMdMEzwwAP3s+zVrx7eq+a/mTE2FiOmG3VjMaLOYhA0TXfjjTfyl5/6FLseeZhFr3wll1xyMe84++xR64+mDfn++vf/W+ybbtTAGh5+B7Mh67bP+y1dunTUUyO9vb1s27Zt8gsq6La+TRUTGZIebu2AvuULue5331J8Nzby3d6479raeDfW/PuRXPEOXn9/P2vWrOHiiy/mYx95X9fcAaW/v5+PXtr0saPdD/LhS+7kuDnruqK+buVFdmqVIdkBL593BC+fd0TdZWiCdPPnX8f62FHdtXUzL7JTq/wIyAzit523p5s//+oeUXu8ibhaZUjOEEN7Q0Pvnof2hgzK8XVzEHX71yp16xuzlStXsm7dOnp7e4kIent7WbfOQ9Q6kCE5Q3Tz3lC36+Yg6uY9om5/Y7Zy5Uq2bdvG4OAg27ZtMyA1KkNyhujmvaFu181B1M17RL4x03TghTszhBcqtK/bv99v5cqVXVNLM9+YaTpwT3KG6Oa9oalg6NDcihUrPDTXom4+TK32zbSvAzQkZ4jmw3JAVx2W0/TkG7Ppp/k8c2Z23XnmTjAkZxD3hjSZfGM2/czE88yek5TUMUPnSwcGBrrqdm9qz0w8z+yepCSpJTPxPLMhKUlqyUw8z2xISpJa0s2fy+0Uz0lKklrWrZ/L7RT3JCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSqoJSQjYn5EfCUi7o2IzRHx5ohYEBE3RcTW6vGYOmqTJGlIXXuSfwbcmJmvAV4HbAYuAzZm5jJgYzUsSVJtJj0kI+Jo4AzgaoDMfD4znwTOAdZXk60Hzp3s2iRJanZQIRkRc6qQOxQnAo8Dn42I2yPiqoh4GXBcZu4CqB6PPcTlSJJ0SCIzW5sw4r3AhTSC9Z8y84/aWmDEqcB3gdMz83sR8WfAvwAXZ+b8pun2ZOYB5yUjYjWwGmDhwoUrNmzY0E4ZM9revXuZN29e3WVMSfauPfatPfatPWeeeeamzDx1IuZVDMmIeEdm/l3T8Bcz8/zq+Z2Z+bq2FhjxSuC7mbm0Gv5FGucfXw30ZeauiFgEDGTm8rHmtXz58tyyZUs7ZcxoAwMD9PX11V3GlGTv2mPf2mPf2hMRExaSYx1ufV1EXB8RQ2H4w4joj4gvAPe0u8DMfBR4KCKGAvAs4EfADcCqatwq4Pp2lyFJ0kSYXfpFZn682uv7WEQA/HdgHjA3M394iMu9GOiPiMOBB4D30AjsDRFxEbADOO8QlyFJ0iEphmTlp8AHgGXAOuAHwP881IVm5h3AaLvCZx3qvCVJmijFw60R8XHg72l8ZvHMzHwncCfw9xFx4STVJ0lSbcY6J3l2Zp4BvAV4N0Bm3gC8FVgwCbVJklSrsQ633h0RnweOBG4ZGpmZL9K4Y44kSdPaWBfuXBARvwC8kJn3TmJNkiR1hTEv3MnMuyarEEmSuo1flSVJUoEhKUlSwbghGRHXRsTbI8JAlSTNKK0E36eB3wa2RsSVEfGaDtckSVJXGDckM/ObmbkSOAXYBtwUEf83It4TEYd1ukBJkurS0iHUiHg58DvAe4HbaXxO8hTgpo5VJklSzca7dysRcR3wGuDzwDuGvhgZ+FJE3NrJ4iRJqtO4IQn8RWZ+a7RfTNT3dUmS1I1aOdz62oiYPzQQEcdExO92sCZJkrpCKyH5vsx8cmggM/cA7+tcSZIkdYdWQrInqm9dBoiIWcDhnStJkqTu0Mo5ya8DGyLir4AE/hNwY0erkiSpC7QSkn8I/EfgPwMBfAO4qpNFSZLUDcYNycwcpHHXnU93vhxJkrpHK5+TXAb8MXAyMGdofGae2MG6JEmqXSsX7nyWxl7ki8CZwOdo3FhAkqRprZWQPDIzNwKRmdsz8yPAL3e2LEmS6tfKhTvPVl+TtTUifg94GDi2s2VJklS/VvYkPwDMBS4BVgAXAKs6WZQkSd1gzD3J6sYBv5mZ/xXYC7xnUqqSJKkLjLknmZkvASua77gjSdJM0co5yduB6yPiy8BPh0Zm5nUdq0qSpC7QSkguAP6Z4Ve0JmBISpKmtVbuuON5SEnSjNTKHXc+S2PPcZjM/A8dqUiSpC7RyuHWrzU9nwO8C3ikM+VIktQ9Wjncem3zcERcA3yzYxVJktQlWrmZwEjLgCUTXYgkSd2mlXOSTzP8nOSjNL5jUpKkaa2Vw61HTUYhkiR1m3EPt0bEuyLiZ5qG50fEuZ0tS5Kk+rVyTvKKzHxqaCAznwSu6FxJkiR1h1ZCcrRpWvnoiCRJU1orIXlrRHwyIn42Ik6MiP8NbOp0YZIk1a2VkLwYeB74ErAB+Ffg/Z0sSpKkbtDK1a0/BS6bhFokSeoqrVzdelNEzG8aPiYivt7ZsiRJql8rh1tfUV3RCkBm7gGO7VxJkiR1h1ZCcjAi9t2GLiJ6GeVbQSRJmm5a+SjHGuA7EXFLNXwGsLpzJUmS1B1auXDnxog4BTgNCOCDmfmTQ11wRMwCbgUezsyzI2IBjStolwLbgN+sDu1KklSLVr8F5CVgN/AUcHJEnDEBy74U2Nw0fBmwMTOXARvxilpJUs1aubr1vcC3ga8DH60eP3IoC42IxcDbgauaRp8DrK+erwe8P6wkqVat7EleCrwR2J6ZZwJvAB4/xOX+KfAHwGDTuOMycxdA9egVtJKkWrVy4c6zmflsRBARR2TmvRGxvN0FRsTZwO7M3BQRfW28fjXVhUMLFy5kYGCg3VJmrL1799q3Ntm79ti39ti3+rUSkjurmwl8FbgpIvYAjxzCMk8H3hkRbwPmAEdHxBeAxyJiUWbuiohFNM6BHiAz1wHrAJYvX559fX2HUMrMNDAwgH1rj71rj31rj32r37iHWzPzXZn5ZGZ+BPgwcDWHcL4wMy/PzMWZuRQ4H/hWZl4A3ACsqiZbBVzf7jIkSZoIB/WVV5l5y/hTte1KYENEXATsAM7r4LIkSRpXrd8LmZkDwED1/J+Bs+qsR5KkZq1+TlKSpBnHkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKlg0kMyIl4VETdHxOaIuCciLq3GL4iImyJia/V4zGTXJklSszr2JF8Efj8zXwucBrw/Ik4GLgM2ZuYyYGM1LElSbSY9JDNzV2beVj1/GtgMHA+cA6yvJlsPnDvZtUmS1Cwys76FRywFvg38PLAjM+c3/W5PZh5wyDUiVgOrARYuXLhiw4YNk1PsNLJ3717mzZtXdxlTkr1rj31rj31rz5lnnrkpM0+diHnVFpIRMQ+4BVibmddFxJOthGSz5cuX55YtWzpd6rQzMDBAX19f3WVMSfauPfatPfatPRExYSFZy9WtEXEYcC3Qn5nXVaMfi4hF1e8XAbvrqE2SpCF1XN0awNXA5sz8ZNOvbgBWVc9XAddPdm2SJDWbXcMyTwcuBO6KiDuqcX8EXAlsiIiLgB3AeTXUJknSPpMekpn5HSAKvz5rMmuRJGks3nFHkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkgq4LyYj4tYjYEhH3RcRlddcjSZq5uiokI2IW8Cng14GTgd+KiJPrrUqSNFN1VUgCbwLuy8wHMvN54IvAOTXXJEmaobotJI8HHmoa3lmNkyRp0s2uu4ARYpRxOWyCiNXA6mrwuYi4u+NVTT+vAH5SdxFTlL1rj31rj31rz/KJmlG3heRO4FVNw4uBR5onyMx1wDqAiLg1M0+dvPKmB/vWPnvXHvvWHvvWnoi4daLm1W2HW38ALIuIEyLicOB84Iaaa5IkzVBdtSeZmS9GxO8BXwdmAZ/JzHtqLkuSNEN1VUgCZOY/AP/Q4uTrOlnLNGbf2mfv2mPf2mPf2jNhfYvMHH8qSZJmoG47JylJUteYsiHp7evKIuJVEXFzRGyOiHsi4tJq/IKIuCkitlaPxzS95vKql1si4q31VV+viJgVEbdHxNeqYXvWgoiYHxFfiYh7q/93b7Z344uID1br6N0RcU1EzLFvB4qIz0TE7uaP/LXTp4hYERF3Vb/784gY7WOHw2XmlPuhcVHP/cCJwOHAncDJddfVLT/AIuCU6vlRwI9p3ObvT4DLqvGXAf+jen5y1cMjgBOq3s6q+++oqXf/Bfg/wNeqYXvWWt/WA++tnh8OzLd34/bseOBB4MhqeAPwO/Zt1F6dAZwC3N007qD7BHwfeDONz+T/I/Dr4y17qu5Jevu6MWTmrsy8rXr+NLCZxgp5Do2NGdXjudXzc4AvZuZzmfkgcB+NHs8oEbEYeDtwVdNoezaOiDiaxkbsaoDMfD4zn8TetWI2cGREzAbm0vhcuH0bITO/DTwxYvRB9SkiFgFHZ+b/y0Zifq7pNUVTNSS9fV2LImIp8Abge8BxmbkLGkEKHFtNZj8b/hT4A2CwaZw9G9+JwOPAZ6tD1VdFxMuwd2PKzIeBTwA7gF3AU5n5Dexbqw62T8dXz0eOH9NUDclxb18niIh5wLXABzLzX8aadJRxM6qfEXE2sDszN7X6klHGzaieNZlN41DYpzPzDcBPaRz+KrF3QHUO7RwahwT/DfCyiLhgrJeMMm7G9a0FpT611b+pGpLj3r5upouIw2gEZH9mXleNfqw65ED1uLsabz/hdOCdEbGNxuH7X46IL2DPWrET2JmZ36uGv0IjNO3d2H4FeDAzH8/MF4DrgLdg31p1sH3aWT0fOX5MUzUkvX3dGKortq4GNmfmJ5t+dQOwqnq+Cri+afz5EXFERJwALKNxgnvGyMzLM3NxZi6l8f/pW5l5AfZsXJn5KPBQRAzdVPos4EfYu/HsAE6LiLnVOnsWjesH7FtrDqpP1SHZpyPitKrf7256TVndVy0dwtVOb6Nx1eb9wJq66+mmH+Df0TiM8EPgjurnbcDLgY3A1upxQdNr1lS93EILV3xN5x+gj/1Xt9qz1nr2euDW6v/cV4Fj7F1LffsocC9wN/B5Gldk2rcD+3QNjfO2L9DYI7yonT4Bp1a9vh/4C6ob6oz14x13JEkqmKqHWyVJ6jhDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSmiEiom/o200ktcaQlCSpwJCUukxEXBAR34+IOyLir6vvuNwbEf8rIm6LiI0RsbCa9vUR8d2I+GFE/O3Qd+pFxKsj4psRcWf1mp+tZj+v6Xsf+1v6Pj1pBjMkpS4SEa8F/j1wema+HngJWAm8DLgtM08BbgGuqF7yOeAPM/PfAnc1je8HPpWZr6NxP9Bd1fg3AB+g8Z17J9K4Z62kgtl1FyBpmLOAFcAPqp28I2ncuHkQ+FI1zReA6yLiZ4D5mXlLNX498OWIOAo4PjP/FiAznwWo5vf9zNxZDd8BLAW+0/k/S5qaDEmpuwSwPjMvHzYy4sMjphvrfpJjHUJ9run5S7gNkMbk4Vapu2wEfiMijgWIiAUR0UtjXf2NaprfBr6TmU8BeyLiF6vxFwK3ZOO7Q3dGxLnVPI6IiLmT+ldI04TvIqUukpk/ioj/BnwjInpofOvB+2l8kfHPRcQm4Cka5y2h8RVBf1WF4APAe6rxFwJ/HREfq+Zx3iT+GdK04beASFNAROzNzHl11yHNNB5ulSSpwD1JSZIK3JOUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSp4P8DctoxP+cT6hAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[##############################] 100%\n", + "\n", + "================= Iteration Stats ================\n", + " step: 1000 of 1000\n", + " loss: 0.592776\n", + " accuracy: 79.30 %\n", + " AVG: 75.23 %\n", + "\n", + "================= Time ================\n", + " Elapsed: 0h, 3 min and 54 sec\n", + " ETC: 0h, 0 min and 0 sec\n", + "\n", + "================== Network Setup ================\n", + " number of classes: 32460\n", + " number of features: 1\n", + " learning rate: 0.001\n", + " training steps: 1000\n", + " batch size: 256\n", + "1st layer n. of neurons: 64\n", + "2st layer n. of neurons: 64\n", + "\n", + "Analysis finished.\n", + "Final Average accuracy is 75.23 %\n" + ] + } + ], + "source": [ + "# Run training for the given number of steps.\n", + "avgCounter=0\n", + "avg=0.0\n", + "\n", + "steps=[]\n", + "accuracyValue=[]\n", + "\n", + "start_time = datetime.now()\n", + "totalStartTime=start_time\n", + " \n", + "live_plot([0], [0])\n", + "print(\"analysis started. Waiting for preliminary data. One moment please...\")\n", + "progress(0) \n", + "\n", + "for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1):\n", + " # Run the optimization to update W and b values.\n", + " run_optimization(batch_x, batch_y)\n", + " \n", + " if step % display_step == 0:\n", + " pred = neural_net(batch_x, is_training=True)\n", + " loss = cross_entropy_loss(pred, batch_y)\n", + " acc = accuracy(pred, batch_y)\n", + " avgCounter+=1\n", + " avg+=acc*100\n", + " \n", + " steps.append(step)\n", + " accuracyValue.append(acc*100)\n", + " live_plot(steps, accuracyValue)\n", + " totalTime =datetime.now()- totalStartTime\n", + " \n", + " if int(step/training_steps*100)<100:\n", + " print(\"Running...\")\n", + " progress(int(step/training_steps*100)) \n", + " print(\"\")\n", + " print(\"================= Iteration Stats ================\")\n", + " print(\" step: %i of %i\" % (step,training_steps))\n", + " print(\" loss: %f\" % loss)\n", + " print(\" accuracy: %.2f %%\" % (acc*100))\n", + " print(\" AVG: %.2f %%\" % (avg/avgCounter))\n", + " print(\"\")\n", + " print(\"================= Time ================\")\n", + " print(\" Elapsed: \" + elapsedTime(totalTime))\n", + " print(\" ETC: \" + ETC(start_time,step))\n", + " print(\"\")\n", + " print(\"================= Network Setup ================\")\n", + " print(\" number of classes: \"+ str(num_classes))\n", + " print(\" number of features: \"+ str(num_features)) \n", + "\n", + " print(\" learning rate: \"+ str(learning_rate))\n", + " print(\" training steps: \"+ str(training_steps))\n", + " print(\" batch size: \"+ str(batch_size))\n", + "\n", + " print(\"1st layer n. of neurons: \"+ str(n_hidden_1 ))\n", + " print(\"2st layer n. of neurons: \"+ str(n_hidden_2))\n", + "\n", + " start_time = datetime.now()\n", + "print(\"\")\n", + "print(\"Analysis finished.\") \n", + "#print(\"Final Average accuracy is %.2f %%\" % (avg/avgCounter))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# +++++++++++++++++++++++++++++++++++++++++++++++++++\n", + "#!!! code bellow this line is not yet finished !!!\n", + "# +++++++++++++++++++++++++++++++++++++++++++++++++++\n", + "\n", + "# Test model on validation set.\n", + "print(x_test.shape)\n", + "\n", + "pred = neural_net(x_test, is_training=False)\n", + "\n", + "print(\"Accuracy of highest score in prediction vector\")\n", + "print(\" Test Accuracy: %.2f %%\" % (tf.math.round(100*accuracy(pred, y_test))))\n", + "print(\"\")\n", + "\n", + "prediction= np.round(pred.numpy(),2)\n", + "print(\"Model prediction shape:\" + str(prediction.shape))\n", + "print(\" Model initial shape:\" + str(y_test.shape))\n", + "\n", + "print(\"\")\n", + "print(\"Model prediction value:\")\n", + "print(prediction)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "predictions = neural_net(data_predict_x)\n", + "print(\"Model prediction: %i\" % np.argmax(predictions.numpy()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + " Author: Miguel Tomás \n", + "\n", + " License: Creative Commons \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 6943fa018e6ba1c893c70dae95b9e8765bdcd801 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 11:02:46 +0200 Subject: [PATCH 03/13] Add files via upload Added some stats and #bug corrections --- .../Multilayer_Perceptron.ipynb | 178 ++++++++++++------ 1 file changed, 124 insertions(+), 54 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index d35f4de4..410dcd63 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -49,32 +49,46 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# parameters initialization.\n", - "num_classes = 0 # total classes : number of output varibales\n", - "num_features = 1 # data features : number of input variables > load from the dataset bellow\n", + "num_classes = 100 # total classes : number of output results\n", + "num_features = 0 # data features : number of samples(rows) for the variable set. a value of 0 loads from the dataset bellow\n", "\n", "# Training parameters.\n", - "learning_rate = 0.001\n", - "training_steps = 1000\n", - "batch_size = 256\n", - "display_step = 100\n", + "learning_rate = 0.1\n", + "training_steps = 10000\n", + "batch_size = 100\n", + "display_step = 50\n", + "\n", + "#normalization of data\n", + "normalizeDataValues=True\n", + "normalizationType= \"mean\" # accepts: max, mean\n", + "normalizationTypeBinary=True\n", "\n", "# Network parameters.\n", - "n_hidden_1 = 64 # 1st layer number of neurons.\n", - "n_hidden_2 = 64 # 2nd layer number of neurons." + "n_hidden_1 = 512 # 1st layer number of neurons.\n", + "n_hidden_2 = 512 # 2nd layer number of neurons." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 38)", + "output_type": "error", + "traceback": [ + "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m38\u001b[0m\n\u001b[1;33m else\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" + ] + } + ], "source": [ - "# make predictions Data.\n", + "# predictions Data.\n", "df_predict_ds=pd.read_csv('./week3_exam_dataset_test.csv')\n", "\n", "data_predict_x = np.float32(df_predict_ds.values)\n", @@ -83,10 +97,13 @@ "df_tr=pd.read_csv('./week3_exam_dataset_train.csv')\n", "\n", "df_tr_raw_y= df_tr['y']\n", - "num_classes= df_tr_raw_y.shape[0]\n", + "if num_classes==0:\n", + " num_classes= df_tr_raw_y.shape[0]\n", "if num_features==0:\n", " num_features= df_tr_raw_y.shape[0]\n", - "\n", + "else:\n", + " #TODO: fill possible empty values on the datasets\n", + " \n", "df_tr_raw_values_y = df_tr_raw_y.values\n", "data_tr_y = np.float32(df_tr_raw_values_y)\n", "\n", @@ -102,16 +119,27 @@ "y_train, y_test = np.array(y_train, np.float32), np.array(y_test, np.float32)\n", "\n", "# Normalize data values to [0, 1] interval.\n", - "maxVal=max(np.amax(x_train),np.amax(x_test))\n", - "x_train, x_test = x_train / maxVal, x_test / maxVal" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ + "if normalizeDataValues:\n", + " if normalizationType==\"max\":\n", + " maxVal_train=np.amax(x_train, axis=0)\n", + " maxVal_test=np.amax(x_test, axis=0)\n", + " maxVal_pred=np.amax(data_predict_x, axis=0)\n", + " maxVal=max(np.amax(maxVal_train, axis=0),np.amax(maxVal_test, axis=0),np.amax(maxVal_pred, axis=0))\n", + " if normalizationTypeBinary:\n", + " x_train, x_test,data_predict_x = np.where((x_train / maxVal_train)>=0.5,1,0), np.where((x_test / maxVal_test)>=0.5,1,0), np.where((data_predict_x / maxVal_pred)>=0.5,1,0)\n", + " else\n", + " x_train, x_test, data_predict_x = x_train / maxVal_train, x_test / maxVal_test, data_predict_x / maxVal_pred\n", + " else:\n", + " meanVal_test=np.mean(x_test, axis=0)\n", + " meanVal_train=np.mean(x_train, axis=0)\n", + " meanVal_pred=np.mean(data_predict_x, axis=0)\n", + " meanVal=max(np.amax(meanVal_train, axis=0),np.amax(meanVal_test, axis=0),np.amax(meanVal_pred, axis=0))\n", + " \n", + " if normalizationTypeBinary:\n", + " x_train, x_test,data_predict_x = np.where((x_train / meanVal_train)>=0.5,1,0), np.where((x_test / meanVal_test)>=0.5,1,0), np.where((data_predict_x / meanVal_pred)>=0.5,1,0)\n", + " else\n", + " x_train, x_test, data_predict_x = x_train / meanVal_train, x_test / meanVal_test, data_predict_x / meanVal_pred\n", + "\n", "# Use tf.data API to shuffle and batch data.\n", "train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))\n", "train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)" @@ -119,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -152,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -193,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -218,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 15, "metadata": { "scrolled": true }, @@ -238,6 +266,7 @@ " steps= [float(i) for i in steps]\n", " accuracy= [float(i) for i in accuracy]\n", " \n", + " m=0\n", " if len(steps) > 1:\n", " plt.scatter(steps,accuracy, label='accuracy', color='k') \n", " m, b = np.polyfit(steps, accuracy, 1)\n", @@ -245,11 +274,12 @@ "\n", " plt.title(title)\n", " plt.grid(True)\n", - " plt.xlabel('epoch')\n", - " plt.ylabel('accuracy %')\n", + " plt.xlabel('Epoch')\n", + " plt.ylabel('Accuracy %')\n", " #plt.legend(loc='center left') # the plot evolves to the right\n", " plt.show();\n", - " \n", + " return m\n", + "\n", "def ETC(start, steps):\n", " time_elapsed = datetime.now() - start\n", " eta= (training_steps-steps) / display_step * time_elapsed\n", @@ -271,17 +301,29 @@ " right = width - left\n", " print('\\r[', '#' * left, ' ' * right, ']',\n", " f' {percent:.0f}%\\n',\n", - " sep='', end='', flush=True)\n" + " sep='', end='', flush=True)\n", + " \n", + "def measureSkewness(series): \n", + " result=\"\"\n", + " \n", + " if (series.skew() > 1 or series.skew() < -1):\n", + " result=\"Highly skewed distribution\"\n", + " elif((0.5 < series.skew() < 1) or (-1 < series.skew() < -0.5)):\n", + " result=\"Moderately skewed distribution\"\n", + " elif(-0.5 < series.skew() < 0.5):\n", + " result=\"Approximately symmetric distribution\"\n", + " result = result +\" ( \" +str(round(series.skew(),2))+\" )\"\n", + " return result\n" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAFBCAYAAAAc3FTEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaP0lEQVR4nO3df5TddX3n8ed7EiDEQEM0YJaYCdQQpe2qBD0oWzqU9tgqCp5TurQBUxfN7tYCunVbaNZFPeaU7bpu21NrmwPaqLNoFCrUtihGBuvZ9Qfhh4Ahhh9JCASCJVAi5ee894/7neTOZD4zNzdz53tn5vk4Z8693+987/f7nnfy/b7u98f93shMJEnSgXrqLkCSpG5lSEqSVGBISpJUYEhKklRgSEqSVGBISpJU0LGQjIjPRMTuiLi7adyCiLgpIrZWj8c0/e7yiLgvIrZExFs7VZckSa3q5J7k3wC/NmLcZcDGzFwGbKyGiYiTgfOBn6te85cRMauDtUmSNK6OhWRmfht4YsToc4D11fP1wLlN47+Ymc9l5oPAfcCbOlWbJEmtmOxzksdl5i6A6vHYavzxwENN0+2sxkmSVJvZdRdQiVHGjXq/vIhYDawGmDNnzoolS5Z0sq5paXBwkJ4er9lqh71rj31rj31rz49//OOfZObCiZjXZIfkYxGxKDN3RcQiYHc1fifwqqbpFgOPjDaDzFwHrANYvnx5btmypZP1TksDAwP09fXVXcaUZO/aY9/aY9/aExHbJ2pek/0W5QZgVfV8FXB90/jzI+KIiDgBWAZ8f5JrkyRpmI7tSUbENUAf8IqI2AlcAVwJbIiIi4AdwHkAmXlPRGwAfgS8CLw/M1/qVG2SJLWiYyGZmb9V+NVZhenXAms7VY8kSQfLM8KSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBUYkpIkFRiSkiQVGJKSJBXUEpIR8cGIuCci7o6IayJiTkQsiIibImJr9XhMHbVJkjRk0kMyIo4HLgFOzcyfB2YB5wOXARszcxmwsRqWJKk2dR1unQ0cGRGzgbnAI8A5wPrq9+uBc2uqTTXp7+9n6dKl9PT0sHTpUvr7++suSarF0LqwadMm14WDMNQ3YMVEzTMyc6Lm1fpCIy4F1gL/CnwjM1dGxJOZOb9pmj2ZecAh14hYDawGWLhw4YoNGzZMVtnTxt69e5k3b17dZQzzxBNPsH37dgYHB/eN6+npobe3lwULFtRY2XDd2LupwL61rnldWLx4MTt37uzKdaHbNPftQx/6EJkZEzLjzJzUH+AY4FvAQuAw4KvABcCTI6bbM968TjrppNTBu/nmm+su4QC9vb0JHPDT29tbd2nDdGPvpgL71rrmdeETn/hE164L3WbkNiQnKLPqONz6K8CDmfl4Zr4AXAe8BXgsIhYBVI+7a6hNNdmxY8dBjZemK9eF9nSqP3WE5A7gtIiYGxEBnAVsBm4AVlXTrAKur6E21WTJkiUHNV6arlwX2tOp/kx6SGbm94CvALcBd1U1rAOuBH41IrYCv1oNa4ZYu3Ytc+fOHTZu7ty5rF27tqaKpHq4LrRntL5NhNkTPscWZOYVwBUjRj9HY69SM9DKlSsBWLNmDTt27GDJkiWsXbt233hppmheFwB6e3tdF1rQ3Lft27dP2Hxrubp1oixfvjy3bNlSdxlTzsDAAH19fXWXMSXZu/bYt/bYt/ZExKbMPHUi5uVt6SaYn/WTpOmjlsOt01V/fz+rV6/mmWeeAWD79u2sXr0awEMlkjQFuSc5gdasWbMvIIc888wz+84tSJKmFkNyAvn5JkmaXjzcOoGWLFky6lVVfr5JUmYymPsfB6uLJgdHjG/c6aUx/qnnkt1PP7tvuPlx6Plg5tAtZqrXN41vGk6GXjs0n+Z5Va+lqbYs1Dai5szRh1udbmi5mTA4OM7rmqYbNjxiuolkSE6gtWvXDjsnCX6+aSoZWiH3r6QHboyeeSF56pkXRmwEhjYoTRuHwQM3FqNtnPYto2nj1LzRamcj1jxdqxsxmpZXmm6susab7qGdz7HxybuLdR3w9xzQs/0BkFXPh6YbGh62kRwRIKMt84k9e3js0Ud5/sWXOPyww3nFsQs56qijRwmj4b1hxL9VqRcj/03advPGQ3jx1NYTEBH7HgPoaR6OxvDQY08ATMwtW4f4EZAJ1t/fz5qP/wm7nz+MY489jgvf/W5+6Zf6xl/BSAYHD1zBDthINm9UGL7xGH1DPPKdGWzfsYPFixcPm27/vPa/ftQNLCOGR30X18LfOEYwNE9HYXnN0432N+7bcDJ6YI22IZ3Cq0Jt9m2k2L+x2r/BaownYPClFzn8sMOqaYY2avunA+jpGW1esW86qvHN0zVvQA/YkPZAMPqG9OGHH+aO22/npRdfJHMQSGb19PCmN76RE05Yun/57F9+T0/jj+kZMb9h0/WMrIt9f3PPiOn2/T0jpmvU35jH/fdt5aSTTho2XTT1dqgX++e1v7cjpxseMsP/rRrTjBZGI6aLA3s/shfF3oz4Nx3133bEdO3/v5y4j4AYkh1w7aad/P6X76y7jH1GbkRycJDZs2aN+26sJ5pX4tIKMHJlKqwQTdMxYgM52nQjN6TNG4fWptu/cjbXvm+lbP7bCtMdMEzwwAP3s+zVrx7eq+a/mTE2FiOmG3VjMaLOYhA0TXfjjTfyl5/6FLseeZhFr3wll1xyMe84++xR64+mDfn++vf/W+ybbtTAGh5+B7Mh67bP+y1dunTUUyO9vb1s27Zt8gsq6La+TRUTGZIebu2AvuULue5331J8Nzby3d6479raeDfW/PuRXPEOXn9/P2vWrOHiiy/mYx95X9fcAaW/v5+PXtr0saPdD/LhS+7kuDnruqK+buVFdmqVIdkBL593BC+fd0TdZWiCdPPnX8f62FHdtXUzL7JTq/wIyAzit523p5s//+oeUXu8ibhaZUjOEEN7Q0Pvnof2hgzK8XVzEHX71yp16xuzlStXsm7dOnp7e4kIent7WbfOQ9Q6kCE5Q3Tz3lC36+Yg6uY9om5/Y7Zy5Uq2bdvG4OAg27ZtMyA1KkNyhujmvaFu181B1M17RL4x03TghTszhBcqtK/bv99v5cqVXVNLM9+YaTpwT3KG6Oa9oalg6NDcihUrPDTXom4+TK32zbSvAzQkZ4jmw3JAVx2W0/TkG7Ppp/k8c2Z23XnmTjAkZxD3hjSZfGM2/czE88yek5TUMUPnSwcGBrrqdm9qz0w8z+yepCSpJTPxPLMhKUlqyUw8z2xISpJa0s2fy+0Uz0lKklrWrZ/L7RT3JCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSowJCVJKjAkJUkqMCQlSSqoJSQjYn5EfCUi7o2IzRHx5ohYEBE3RcTW6vGYOmqTJGlIXXuSfwbcmJmvAV4HbAYuAzZm5jJgYzUsSVJtJj0kI+Jo4AzgaoDMfD4znwTOAdZXk60Hzp3s2iRJanZQIRkRc6qQOxQnAo8Dn42I2yPiqoh4GXBcZu4CqB6PPcTlSJJ0SCIzW5sw4r3AhTSC9Z8y84/aWmDEqcB3gdMz83sR8WfAvwAXZ+b8pun2ZOYB5yUjYjWwGmDhwoUrNmzY0E4ZM9revXuZN29e3WVMSfauPfatPfatPWeeeeamzDx1IuZVDMmIeEdm/l3T8Bcz8/zq+Z2Z+bq2FhjxSuC7mbm0Gv5FGucfXw30ZeauiFgEDGTm8rHmtXz58tyyZUs7ZcxoAwMD9PX11V3GlGTv2mPf2mPf2hMRExaSYx1ufV1EXB8RQ2H4w4joj4gvAPe0u8DMfBR4KCKGAvAs4EfADcCqatwq4Pp2lyFJ0kSYXfpFZn682uv7WEQA/HdgHjA3M394iMu9GOiPiMOBB4D30AjsDRFxEbADOO8QlyFJ0iEphmTlp8AHgGXAOuAHwP881IVm5h3AaLvCZx3qvCVJmijFw60R8XHg72l8ZvHMzHwncCfw9xFx4STVJ0lSbcY6J3l2Zp4BvAV4N0Bm3gC8FVgwCbVJklSrsQ633h0RnweOBG4ZGpmZL9K4Y44kSdPaWBfuXBARvwC8kJn3TmJNkiR1hTEv3MnMuyarEEmSuo1flSVJUoEhKUlSwbghGRHXRsTbI8JAlSTNKK0E36eB3wa2RsSVEfGaDtckSVJXGDckM/ObmbkSOAXYBtwUEf83It4TEYd1ukBJkurS0iHUiHg58DvAe4HbaXxO8hTgpo5VJklSzca7dysRcR3wGuDzwDuGvhgZ+FJE3NrJ4iRJqtO4IQn8RWZ+a7RfTNT3dUmS1I1aOdz62oiYPzQQEcdExO92sCZJkrpCKyH5vsx8cmggM/cA7+tcSZIkdYdWQrInqm9dBoiIWcDhnStJkqTu0Mo5ya8DGyLir4AE/hNwY0erkiSpC7QSkn8I/EfgPwMBfAO4qpNFSZLUDcYNycwcpHHXnU93vhxJkrpHK5+TXAb8MXAyMGdofGae2MG6JEmqXSsX7nyWxl7ki8CZwOdo3FhAkqRprZWQPDIzNwKRmdsz8yPAL3e2LEmS6tfKhTvPVl+TtTUifg94GDi2s2VJklS/VvYkPwDMBS4BVgAXAKs6WZQkSd1gzD3J6sYBv5mZ/xXYC7xnUqqSJKkLjLknmZkvASua77gjSdJM0co5yduB6yPiy8BPh0Zm5nUdq0qSpC7QSkguAP6Z4Ve0JmBISpKmtVbuuON5SEnSjNTKHXc+S2PPcZjM/A8dqUiSpC7RyuHWrzU9nwO8C3ikM+VIktQ9Wjncem3zcERcA3yzYxVJktQlWrmZwEjLgCUTXYgkSd2mlXOSTzP8nOSjNL5jUpKkaa2Vw61HTUYhkiR1m3EPt0bEuyLiZ5qG50fEuZ0tS5Kk+rVyTvKKzHxqaCAznwSu6FxJkiR1h1ZCcrRpWvnoiCRJU1orIXlrRHwyIn42Ik6MiP8NbOp0YZIk1a2VkLwYeB74ErAB+Ffg/Z0sSpKkbtDK1a0/BS6bhFokSeoqrVzdelNEzG8aPiYivt7ZsiRJql8rh1tfUV3RCkBm7gGO7VxJkiR1h1ZCcjAi9t2GLiJ6GeVbQSRJmm5a+SjHGuA7EXFLNXwGsLpzJUmS1B1auXDnxog4BTgNCOCDmfmTQ11wRMwCbgUezsyzI2IBjStolwLbgN+sDu1KklSLVr8F5CVgN/AUcHJEnDEBy74U2Nw0fBmwMTOXARvxilpJUs1aubr1vcC3ga8DH60eP3IoC42IxcDbgauaRp8DrK+erwe8P6wkqVat7EleCrwR2J6ZZwJvAB4/xOX+KfAHwGDTuOMycxdA9egVtJKkWrVy4c6zmflsRBARR2TmvRGxvN0FRsTZwO7M3BQRfW28fjXVhUMLFy5kYGCg3VJmrL1799q3Ntm79ti39ti3+rUSkjurmwl8FbgpIvYAjxzCMk8H3hkRbwPmAEdHxBeAxyJiUWbuiohFNM6BHiAz1wHrAJYvX559fX2HUMrMNDAwgH1rj71rj31rj32r37iHWzPzXZn5ZGZ+BPgwcDWHcL4wMy/PzMWZuRQ4H/hWZl4A3ACsqiZbBVzf7jIkSZoIB/WVV5l5y/hTte1KYENEXATsAM7r4LIkSRpXrd8LmZkDwED1/J+Bs+qsR5KkZq1+TlKSpBnHkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSpwJCUJKlg0kMyIl4VETdHxOaIuCciLq3GL4iImyJia/V4zGTXJklSszr2JF8Efj8zXwucBrw/Ik4GLgM2ZuYyYGM1LElSbSY9JDNzV2beVj1/GtgMHA+cA6yvJlsPnDvZtUmS1Cwys76FRywFvg38PLAjM+c3/W5PZh5wyDUiVgOrARYuXLhiw4YNk1PsNLJ3717mzZtXdxlTkr1rj31rj31rz5lnnrkpM0+diHnVFpIRMQ+4BVibmddFxJOthGSz5cuX55YtWzpd6rQzMDBAX19f3WVMSfauPfatPfatPRExYSFZy9WtEXEYcC3Qn5nXVaMfi4hF1e8XAbvrqE2SpCF1XN0awNXA5sz8ZNOvbgBWVc9XAddPdm2SJDWbXcMyTwcuBO6KiDuqcX8EXAlsiIiLgB3AeTXUJknSPpMekpn5HSAKvz5rMmuRJGks3nFHkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSkqQCQ1KSpAJDUpKkgq4LyYj4tYjYEhH3RcRlddcjSZq5uiokI2IW8Cng14GTgd+KiJPrrUqSNFN1VUgCbwLuy8wHMvN54IvAOTXXJEmaobotJI8HHmoa3lmNkyRp0s2uu4ARYpRxOWyCiNXA6mrwuYi4u+NVTT+vAH5SdxFTlL1rj31rj31rz/KJmlG3heRO4FVNw4uBR5onyMx1wDqAiLg1M0+dvPKmB/vWPnvXHvvWHvvWnoi4daLm1W2HW38ALIuIEyLicOB84Iaaa5IkzVBdtSeZmS9GxO8BXwdmAZ/JzHtqLkuSNEN1VUgCZOY/AP/Q4uTrOlnLNGbf2mfv2mPf2mPf2jNhfYvMHH8qSZJmoG47JylJUteYsiHp7evKIuJVEXFzRGyOiHsi4tJq/IKIuCkitlaPxzS95vKql1si4q31VV+viJgVEbdHxNeqYXvWgoiYHxFfiYh7q/93b7Z344uID1br6N0RcU1EzLFvB4qIz0TE7uaP/LXTp4hYERF3Vb/784gY7WOHw2XmlPuhcVHP/cCJwOHAncDJddfVLT/AIuCU6vlRwI9p3ObvT4DLqvGXAf+jen5y1cMjgBOq3s6q+++oqXf/Bfg/wNeqYXvWWt/WA++tnh8OzLd34/bseOBB4MhqeAPwO/Zt1F6dAZwC3N007qD7BHwfeDONz+T/I/Dr4y17qu5Jevu6MWTmrsy8rXr+NLCZxgp5Do2NGdXjudXzc4AvZuZzmfkgcB+NHs8oEbEYeDtwVdNoezaOiDiaxkbsaoDMfD4zn8TetWI2cGREzAbm0vhcuH0bITO/DTwxYvRB9SkiFgFHZ+b/y0Zifq7pNUVTNSS9fV2LImIp8Abge8BxmbkLGkEKHFtNZj8b/hT4A2CwaZw9G9+JwOPAZ6tD1VdFxMuwd2PKzIeBTwA7gF3AU5n5Dexbqw62T8dXz0eOH9NUDclxb18niIh5wLXABzLzX8aadJRxM6qfEXE2sDszN7X6klHGzaieNZlN41DYpzPzDcBPaRz+KrF3QHUO7RwahwT/DfCyiLhgrJeMMm7G9a0FpT611b+pGpLj3r5upouIw2gEZH9mXleNfqw65ED1uLsabz/hdOCdEbGNxuH7X46IL2DPWrET2JmZ36uGv0IjNO3d2H4FeDAzH8/MF4DrgLdg31p1sH3aWT0fOX5MUzUkvX3dGKortq4GNmfmJ5t+dQOwqnq+Cri+afz5EXFERJwALKNxgnvGyMzLM3NxZi6l8f/pW5l5AfZsXJn5KPBQRAzdVPos4EfYu/HsAE6LiLnVOnsWjesH7FtrDqpP1SHZpyPitKrf7256TVndVy0dwtVOb6Nx1eb9wJq66+mmH+Df0TiM8EPgjurnbcDLgY3A1upxQdNr1lS93EILV3xN5x+gj/1Xt9qz1nr2euDW6v/cV4Fj7F1LffsocC9wN/B5Gldk2rcD+3QNjfO2L9DYI7yonT4Bp1a9vh/4C6ob6oz14x13JEkqmKqHWyVJ6jhDUpKkAkNSkqQCQ1KSpAJDUpKkAkNSmiEiom/o200ktcaQlCSpwJCUukxEXBAR34+IOyLir6vvuNwbEf8rIm6LiI0RsbCa9vUR8d2I+GFE/O3Qd+pFxKsj4psRcWf1mp+tZj+v6Xsf+1v6Pj1pBjMkpS4SEa8F/j1wema+HngJWAm8DLgtM08BbgGuqF7yOeAPM/PfAnc1je8HPpWZr6NxP9Bd1fg3AB+g8Z17J9K4Z62kgtl1FyBpmLOAFcAPqp28I2ncuHkQ+FI1zReA6yLiZ4D5mXlLNX498OWIOAo4PjP/FiAznwWo5vf9zNxZDd8BLAW+0/k/S5qaDEmpuwSwPjMvHzYy4sMjphvrfpJjHUJ9run5S7gNkMbk4Vapu2wEfiMijgWIiAUR0UtjXf2NaprfBr6TmU8BeyLiF6vxFwK3ZOO7Q3dGxLnVPI6IiLmT+ldI04TvIqUukpk/ioj/BnwjInpofOvB+2l8kfHPRcQm4Cka5y2h8RVBf1WF4APAe6rxFwJ/HREfq+Zx3iT+GdK04beASFNAROzNzHl11yHNNB5ulSSpwD1JSZIK3JOUJKnAkJQkqcCQlCSpwJCUJKnAkJQkqcCQlCSp4P8DctoxP+cT6hAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYP0lEQVR4nO3de7SddX3n8fcnOUAI0QIaaeQWXDKx6PIGw3iZcYK0S60XnFGWOFHTDtMzRcda7VhxsqauTietOjMda6naeOlEm2Ij4EBdjoWJRqeOxYpiBSECSiBjBFRQIxhI8p0/9hO6CefyYyf7nH3Oeb/WOms/z2/v/Tzf811JPnnuqSokSdL0Fs12AZIkzRWGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUaGihmeQjSe5Mcl3f2LFJrkpyU/d6TN97b09yc5JtSV4wrLokSRrUMLc0/wfwwgPGLgS2VNWpwJZuniSnAecBT+6+874ki4dYmyRJj9jQQrOqvgD88IDhc4CN3fRG4OV94x+vqt1V9R3gZuDMYdUmSdIgZvqY5nFVtROge31cN348cHvf53Z0Y5IkjYyx2S6gkwnGJry/X5JxYBxgyZIlp5900knDrGte2rdvH4sWeQ7YIOzdYOzbYOzbYL71rW99v6qWD2PZMx2adyRZUVU7k6wA7uzGdwAn9n3uBOC7Ey2gqjYAGwBWrVpV27ZtG2a989LWrVtZvXr1bJcxJ9m7wdi3wdi3wSTZPqxlz/R/Ya4A1nbTa4HL+8bPS3JEklOAU4Evz3BtkiRNaWhbmkkuBlYDj02yA3gH8E5gc5LzgduAcwGq6vokm4FvAnuAN1TV3mHVJknSIIYWmlX16kneOnuSz68H1g+rHkmSDpZHmCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0WVGhu2rSJlStXsmjRIlauXMmmTZsmfD8JY2NjJJnwc5KkhWlstguYKZs2bWJ8fJx7770XgO3btzM+Pg7AmjVrHvb+3r17J/ycJGnhWjBbmuvWrXswEPe79957Wbdu3aTvT/Q5SdLCNadDc+/evQ/Z3fr6179+0t2vt91224TL2D8+2fv7bd++3d20krTAzenQ3L17N9u3b6eq2L59O+9///sfMj8+Pv5g0J100kkTLmP/+GTv9+tfniRp4ZnToTmd/t2q69evZ+nSpQ95f+nSpaxfv37S96daniRp4ZnXoQm93aqLFi1i3bp1rF27lpNPPpkknHzyyWzYsOHBk3vWrFnDhg0bOPnkk6dc3nS7cSVJ89e8D03gwd21GzduZP369ezbt49bb731YWfDrlmzhltvvZWqmjQ8W3bjSpLmp1kJzSRvTnJ9kuuSXJxkSZJjk1yV5Kbu9ZhDvd5Hsnt1ut25kqSFZ8av00xyPPAbwGlVdV+SzcB5wGnAlqp6Z5ILgQuBt021rCOOOILHPO7nuXvXfWTx4WTsMDJ2OFncvY4d9tDxscP54eLD2PCFW9j9wD5279nH7j172b1nH/fv6Zt/YB+79zyRM972F2y/fQc/+NtP8pif3Mz69eu9VlOSFrDZurnBGHBkkgeApcB3gbcDq7v3NwJbmSY0Fy9ezLLTX8ayp77sEa389z99IwCLAkeMLebwsUUsOWzRg9NHjC3i8LFFPP7nj+OUE1dw7hv/JS9+6opHtA5J0vyTqpr5lSZvAtYD9wFXVtWaJPdU1dF9n7m7qh62izbJODAOsHz58tN/5S3v4I49SxijWJzuh32MPThdjGUfi1MctiisPPF4lj/mGA5bBGOLMlO/8kjZtWsXy5Ytm+0y5iR7Nxj7Nhj7Npizzjrrmqo6YxjLnvHQ7I5VXgq8CrgH+ARwCXBRS2j2W7VqVe2/VnM6ixcvZuPGje5eBbZu3crq1atnu4w5yd4Nxr4Nxr4NJsnQQnM2TgT6ReA7VXVXVT0AXAY8B7gjyQqA7vXOloW1XF+5dOlSA1OSdNBmIzRvA56VZGmSAGcDNwBXAGu7z6wFLm9ZWP/1lfuvv7zgggseMr927VrWrVv3sNvr+VQTSdIjMeMnAlXV1UkuAb4K7AG+BmwAlgGbk5xPL1jPbV3mmjVrJt2KnOzpJl/84hfZuHGjTzWRJDWbles0q+odVfWkqnpKVb22qnZX1Q+q6uyqOrV7/eGhWNdkTzfZsGGDTzWRJD0i8/6OQJPd9m7/luUj/Z4kaeGa96E52W3vFi9ePND3JEkL17wPzcluhzc+Pj7pWbfeLk+SNJF5H5oTnV27YcMG3ve+9z3kqSb7tzwPfPqJJEn7zdZt9GbUZGfXTnXWrSRJB5r3W5oT2X995oHXbUqSNJUFsaXZb7LrNsHrMiVJU1twW5qTXbfpdZmSpOksuNCc7PpLr8uUJE1nwYXmZNdfel2mJGk6Cy40J7tu0+syJUnTWXChOdl1m54EJEmazoI7exa8PlOSNJgFt6UpSdKgDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGsxKaSY5OckmSG5PckOTZSY5NclWSm7rXY2ajNkmSJjNbW5p/BHymqp4EPA24AbgQ2FJVpwJbunlJkkbGjIdmkkcDzwM+DFBV91fVPcA5wMbuYxuBl890bZIkTaU5NJM8McmfJ7k0ybMPYp1PAO4C/izJ15J8KMlRwHFVtROge33cQaxDkqRDLlU18RvJkqr6Wd/8xcA7gAI+UVVPH2iFyRnA3wLPraqrk/wR8GPgjVV1dN/n7q6qhx3XTDIOjAMsX7789M2bNw9SxoK2a9culi1bNttlzEn2bjD2bTD2bTBnnXXWNVV1xjCWPTbFe3+V5KNV9bFu/gFgJb3Q3HsQ69wB7Kiqq7v5S+gdv7wjyYqq2plkBXDnRF+uqg3ABoBVq1bV6tWrD6KUhWnr1q3Yt8HYu8HYt8HYt9Ez1e7ZFwI/l+QzSf4Z8O/pHYt8EbBm0BVW1feA25Os6obOBr4JXAGs7cbWApcPug5JkoZh0i3NqtoLXJTkY8DvACuA/1hVtxyC9b4R2JTkcODbwK/SC/DNSc4HbgPOPQTrkSTpkJk0NJP8E+CtwP3A7wP3AeuT7AB+r6p+NOhKq+paYKL9zWcPukxJkoZtqmOaHwBeCSwD/rSqngucl+SfA5uBF8xAfZIkjYypQnMvvRN/ltLb2gSgqj4PfH64ZUmSNHqmCs1/BfxbeoH5upkpR5Kk0TXViUDfAn5rBmuRJGmk+ZQTSZIaGZqSJDWaNjSTvCSJ4SpJWvBawvA84KYk707yC8MuSJKkUTVtaFbVa4BnALfQezLJl5KMJ3nU0KuTJGmENO12raofA5cCH6d3O71/AXw1yRuHWJskSSOl5ZjmS5N8EvgscBhwZlW9CHgavZu4S5K0IEx1c4P9zgX+e1V9oX+wqu5N8q+HU5YkSaOnJTTfAezcP5PkSOC4qrq1qrYMrTJJkkZMyzHNTwD7+ub3dmOSJC0oLaE5VlX9N2y/Hzh8eCVJkjSaWkLzriQv2z+T5Bzg+8MrSZKk0dRyTPPXgU1JLgIC3I5PPZEkLUDThmZV3QI8K8kyIFX1k+GXJUnS6GnZ0iTJi4EnA0uSAFBV/2mIdUmSNHJabm7wAeBVwBvp7Z49Fzh5yHVJkjRyWk4Eek5VvQ64u6p+F3g2cOJwy5IkafS0hObPutd7kzweeAA4ZXglSZI0mlqOaf5VkqOB/wJ8FSjgg0OtSpKkETRlaHYPn95SVfcAlyb5FLCkqn40I9VJkjRCptw9W1X7gP/WN7/bwJQkLVQtxzSvTPKK7L/WRJKkBarlmOZbgKOAPUl+Ru+yk6qqRw+1MkmSRkzLHYEeNROFSJI06qYNzSTPm2j8wIdSS5I037Xsnn1r3/QS4EzgGuD5Q6lIkqQR1bJ79qX980lOBN49tIokSRpRLWfPHmgH8JRDXYgkSaOu5ZjmH9O7CxD0QvbpwNeHWZQkSaOo5ZjmV/qm9wAXV9UXh1SPJEkjqyU0LwF+VlV7AZIsTrK0qu4dbmmSJI2WlmOaW4Aj++aPBP73cMqRJGl0tYTmkqratX+mm146vJIkSRpNLaH50yTP3D+T5HTgvuGVJEnSaGo5pvmbwCeSfLebXwG8anglSZI0mlpubvB3SZ4ErKJ3s/Ybq+qBoVcmSdKImXb3bJI3AEdV1XVV9Q1gWZLXD780SZJGS8sxzV+rqnv2z1TV3cCvDa8kSZJGU0toLup/AHWSxcDhwytJkqTR1HIi0F8Dm5N8gN7t9H4d+MxQq5IkaQS1hObbgHHgAnonAl0JfHCYRUmSNIqm3T1bVfuq6gNV9cqqegVwPfDHB7vi7nZ8X0vyqW7+2CRXJbmpez3mYNchSdKh1PRosCRPT/KuJLcCvwfceAjW/Sbghr75C4EtVXUqvVv3XXgI1iFJ0iEzaWgm+UdJfifJDcBF9J6jmao6q6oOakszyQnAi4EP9Q2fA2zspjcCLz+YdUiSdKhNdUzzRuD/AC+tqpsBkrz5EK33PcBvA4/qGzuuqnYCVNXOJI87ROuSJOmQmCo0XwGcB3wuyWeAj9M7EeigJHkJcGdVXZNk9QDfH6d3YhLLly9n69atB1vSgrNr1y77NiB7Nxj7Nhj7NnpSVVN/IDmK3q7SVwPPp7fr9JNVdeVAK0z+AHgtvQdaLwEeDVwG/GNgdbeVuQLYWlWrplrWqlWratu2bYOUsaBt3bqV1atXz3YZc5K9G4x9G4x9G0ySa6rqjGEsu+Xs2Z9W1aaqeglwAnAtB3GSTlW9vapOqKqV9LZkP1tVrwGuANZ2H1sLXD7oOiRJGoams2f3q6ofVtWfVtXzh1DLO4FfSnIT8EvdvCRJI6Pl5gZDU1Vbga3d9A+As2ezHkmSpvKItjQlSVrIDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKnRjIdmkhOTfC7JDUmuT/KmbvzYJFclual7PWama5MkaSqzsaW5B/itqvoF4FnAG5KcBlwIbKmqU4Et3bwkSSNjxkOzqnZW1Ve76Z8ANwDHA+cAG7uPbQRePtO1SZI0lVTV7K08WQl8AXgKcFtVHd333t1V9bBdtEnGgXGA5cuXn7558+aZKXYe2bVrF8uWLZvtMuYkezcY+zYY+zaYs84665qqOmMYy5610EyyDPg8sL6qLktyT0to9lu1alVt27Zt2KXOO1u3bmX16tWzXcacZO8GY98GY98Gk2RooTkrZ88mOQy4FNhUVZd1w3ckWdG9vwK4czZqkyRpMrNx9myADwM3VNUf9r11BbC2m14LXD7TtUmSNJWxWVjnc4HXAt9Icm039h+AdwKbk5wP3AacOwu1SZI0qRkPzar6GyCTvH32TNYiSdIj4R2BJElqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRiMXmklemGRbkpuTXDjb9UiStN9IhWaSxcCfAC8CTgNeneS02a1KkqSekQpN4Ezg5qr6dlXdD3wcOGeWa5IkCRi90DweuL1vfkc3JknSrBub7QIOkAnG6iEfSMaB8W52d5Lrhl7V/PNY4PuzXcQcZe8GY98GY98Gs2pYCx610NwBnNg3fwLw3f4PVNUGYANAkq9U1RkzV978YN8GZ+8GY98GY98Gk+Qrw1r2qO2e/Tvg1CSnJDkcOA+4YpZrkiQJGLEtzarak+TfAX8NLAY+UlXXz3JZkiQBIxaaAFX1aeDTjR/fMMxa5jH7Njh7Nxj7Nhj7Npih9S1VNf2nJEnSyB3TlCRpZM3Z0PR2e/8gyYlJPpfkhiTXJ3lTN35skquS3NS9HtP3nbd3vduW5AV946cn+Ub33nuTTHQZ0LySZHGSryX5VDdv3xokOTrJJUlu7P7sPdveTS/Jm7u/p9cluTjJEvv2cEk+kuTO/ssKD2WfkhyR5C+78auTrGwqrKrm3A+9k4RuAZ4AHA58HThttuuaxX6sAJ7ZTT8K+Ba92xC+G7iwG78QeFc3fVrXsyOAU7peLu7e+zLwbHrXzP4v4EWz/fvNQP/eAvwF8Klu3r619W0j8G+66cOBo+3dtD07HvgOcGQ3vxn4Ffs2Ya+eBzwTuK5v7JD1CXg98IFu+jzgL1vqmqtbmt5ur09V7ayqr3bTPwFuoPeX8xx6/7DRvb68mz4H+HhV7a6q7wA3A2cmWQE8uqq+VL0/SR/t+868lOQE4MXAh/qG7ds0kjya3j9qHwaoqvur6h7sXYsx4MgkY8BSetei27cDVNUXgB8eMHwo+9S/rEuAs1u21udqaHq7vUl0uxieAVwNHFdVO6EXrMDjuo9N1r/ju+kDx+ez9wC/DezrG7Nv03sCcBfwZ92u7Q8lOQp7N6Wq+n/AfwVuA3YCP6qqK7FvrQ5lnx78TlXtAX4EPGa6AuZqaE57u72FKMky4FLgN6vqx1N9dIKxmmJ8XkryEuDOqrqm9SsTjC24vnXG6O06e39VPQP4Kb3dZZOxd0B3DO4cersQHw8cleQ1U31lgrEF17cGg/RpoB7O1dCc9nZ7C02Sw+gF5qaquqwbvqPbPUH3emc3Pln/dnTTB47PV88FXpbkVnq7+J+f5M+xby12ADuq6upu/hJ6IWrvpvaLwHeq6q6qegC4DHgO9q3VoezTg9/pdpX/HA/fHfwwczU0vd1en24//IeBG6rqD/veugJY202vBS7vGz+vO3vsFOBU4Mvd7o6fJHlWt8zX9X1n3qmqt1fVCVW1kt6foc9W1Wuwb9Oqqu8BtyfZf2Pss4FvYu+mcxvwrCRLu9/3bHrnINi3NoeyT/3LeiW9v//Tb63P9hlSg/4Av0zvLNFbgHWzXc8s9+Kf0tut8PfAtd3PL9PbP78FuKl7PbbvO+u63m2j76w74Azguu69i+hugDHff4DV/MPZs/atrWdPB77S/bn7n8Ax9q6pb78L3Nj9zh+jd8anfXt4ny6md9z3AXpbhecfyj4BS4BP0Dtp6MvAE1rq8o5AkiQ1mqu7ZyVJmnGGpiRJjQxNSZIaGZqSJDUyNCVJamRoSiMkyd4k1/b9HLIn+CRZ2f/ECEmP3NhsFyDpIe6rqqfPdhGSJuaWpjQHJLk1ybuSfLn7eWI3fnKSLUn+vns9qRs/Lsknk3y9+3lOt6jFST6Y3vMcr0xy5Kz9UtIcZGhKo+XIA3bPvqrvvR9X1Zn07mrynm7sIuCjVfVUYBPw3m78vcDnq+pp9O4Je303firwJ1X1ZOAe4BVD/n2kecU7AkkjJMmuqlo2wfitwPOr6tvdzfm/V1WPSfJ9YEVVPdCN76yqxya5Czihqnb3LWMlcFVVndrNvw04rKr+8/B/M2l+cEtTmjtqkunJPjOR3X3Te/G8BukRMTSlueNVfa9f6qb/L70ntACsAf6mm94CXACQZHGSR89UkdJ85v8ypdFyZJJr++Y/U1X7Lzs5IsnV9P6z++pu7DeAjyR5K3AX8Kvd+JuADUnOp7dFeQG9J0ZIOgge05TmgO6Y5hlV9f3ZrkVayNw9K0lSI7c0JUlq5JamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqdH/B6gbbuKxjGGpAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -295,29 +337,51 @@ "name": "stdout", "output_type": "stream", "text": [ - "[##############################] 100%\n", + "Running...\n", + "[# ] 6%\n", "\n", "================= Iteration Stats ================\n", - " step: 1000 of 1000\n", - " loss: 0.592776\n", - " accuracy: 79.30 %\n", - " AVG: 75.23 %\n", + " step: 650 of 10000\n", + " loss: 0.340414\n", + " accuracy: 82.00 %\n", + " AVG: 80.38 %\n", + " Trend slope: 0.000\n", + " MAD Dispersion: nan\n", + " Skewness: Moderately skewed distribution ( -0.82 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 3 min and 54 sec\n", - " ETC: 0h, 0 min and 0 sec\n", + " Elapsed: 0h, 0 min and 9 sec\n", + " ETC: 0h, 2 min and 15 sec\n", "\n", - "================== Network Setup ================\n", - " number of classes: 32460\n", - " number of features: 1\n", - " learning rate: 0.001\n", - " training steps: 1000\n", - " batch size: 256\n", - "1st layer n. of neurons: 64\n", - "2st layer n. of neurons: 64\n", - "\n", - "Analysis finished.\n", - "Final Average accuracy is 75.23 %\n" + "================= Network Setup ================\n", + " number of classes: 2\n", + " number of features: 14\n", + " learning rate: 0.1\n", + " training steps: 10000\n", + " batch size: 100\n", + "1st layer n. of neurons: 512\n", + "2st layer n. of neurons: 512\n", + " Normalized data: True, type: mean, Discrete Binary 0/1\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstep\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_y\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtake\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtraining_steps\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;31m# Run the optimization to update W and b values.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[0mrun_optimization\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_y\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mstep\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mdisplay_step\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m\u001b[0m in \u001b[0;36mrun_optimization\u001b[1;34m(x, y)\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;31m# Compute gradients.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 14\u001b[1;33m \u001b[0mgradients\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgradient\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainable_variables\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 15\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;31m# Update W and b following gradients.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\backprop.py\u001b[0m in \u001b[0;36mgradient\u001b[1;34m(self, target, sources, output_gradients, unconnected_gradients)\u001b[0m\n\u001b[0;32m 1065\u001b[0m for x in nest.flatten(output_gradients)]\n\u001b[0;32m 1066\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1067\u001b[1;33m flat_grad = imperative_grad.imperative_grad(\n\u001b[0m\u001b[0;32m 1068\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_tape\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1069\u001b[0m \u001b[0mflat_targets\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\imperative_grad.py\u001b[0m in \u001b[0;36mimperative_grad\u001b[1;34m(tape, target, sources, output_gradients, sources_raw, unconnected_gradients)\u001b[0m\n\u001b[0;32m 69\u001b[0m \"Unknown value for unconnected_gradients: %r\" % unconnected_gradients)\n\u001b[0;32m 70\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 71\u001b[1;33m return pywrap_tfe.TFE_Py_TapeGradient(\n\u001b[0m\u001b[0;32m 72\u001b[0m \u001b[0mtape\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_tape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\backprop.py\u001b[0m in \u001b[0;36m_gradient_function\u001b[1;34m(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads, skip_input_indices, forward_pass_name_scope)\u001b[0m\n\u001b[0;32m 160\u001b[0m \u001b[0mgradient_name_scope\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mforward_pass_name_scope\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m\"/\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 161\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname_scope\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgradient_name_scope\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 162\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mgrad_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmock_op\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mout_grads\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 163\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 164\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgrad_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmock_op\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mout_grads\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_grad.py\u001b[0m in \u001b[0;36m_MeanGrad\u001b[1;34m(op, grad)\u001b[0m\n\u001b[0;32m 264\u001b[0m factor = _safe_shape_div(\n\u001b[0;32m 265\u001b[0m math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape))\n\u001b[1;32m--> 266\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtruediv\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msum_grad\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfactor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msum_grad\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 267\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 268\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 199\u001b[0m \u001b[1;34m\"\"\"Call target, and fall back on dispatchers if there is a TypeError.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 200\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 201\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 202\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 203\u001b[0m \u001b[1;31m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\u001b[0m in \u001b[0;36mtruediv\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 1295\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mIf\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mx\u001b[0m\u001b[0;31m`\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0my\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mhave\u001b[0m \u001b[0mdifferent\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1296\u001b[0m \"\"\"\n\u001b[1;32m-> 1297\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_truediv_python3\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1298\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1299\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\u001b[0m in \u001b[0;36m_truediv_python3\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 1234\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1235\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1236\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mgen_math_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreal_div\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1237\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1238\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py\u001b[0m in \u001b[0;36mreal_div\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 7436\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtld\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_eager\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7437\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 7438\u001b[1;33m _result = pywrap_tfe.TFE_Py_FastPathExecute(\n\u001b[0m\u001b[0;32m 7439\u001b[0m \u001b[0m_ctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_context_handle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtld\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"RealDiv\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7440\u001b[0m tld.op_callbacks, x, y)\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] } ], @@ -349,9 +413,11 @@ " \n", " steps.append(step)\n", " accuracyValue.append(acc*100)\n", - " live_plot(steps, accuracyValue)\n", + " trendSlope= live_plot(steps, accuracyValue)\n", " totalTime =datetime.now()- totalStartTime\n", " \n", + " stats=pd.Series(accuracyValue)\n", + " \n", " if int(step/training_steps*100)<100:\n", " print(\"Running...\")\n", " progress(int(step/training_steps*100)) \n", @@ -361,6 +427,9 @@ " print(\" loss: %f\" % loss)\n", " print(\" accuracy: %.2f %%\" % (acc*100))\n", " print(\" AVG: %.2f %%\" % (avg/avgCounter))\n", + " print(\" Trend slope: %.3f\" % (trendSlope))\n", + " print(\" MAD Dispersion: \" + str(stats.mad()))\n", + " print(\" Skewness: \" + measureSkewness(stats))\n", " print(\"\")\n", " print(\"================= Time ================\")\n", " print(\" Elapsed: \" + elapsedTime(totalTime))\n", @@ -376,6 +445,7 @@ "\n", " print(\"1st layer n. of neurons: \"+ str(n_hidden_1 ))\n", " print(\"2st layer n. of neurons: \"+ str(n_hidden_2))\n", + " print(\" Normalized data: \" + (\"True\" if normalizeDataValues else \"False\") +\", type: \" + normalizationType +\", \" +(\"Discrete Binary 0/1\" if normalizationType else \"Continuous range [0,1]\"))\n", "\n", " start_time = datetime.now()\n", "print(\"\")\n", From a8579629990de76d857ce20931e136d264edbaf0 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 11:18:33 +0200 Subject: [PATCH 04/13] Add files via upload --- .../Multilayer_Perceptron.ipynb | 93 +++++++------------ 1 file changed, 36 insertions(+), 57 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index 410dcd63..eeb2445d 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -58,10 +58,10 @@ "num_features = 0 # data features : number of samples(rows) for the variable set. a value of 0 loads from the dataset bellow\n", "\n", "# Training parameters.\n", - "learning_rate = 0.1\n", + "learning_rate = 1\n", "training_steps = 10000\n", - "batch_size = 100\n", - "display_step = 50\n", + "batch_size = 150\n", + "display_step = 100\n", "\n", "#normalization of data\n", "normalizeDataValues=True\n", @@ -75,18 +75,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 38)", - "output_type": "error", - "traceback": [ - "\u001b[1;36m File \u001b[1;32m\"\"\u001b[1;36m, line \u001b[1;32m38\u001b[0m\n\u001b[1;33m else\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m invalid syntax\n" - ] - } - ], + "outputs": [], "source": [ "# predictions Data.\n", "df_predict_ds=pd.read_csv('./week3_exam_dataset_test.csv')\n", @@ -102,6 +93,7 @@ "if num_features==0:\n", " num_features= df_tr_raw_y.shape[0]\n", "else:\n", + " rs=\"\"\n", " #TODO: fill possible empty values on the datasets\n", " \n", "df_tr_raw_values_y = df_tr_raw_y.values\n", @@ -127,7 +119,7 @@ " maxVal=max(np.amax(maxVal_train, axis=0),np.amax(maxVal_test, axis=0),np.amax(maxVal_pred, axis=0))\n", " if normalizationTypeBinary:\n", " x_train, x_test,data_predict_x = np.where((x_train / maxVal_train)>=0.5,1,0), np.where((x_test / maxVal_test)>=0.5,1,0), np.where((data_predict_x / maxVal_pred)>=0.5,1,0)\n", - " else\n", + " else:\n", " x_train, x_test, data_predict_x = x_train / maxVal_train, x_test / maxVal_test, data_predict_x / maxVal_pred\n", " else:\n", " meanVal_test=np.mean(x_test, axis=0)\n", @@ -137,7 +129,7 @@ " \n", " if normalizationTypeBinary:\n", " x_train, x_test,data_predict_x = np.where((x_train / meanVal_train)>=0.5,1,0), np.where((x_test / meanVal_test)>=0.5,1,0), np.where((data_predict_x / meanVal_pred)>=0.5,1,0)\n", - " else\n", + " else:\n", " x_train, x_test, data_predict_x = x_train / meanVal_train, x_test / meanVal_test, data_predict_x / meanVal_pred\n", "\n", "# Use tf.data API to shuffle and batch data.\n", @@ -147,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -180,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -246,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 19, "metadata": { "scrolled": true }, @@ -318,12 +310,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYP0lEQVR4nO3de7SddX3n8fcnOUAI0QIaaeQWXDKx6PIGw3iZcYK0S60XnFGWOFHTDtMzRcda7VhxsqauTietOjMda6naeOlEm2Ij4EBdjoWJRqeOxYpiBSECSiBjBFRQIxhI8p0/9hO6CefyYyf7nH3Oeb/WOms/z2/v/Tzf811JPnnuqSokSdL0Fs12AZIkzRWGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUaGihmeQjSe5Mcl3f2LFJrkpyU/d6TN97b09yc5JtSV4wrLokSRrUMLc0/wfwwgPGLgS2VNWpwJZuniSnAecBT+6+874ki4dYmyRJj9jQQrOqvgD88IDhc4CN3fRG4OV94x+vqt1V9R3gZuDMYdUmSdIgZvqY5nFVtROge31cN348cHvf53Z0Y5IkjYyx2S6gkwnGJry/X5JxYBxgyZIlp5900knDrGte2rdvH4sWeQ7YIOzdYOzbYOzbYL71rW99v6qWD2PZMx2adyRZUVU7k6wA7uzGdwAn9n3uBOC7Ey2gqjYAGwBWrVpV27ZtG2a989LWrVtZvXr1bJcxJ9m7wdi3wdi3wSTZPqxlz/R/Ya4A1nbTa4HL+8bPS3JEklOAU4Evz3BtkiRNaWhbmkkuBlYDj02yA3gH8E5gc5LzgduAcwGq6vokm4FvAnuAN1TV3mHVJknSIIYWmlX16kneOnuSz68H1g+rHkmSDpZHmCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0WVGhu2rSJlStXsmjRIlauXMmmTZsmfD8JY2NjJJnwc5KkhWlstguYKZs2bWJ8fJx7770XgO3btzM+Pg7AmjVrHvb+3r17J/ycJGnhWjBbmuvWrXswEPe79957Wbdu3aTvT/Q5SdLCNadDc+/evQ/Z3fr6179+0t2vt91224TL2D8+2fv7bd++3d20krTAzenQ3L17N9u3b6eq2L59O+9///sfMj8+Pv5g0J100kkTLmP/+GTv9+tfniRp4ZnToTmd/t2q69evZ+nSpQ95f+nSpaxfv37S96daniRp4ZnXoQm93aqLFi1i3bp1rF27lpNPPpkknHzyyWzYsOHBk3vWrFnDhg0bOPnkk6dc3nS7cSVJ89e8D03gwd21GzduZP369ezbt49bb731YWfDrlmzhltvvZWqmjQ8W3bjSpLmp1kJzSRvTnJ9kuuSXJxkSZJjk1yV5Kbu9ZhDvd5Hsnt1ut25kqSFZ8av00xyPPAbwGlVdV+SzcB5wGnAlqp6Z5ILgQuBt021rCOOOILHPO7nuXvXfWTx4WTsMDJ2OFncvY4d9tDxscP54eLD2PCFW9j9wD5279nH7j172b1nH/fv6Zt/YB+79zyRM972F2y/fQc/+NtP8pif3Mz69eu9VlOSFrDZurnBGHBkkgeApcB3gbcDq7v3NwJbmSY0Fy9ezLLTX8ayp77sEa389z99IwCLAkeMLebwsUUsOWzRg9NHjC3i8LFFPP7nj+OUE1dw7hv/JS9+6opHtA5J0vyTqpr5lSZvAtYD9wFXVtWaJPdU1dF9n7m7qh62izbJODAOsHz58tN/5S3v4I49SxijWJzuh32MPThdjGUfi1MctiisPPF4lj/mGA5bBGOLMlO/8kjZtWsXy5Ytm+0y5iR7Nxj7Nhj7Npizzjrrmqo6YxjLnvHQ7I5VXgq8CrgH+ARwCXBRS2j2W7VqVe2/VnM6ixcvZuPGje5eBbZu3crq1atnu4w5yd4Nxr4Nxr4NJsnQQnM2TgT6ReA7VXVXVT0AXAY8B7gjyQqA7vXOloW1XF+5dOlSA1OSdNBmIzRvA56VZGmSAGcDNwBXAGu7z6wFLm9ZWP/1lfuvv7zgggseMr927VrWrVv3sNvr+VQTSdIjMeMnAlXV1UkuAb4K7AG+BmwAlgGbk5xPL1jPbV3mmjVrJt2KnOzpJl/84hfZuHGjTzWRJDWbles0q+odVfWkqnpKVb22qnZX1Q+q6uyqOrV7/eGhWNdkTzfZsGGDTzWRJD0i8/6OQJPd9m7/luUj/Z4kaeGa96E52W3vFi9ePND3JEkL17wPzcluhzc+Pj7pWbfeLk+SNJF5H5oTnV27YcMG3ve+9z3kqSb7tzwPfPqJJEn7zdZt9GbUZGfXTnXWrSRJB5r3W5oT2X995oHXbUqSNJUFsaXZb7LrNsHrMiVJU1twW5qTXbfpdZmSpOksuNCc7PpLr8uUJE1nwYXmZNdfel2mJGk6Cy40J7tu0+syJUnTWXChOdl1m54EJEmazoI7exa8PlOSNJgFt6UpSdKgDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGsxKaSY5OckmSG5PckOTZSY5NclWSm7rXY2ajNkmSJjNbW5p/BHymqp4EPA24AbgQ2FJVpwJbunlJkkbGjIdmkkcDzwM+DFBV91fVPcA5wMbuYxuBl890bZIkTaU5NJM8McmfJ7k0ybMPYp1PAO4C/izJ15J8KMlRwHFVtROge33cQaxDkqRDLlU18RvJkqr6Wd/8xcA7gAI+UVVPH2iFyRnA3wLPraqrk/wR8GPgjVV1dN/n7q6qhx3XTDIOjAMsX7789M2bNw9SxoK2a9culi1bNttlzEn2bjD2bTD2bTBnnXXWNVV1xjCWPTbFe3+V5KNV9bFu/gFgJb3Q3HsQ69wB7Kiqq7v5S+gdv7wjyYqq2plkBXDnRF+uqg3ABoBVq1bV6tWrD6KUhWnr1q3Yt8HYu8HYt8HYt9Ez1e7ZFwI/l+QzSf4Z8O/pHYt8EbBm0BVW1feA25Os6obOBr4JXAGs7cbWApcPug5JkoZh0i3NqtoLXJTkY8DvACuA/1hVtxyC9b4R2JTkcODbwK/SC/DNSc4HbgPOPQTrkSTpkJk0NJP8E+CtwP3A7wP3AeuT7AB+r6p+NOhKq+paYKL9zWcPukxJkoZtqmOaHwBeCSwD/rSqngucl+SfA5uBF8xAfZIkjYypQnMvvRN/ltLb2gSgqj4PfH64ZUmSNHqmCs1/BfxbeoH5upkpR5Kk0TXViUDfAn5rBmuRJGmk+ZQTSZIaGZqSJDWaNjSTvCSJ4SpJWvBawvA84KYk707yC8MuSJKkUTVtaFbVa4BnALfQezLJl5KMJ3nU0KuTJGmENO12raofA5cCH6d3O71/AXw1yRuHWJskSSOl5ZjmS5N8EvgscBhwZlW9CHgavZu4S5K0IEx1c4P9zgX+e1V9oX+wqu5N8q+HU5YkSaOnJTTfAezcP5PkSOC4qrq1qrYMrTJJkkZMyzHNTwD7+ub3dmOSJC0oLaE5VlX9N2y/Hzh8eCVJkjSaWkLzriQv2z+T5Bzg+8MrSZKk0dRyTPPXgU1JLgIC3I5PPZEkLUDThmZV3QI8K8kyIFX1k+GXJUnS6GnZ0iTJi4EnA0uSAFBV/2mIdUmSNHJabm7wAeBVwBvp7Z49Fzh5yHVJkjRyWk4Eek5VvQ64u6p+F3g2cOJwy5IkafS0hObPutd7kzweeAA4ZXglSZI0mlqOaf5VkqOB/wJ8FSjgg0OtSpKkETRlaHYPn95SVfcAlyb5FLCkqn40I9VJkjRCptw9W1X7gP/WN7/bwJQkLVQtxzSvTPKK7L/WRJKkBarlmOZbgKOAPUl+Ru+yk6qqRw+1MkmSRkzLHYEeNROFSJI06qYNzSTPm2j8wIdSS5I037Xsnn1r3/QS4EzgGuD5Q6lIkqQR1bJ79qX980lOBN49tIokSRpRLWfPHmgH8JRDXYgkSaOu5ZjmH9O7CxD0QvbpwNeHWZQkSaOo5ZjmV/qm9wAXV9UXh1SPJEkjqyU0LwF+VlV7AZIsTrK0qu4dbmmSJI2WlmOaW4Aj++aPBP73cMqRJGl0tYTmkqratX+mm146vJIkSRpNLaH50yTP3D+T5HTgvuGVJEnSaGo5pvmbwCeSfLebXwG8anglSZI0mlpubvB3SZ4ErKJ3s/Ybq+qBoVcmSdKImXb3bJI3AEdV1XVV9Q1gWZLXD780SZJGS8sxzV+rqnv2z1TV3cCvDa8kSZJGU0toLup/AHWSxcDhwytJkqTR1HIi0F8Dm5N8gN7t9H4d+MxQq5IkaQS1hObbgHHgAnonAl0JfHCYRUmSNIqm3T1bVfuq6gNV9cqqegVwPfDHB7vi7nZ8X0vyqW7+2CRXJbmpez3mYNchSdKh1PRosCRPT/KuJLcCvwfceAjW/Sbghr75C4EtVXUqvVv3XXgI1iFJ0iEzaWgm+UdJfifJDcBF9J6jmao6q6oOakszyQnAi4EP9Q2fA2zspjcCLz+YdUiSdKhNdUzzRuD/AC+tqpsBkrz5EK33PcBvA4/qGzuuqnYCVNXOJI87ROuSJOmQmCo0XwGcB3wuyWeAj9M7EeigJHkJcGdVXZNk9QDfH6d3YhLLly9n69atB1vSgrNr1y77NiB7Nxj7Nhj7NnpSVVN/IDmK3q7SVwPPp7fr9JNVdeVAK0z+AHgtvQdaLwEeDVwG/GNgdbeVuQLYWlWrplrWqlWratu2bYOUsaBt3bqV1atXz3YZc5K9G4x9G4x9G0ySa6rqjGEsu+Xs2Z9W1aaqeglwAnAtB3GSTlW9vapOqKqV9LZkP1tVrwGuANZ2H1sLXD7oOiRJGoams2f3q6ofVtWfVtXzh1DLO4FfSnIT8EvdvCRJI6Pl5gZDU1Vbga3d9A+As2ezHkmSpvKItjQlSVrIDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKnRjIdmkhOTfC7JDUmuT/KmbvzYJFclual7PWama5MkaSqzsaW5B/itqvoF4FnAG5KcBlwIbKmqU4Et3bwkSSNjxkOzqnZW1Ve76Z8ANwDHA+cAG7uPbQRePtO1SZI0lVTV7K08WQl8AXgKcFtVHd333t1V9bBdtEnGgXGA5cuXn7558+aZKXYe2bVrF8uWLZvtMuYkezcY+zYY+zaYs84665qqOmMYy5610EyyDPg8sL6qLktyT0to9lu1alVt27Zt2KXOO1u3bmX16tWzXcacZO8GY98GY98Gk2RooTkrZ88mOQy4FNhUVZd1w3ckWdG9vwK4czZqkyRpMrNx9myADwM3VNUf9r11BbC2m14LXD7TtUmSNJWxWVjnc4HXAt9Icm039h+AdwKbk5wP3AacOwu1SZI0qRkPzar6GyCTvH32TNYiSdIj4R2BJElqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRoamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqZGhKUlSI0NTkqRGhqYkSY0MTUmSGhmakiQ1MjQlSWpkaEqS1MjQlCSpkaEpSVIjQ1OSpEaGpiRJjQxNSZIaGZqSJDUyNCVJamRoSpLUyNCUJKmRoSlJUiNDU5KkRiMXmklemGRbkpuTXDjb9UiStN9IhWaSxcCfAC8CTgNeneS02a1KkqSekQpN4Ezg5qr6dlXdD3wcOGeWa5IkCRi90DweuL1vfkc3JknSrBub7QIOkAnG6iEfSMaB8W52d5Lrhl7V/PNY4PuzXcQcZe8GY98GY98Gs2pYCx610NwBnNg3fwLw3f4PVNUGYANAkq9U1RkzV978YN8GZ+8GY98GY98Gk+Qrw1r2qO2e/Tvg1CSnJDkcOA+4YpZrkiQJGLEtzarak+TfAX8NLAY+UlXXz3JZkiQBIxaaAFX1aeDTjR/fMMxa5jH7Njh7Nxj7Nhj7Npih9S1VNf2nJEnSyB3TlCRpZM3Z0PR2e/8gyYlJPpfkhiTXJ3lTN35skquS3NS9HtP3nbd3vduW5AV946cn+Ub33nuTTHQZ0LySZHGSryX5VDdv3xokOTrJJUlu7P7sPdveTS/Jm7u/p9cluTjJEvv2cEk+kuTO/ssKD2WfkhyR5C+78auTrGwqrKrm3A+9k4RuAZ4AHA58HThttuuaxX6sAJ7ZTT8K+Ba92xC+G7iwG78QeFc3fVrXsyOAU7peLu7e+zLwbHrXzP4v4EWz/fvNQP/eAvwF8Klu3r619W0j8G+66cOBo+3dtD07HvgOcGQ3vxn4Ffs2Ya+eBzwTuK5v7JD1CXg98IFu+jzgL1vqmqtbmt5ur09V7ayqr3bTPwFuoPeX8xx6/7DRvb68mz4H+HhV7a6q7wA3A2cmWQE8uqq+VL0/SR/t+868lOQE4MXAh/qG7ds0kjya3j9qHwaoqvur6h7sXYsx4MgkY8BSetei27cDVNUXgB8eMHwo+9S/rEuAs1u21udqaHq7vUl0uxieAVwNHFdVO6EXrMDjuo9N1r/ju+kDx+ez9wC/DezrG7Nv03sCcBfwZ92u7Q8lOQp7N6Wq+n/AfwVuA3YCP6qqK7FvrQ5lnx78TlXtAX4EPGa6AuZqaE57u72FKMky4FLgN6vqx1N9dIKxmmJ8XkryEuDOqrqm9SsTjC24vnXG6O06e39VPQP4Kb3dZZOxd0B3DO4cersQHw8cleQ1U31lgrEF17cGg/RpoB7O1dCc9nZ7C02Sw+gF5qaquqwbvqPbPUH3emc3Pln/dnTTB47PV88FXpbkVnq7+J+f5M+xby12ADuq6upu/hJ6IWrvpvaLwHeq6q6qegC4DHgO9q3VoezTg9/pdpX/HA/fHfwwczU0vd1en24//IeBG6rqD/veugJY202vBS7vGz+vO3vsFOBU4Mvd7o6fJHlWt8zX9X1n3qmqt1fVCVW1kt6foc9W1Wuwb9Oqqu8BtyfZf2Pss4FvYu+mcxvwrCRLu9/3bHrnINi3NoeyT/3LeiW9v//Tb63P9hlSg/4Av0zvLNFbgHWzXc8s9+Kf0tut8PfAtd3PL9PbP78FuKl7PbbvO+u63m2j76w74Azguu69i+hugDHff4DV/MPZs/atrWdPB77S/bn7n8Ax9q6pb78L3Nj9zh+jd8anfXt4ny6md9z3AXpbhecfyj4BS4BP0Dtp6MvAE1rq8o5AkiQ1mqu7ZyVJmnGGpiRJjQxNSZIaGZqSJDUyNCVJamRoSiMkyd4k1/b9HLIn+CRZ2f/ECEmP3NhsFyDpIe6rqqfPdhGSJuaWpjQHJLk1ybuSfLn7eWI3fnKSLUn+vns9qRs/Lsknk3y9+3lOt6jFST6Y3vMcr0xy5Kz9UtIcZGhKo+XIA3bPvqrvvR9X1Zn07mrynm7sIuCjVfVUYBPw3m78vcDnq+pp9O4Je303firwJ1X1ZOAe4BVD/n2kecU7AkkjJMmuqlo2wfitwPOr6tvdzfm/V1WPSfJ9YEVVPdCN76yqxya5Czihqnb3LWMlcFVVndrNvw04rKr+8/B/M2l+cEtTmjtqkunJPjOR3X3Te/G8BukRMTSlueNVfa9f6qb/L70ntACsAf6mm94CXACQZHGSR89UkdJ85v8ypdFyZJJr++Y/U1X7Lzs5IsnV9P6z++pu7DeAjyR5K3AX8Kvd+JuADUnOp7dFeQG9J0ZIOgge05TmgO6Y5hlV9f3ZrkVayNw9K0lSI7c0JUlq5JamJEmNDE1JkhoZmpIkNTI0JUlqZGhKktTI0JQkqdH/B6gbbuKxjGGpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZwcdZ3/8fene2aSDCGQixgCmegaBvEC4YfgwQbwAg9YlJ9oUDyzoj881zWaFdYjrkd2ddHdn8aLIyMYDgVdD9iQ8fitCxLQBYQQ0CQkBhIIQUIgk+n+/P7o6knNpKf729Vd3TWT1/Px6Ed3V3dXfevbVfWub32rq83dBQAAasu1uwAAAIwVhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAECi10DSz75jZVjO7MzZsmpndaGbrovupsdc+bmb3mdlaM3tlWuUCACCpNFual0h61YhhiyWtcvf5klZFz2VmR0k6R9Kzo8/8u5nlUywbAAB1Sy003f2XkraPGHyGpEujx5dKOjM2/Ep33+3uf5J0n6Tj0yobAABJtLpPc5a7b5Gk6P6QaPgcSQ/E3rcpGgYAQGZ0tLsAEaswrOL1/cxskaRFkjRx4sRj586dm2a5xqVisahcjnPAkqDukqHekqHekrn33nsfdveZaYy71aH5kJnNdvctZjZb0tZo+CZJh8fed5ikP1cagbsvl7Rcknp7e33t2rVplndc6u/v14IFC9pdjDGJukuGekuGekvGzDakNe5W78JcL+m86PF5kq6LDT/HzCaY2dMlzZd0S4vLBgBAVam1NM3sCkkLJM0ws02SLpL0eUkrzeydkjZKOluS3P0uM1sp6Q+SBiW9z90LaZUNAIAkUgtNd3/TKC+dOsr7l0pamlZ5AABoFD3MAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITwH6hr69P8+bNUy6X07x589TX19fuImEM6mh3AQAgbX19fVq0aJF27dolSdqwYYMWLVokSVq4cGE7i4YxhpYmgHFvyZIlQ4FZtmvXLi1ZsqRNJcJYRWgCGPc2btxY13BgNIQmgHFv7ty5NYfT54kQhCb2C2wQK9tf6mXp0qXq7u4eNqy7u1tLly6VtLfPc8OGDXL3oT7P8VofaIC7j9nbEUcc4ajf6tWr212EllqxYoV3d3e7pKFbd3e3r1ixou5xjae6a2a91JKFeluxYoX39PS4mXlPT8+w+ezp6RlWD+VbT09P+wrs2ai3sUjSrZ5S7tDS3I/tL62Mdp8EktV6bkW9lOd9zZo1bZ/3hQsXav369SoWi1q/fv2ws2bp82yeZi7vmVx30krjVtxoaSazevXqlrYy2s3MKrYizKzucdW755/lem5mvVQSn/dly5Zlat5HoqXZHM1c3hsZl1JsabY9+Bq5EZrJrF69OrMbiTQ0c17r3YhluZ7TLlt8/OXQTHPeqx1+DflsFnduxlpoNnOZamRcaYYmh2f3U/vT4ahaJ4GkKcv1nHa9tHLeGz2RZ+HChVq+fLl6enpkZurp6dHy5cu58EGdmvmdZ3XdITT3UyGn4LdavP9ixowZmjFjRlP6Mtq5QcxiPZelXS/1znsj/VdJ+mdHTk/SqH2ezSxr2tpZtlrfeT1ly+y6k1YTthU3Ds8mk8U+zUrlyUrZ4sZTn2ba6unTbLSe6u2fbWR6WT7ruN3LW7Xp11s2+jQJTXdvrN+lWcorYq2yjHz9/PPPT63so/VfxG9Z6AdM0seUhe+8XcrzvmzZsqrznqT/Kl6v+Xy+rs830l/Win7q0HprR9lqGW27Mdp6nc/ng7dBofVAaDYYmvWGQ1obtVbsBYbMy2gb/vhnp0+f7l1dXVVDrJllH62lENJqaKWQ0Gx0ecpyyCYtW616a0ZLsZ7ls5Ezh7N41nH5e2nFulPPMhDyPaWxTSE0GwjNWkHVysMZae8Fhs5LpQ1YvQt3s8s+XlqajS5P7T68llbZatVbvevGaO+v1mppZHrN+myI+PhDzjoOWXdbvY2pNC+t3KYQmg2EZq0FPGQFaNaef9p7qKEbkkobsCQLd7z88cMwzTrlv5HgSKu11+yN/8hp1XuYMel8JHl/I2HR7J2NRtelLPdpxuctHprxdS3ke0mjbPUuAyFHkBrZHo62vBKaDYRmrZWr1uvNXEHS3kMNWUC7u7v9mmuuSfTZem+NBN306dN9+vTpbfnNXbXPt+MwY70bkpD5SPL+RoKq2Ye1m7EuNfq7zmbsSFcyWkuz3u+lXB/NLFu9y0C1QG90B7Ha8kpo1hma9ey5N6MlGirtPdTQ1uLFF1+c+LP13kJbWM3caDX6nVX7fDNamiHLZzOWt3rrIc11odknULX6MHYr+5kr9Wk28r00ek5HI0dCqn1Ptb7DQqHoA4MFf3Jg0B9/ao/v2DXgj+zc7Q/95UnfsuNJ73nWMd5x0CzvmHqod0w/zDtn9HjnIc/wnmNemmpomrtrrOrt7fW1a9cOGzbyH9or6e7uHvo9WqX3x1/P5XKqVEdmpmKxWHeZ+/r6tGTJEm3cuFFz587V0qVLm/a7uJB5l6Rly5bpIx/5SM3PdnZ2asqUKdq+fbvmzp2r008/XT/5yU+0cePGinVSyWj1VKveq0n7O6v2+ZtuukkLFixIXLbQ7ygutF7qmY9K9VDr/Y18Z/39/VXrbaSQaaW5LtVblka4u4ouFYquQtE1WCzqyu9fpaWf+5ze8c536dOfXSpZTpbLS7m8LJeTLC/L53XzLb/VT376M33xS8u0e2CPlMtJubwmTpyk977vAhUlfWP5NzWwZ1DKlcbRNWGS3nzuuXrBscfpt7eu0cqrrtaewcLQ+DsnTNBpp79aRz7rKN151x+06qbVGiwUo2nnY2UpTaujs0vPe/7RetrsQ4fKX7p3FYuurQ8/oi1bHtRAoaiurgmaNmOGJnVPVqHo2rlrl3bufEJFmXL5DnV2TZByORWKpTpJasMXXrPG3Y9r+MupYFyEZnzlyeVyKhQK+7w3n8+rWCxWXLmqrXzz5s3Thg0b6hpfO4XUxcUXX6wLLrig6mdrzddo9TJST0+P1q9fH/z50d5fz2cbGXet8V9yySXavHlz1XpKsjyNFF++4jsr9Sxv9dZDyPuTBlU5NFes6NM/fPKT2rhps+b2zNMnL7xQZ73+bBXchza0hYLrpAULtHnLFpnlhzb2yuU1e/ahunLlVUMBM/SZYlGFojRYLKrorsFC/LXh7937erH0upemOfRatLG/9777dNvtv9cTu3aVAsNKZSiXZ1L3AXrhCSdWnM72HTu0bdvDGiy6Ojq7dOBBB2vCxIlD7909sEcDewbl5QDKEC8WZF7UxIkT9NSuJ1QYHJS8KC8WpPLNXV4cVGc+r6c9bZZmTJ+qfC6njpwpnzPlzdSR3/s4lzN15k05M3XkSs9L7419Jme695679atf/kKP7dihgw6crJe97BQde8wxyuekfC6nvEn5fE55M31i8cf08LatpbJ5USoMyosF5Ux6Yt3NcndLo37GfGheeOGFQXvujbQM62m5Zsloe8iXX365zjrrrKaPe6Rq9dJIazDNFpFUvWUxadIkveUtbwkad7G8QY6FwfSZM+VmI/bYy3vwpVbExO5uLV78CZ368lfo5zfcqH/+8pe1e2CPzEp79hMmdWvR375HJ77oxXs31F6eRnFoA77mttv1gx9epz2FYmlDb6VWxMtf/grN7z0yahFoKDzu/+OfdPMtv1Wh6EPl6ujs1FHPfo5mHvK04dMpFjVY2BsyhaIPe14sDr/fM1hQwV2uVLZjiZU32OUNefnx7qee0o5Ht8ujDfFQYAyFR2lDfdJLX6LOvO3doOdMWzZv0po1a1TYs1teLEpeUD6X00kvfYmOPOII3b/uXv3njTdoz8DuaHyl8DnjjNfpuBccUyqLlcryx/vW6bHHduiyS76rgd1PDZWjq6tT7z3/PXrZyScPBU7OomAqz4+Zjj3maBWLg1KxKBULQ+WRF7XtoYc0Y/o0eXFwaJ7kpXWvvC41+0hbNfWut7W2QYRmBb29vb579+66Wzz17i2HtN5CWzH1avQQVKXPz5kzp65DZUHj7unRK097tX7+8xv0wObNOnxujz6+5B905t+cNaJFULq98lWnacuDD+4NjFxeZjnNmj1b3730sn32/Msb6ULRtfjjn9Ajj+4oHaYaagHkNHXaNL3/gx9WoVjUHXfepV/+6tf6y84nNGXKQTr+hBP1V8985vAWyCgtjMFiUVse3KoNGzdq956CJkyYoFmHztGBUw7SI9u3a+u2R/aZdvlwVS7XoXxnp4oyZWnVci/KikV1duQ1oatTOZM68rm9gRG1DJ54/HE9vG2rBnY/pa6OvObMOVSzZs4Y2jB35HKxVsLesOkc1nrY28LI53LK56Q/b9qk//jx9drx6KOloCjsbb1MO/hgfebT/zjU6sjlTH/34Q9p29aHovcUpWjDPmvmDH3ve33qiMZbCquoLPm9YdMRPR96LZdTLqehx+XpjCbkiEDSFns9R6/KLfSk24Fa06q1PUvz6ENoWattW6ttmwnNCnp7e33dunU1+9fq6cOsJZfLy82GtxIsJ8t3aNPmP8c2xMW9e+YV9sjLr422x15w13/95r91+Yo+7RkslPoPLK+uCRN15lln6bnPff7ew0sjDw/FwqBQLKrgGjadrdse0UFTpw7rdxg+nmLFccXLOHKaWTJ8o13aeA4FQ86Uz8cOGcVCYGQY5OPBEI3rvnX36vY1t5b2yL0oLxQkL+/Bl0KgM5/T6aedpuc/77lDrZDy+G9fc6uu+F5f1GoohUFXR4cWvftd+uuTXhoFmaJWQ04vO/UUeaFQOvxUHIw+U5DkuucPd+0TBvkR5Y4fHmun/v5+nXLKKcGtlrT7EWsZrYUVUpZarbNa446Pv9Ed3Eb70JP00beqD77W5wnNCuItze4jX6LuZ54w1DmdiwJtUvcB+qv58zXzkFkqFqVbbr1VuwcGh7UOzHLq7JqoOYfPjYVZPBz2dmxnrbry5urI54fv4VfbgOZMu3bu1MEHTxnxmVwsHKJWyD79D/v2R+RzivovcvtM67Y1t+pH112nRx7epunTpurs15+ll7zkxUNl+/WvfqEVl12mrQ89qENmTNe73vUOveoVr6ha/vK0f/iDa/VPSz+rBzZu1OFzDtWn/vEinbvwzcpZaSVLy1e/+lW9//3vr/m+0L3jpH3HaR3ZSEt/f7/e9ra31TUvrTrRp5JqLc2enp5E31mt1l2l6VxyySUVQ7OeumnHOR9Jls9mn4swrkLTzD4k6V0qnWZ8h6S3S+qW9H1J8yStl/S/3f3RauOJ92nmn/1KHXjMaVKxIJPrsDlzhndOmymXk1bftGrvsf1ieQ++dIz/reeeu/eQT05DG+54UNx15x360XXXaWBg99Aho86OvBa+6U068YQXDmvhDOsrsXKLZ3gYxFsyP//pf+iiCz+pJ3c9EStfYW9/hBeHlV3yRHt19Z7JmESrWwqt2sBee+21+/RpVtKsPp92t7iapb+/X5s3b264r7lVIZqkf61ctmnTpunxxx/XwMBAQ2UY7WztRpaJZvdRNnN8zT4XIa3QbPlvKyXNkfQnSZOi5yslvU3SFyUtjoYtlvSFWuMq/05zLP0oupqkv5Ws9zd8rfhj22b+vrWWVv5mr/wPMUl/t5ZElq9FGyr0TwJG047LC4aWtVLZOjs7hy7OMdoyUr5SV7VlqJ6rd4Usc81eL5s9vmZdyasUbePk4gZRaD4gaZqkDkk/lvQKSWslzY7eM1vS2lrjSvIvJ1m+tmfSq/LUe7WYVoRm2pcMjGtlQI+suyxvzLOk0WWuld9xs8vWyFXHKtVbI+tWs5fXrG5PNd4ubmBmH5C0VNKTkm5w94VmtsPdD46951F3n1rhs4skLZKkmTNnHrty5cq6p799+3Zt3rxZAwMD6urq0pw5czRt2rTE89Msd9xxR6JDOl1dXXruc58b/P6dO3dq8uTJdU+nHqPNS71lDbFmzZpRXzv22GObOq1KddfK5Wn79u3asGHDsENfuVxOPT09mViGR9PoMtfK77hetcoWsi6MtgxVqrdG161mL69Z3J6efPLJqV3coB0tzamSbpI0U1KnpB9KOlfSjhHve7TWuLLwf5oj9/pHXrS8nouYJ/lHlvhhoNBWRytammns0Y5Wj0laIUlba62ou2pGm9fQf/do5gXc6xnfaP+sk2a3Sqta5LXK1si6EPqPRFlo3WWJxtO1ZyWdLenbsedvlfTvatHh2WYKvdh2PQt3PRupSv95GbLytGrD36yNVpKdibT+Eb7doRl6Uf5K89LseqpnfI0e1m7ld1yvkGk1eydtLB6ib6XxFpovlHSXSmfLmqRLJV0g6UsafiLQF2uNq92hOdoeZq1bs/phkvbztGvDn3RFD5nPVp0M1u7QDF3mKrU8653vWu+vZ3wj6y3tlmMj33ESaYVYO5a38RDI4yo0S/OjT0m6R9Kdki6XNEHSdEmrJK2L7qfVGk+7Q7NVJ+7UO/1a42/Xiph0z7/ZJxWl/RdXaWrk6Ea9893o3+rFjay3tE8Ua+WJaGlq9fI2Xg79phmaObWBu1/k7ke6+3Pc/S3uvtvdH3H3U919fnS/vR1lq8fcuXNb+rnQ8TRr/M20ZMmSfX7buGvXLi1ZsqTmZ5s9n0nG19fXp3nz5mnNmjWaN2+e+vr6Ek27UQsXLtTy5cvV09MjM1M+X/ti3+V6rne+aw0f7fVcLqdcLle1ntJedsfSupEljaynrVBeD2stX6lKK41bcWt3SzONPs1Gp5+lPs24rJ8mX+2Eqkr/b5iVve/QZdDMWtKnOdry3uqf6oyXFlOr19Ust9Dr+U413g7PNuvW7tB0b+7Zs82YflZPZmm0j6nZ/Sz1nFAVL3v8T4HT6h+rV3xeal1sIc2zZ+v9kX7afWfjoW+u1etqq/uC0yobodni0BwPK1sl5flatmxZy+cry3v+tVbG+N53PDSzsPc9UjvruVorpd19wWMVfZp71dMKJjRbGJpZXmgakYVDjFndGam1Mma9pTlSu+q52s4HoZkMZ8/uRUszo6GZ5cMTjRhrG/5WqvWdZ2GHYyyotsNJaCZDve2VlT7Ntpw9m2UbN26sa/hYMV7nqxmWLl2q7u7uYcO6u7u1dOlSScPPWJVKf1U01v5lpBVGntlLPaGZMrN8pZXGrbiNh5ZmOy71RUtzX6HfA3v+yVBvyVBvyYiWZuvUanU0U/n/3zZs2CB314YNG7Ro0aJUfnvUyvkaixYuXKj169erWCxq/fr1tI4AVERojtDKQwCt/CExhxgBoHEd7S5AFi1cuLAlYdLqfsbyfPX392v9+vWpTAMAxjNamm3Epb4AYGwhNNuIfkYAGFsIzTbKzCnUAIAg9Gm2Wav6TwEAjaOlCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEKgtoWlmB5vZ1WZ2j5ndbWYnmtk0M7vRzNZF91PbUTYAAEbTrpbmv0r6mbsfKen5ku6WtFjSKnefL2lV9BwAgMxoeWia2RRJJ0n6tiS5+4C775B0hqRLo7ddKunMVpcNAIBqgkPTzJ5pZivM7BozO7GBaT5D0jZJ3zWz283sW2Z2gKRZ7r5FkqL7QxqYBgAATWfuXvkFs4nu/lTs+RWSLpLkkq5y96MTTdDsOEn/LenF7n6zmf2rpL9IusDdD46971F336df08wWSVokSTNnzjx25cqVSYqxX9u5c6cmT57c7mKMSdRdMtRbMtRbMieffPIadz8ujXF3VHntR2Z2mbtfHj3fI2meSqFZaGCamyRtcvebo+dXq9R/+ZCZzXb3LWY2W9LWSh929+WSlktSb2+vL1iwoIGi7J/6+/tFvSVD3SVDvSVDvWVPtcOzr5J0kJn9zMxeKunvVOqLPE3SwqQTdPcHJT1gZr3RoFMl/UHS9ZLOi4adJ+m6pNMAACANo7Y03b0g6WtmdrmkCyXNlvRJd7+/CdO9QFKfmXVJ+qOkt6sU4CvN7J2SNko6uwnTAQCgaUYNTTN7oaSPShqQ9DlJT0paamabJH3G3R9LOlF3/52kSsebT006TgAA0latT/Prkt4gabKkb7j7iyWdY2Z/LWmlpFe2oHwAAGRGtdAsqHTiT7dKrU1Jkrv/QtIv0i0WAADZUy003yzpb1UKzLe2pjgAAGRXtROB7pX0kRaWBQCATONfTgAACERoAgAQqGZomtlrzIxwBQDs90LC8BxJ68zsi2b2rLQLBABAVtUMTXc/V9Ixku5X6Z9JfmNmi8zswNRLBwBAhgQddnX3v0i6RtKVKl1O728k3WZmF6RYNgAAMiWkT/O1ZvYDSTdJ6pR0vLufJun5Kl3EHQCA/UK1ixuUnS3py+7+y/hAd99lZu9Ip1gAAGRPSGheJGlL+YmZTZI0y93Xu/uq1EoGAEDGhPRpXiWpGHteiIYBALBfCQnNDnePX7B9QFJXekUCACCbQkJzm5m9rvzEzM6Q9HB6RQIAIJtC+jTfI6nPzL4mySQ9IP71BACwH6oZmu5+v6QTzGyyJHP3x9MvFgAA2RPS0pSZvVrSsyVNNDNJkrt/OsVyAQCQOSEXN/i6pDdKukClw7NnS+pJuVwAAGROyIlAL3L3t0p61N0/JelESYenWywAALInJDSfiu53mdmhkvZIenp6RQIAIJtC+jR/ZGYHS/qSpNskuaRvploqAAAyqGpoRn8+vcrdd0i6xsx+LGmiuz/WktIBAJAhVQ/PuntR0j/Hnu8mMAEA+6uQPs0bzOz1Vv6tCQAA+6mQPs0PSzpA0qCZPaXSz07c3aekWjIAADIm5IpAB7aiIAAAZF3N0DSzkyoNH/mn1AAAjHchh2c/Gns8UdLxktZIOiWVEgEAkFEhh2dfG39uZodL+mJqJQIAIKNCzp4daZOk5zS7IAAAZF1In+ZXVboKkFQK2aMl/T7NQgEAkEUhfZq3xh4PSrrC3f9fSuUBACCzQkLzaklPuXtBkswsb2bd7r4r3aIBAJAtIX2aqyRNij2fJOk/0ykOAADZFRKaE919Z/lJ9Lg7vSIBAJBNIaH5hJm9oPzEzI6V9GR6RQIAIJtC+jQ/KOkqM/tz9Hy2pDemVyQAALIp5OIGvzWzIyX1qnSx9nvcfU/qJQMAIGNqHp41s/dJOsDd73T3OyRNNrP3pl80AACyJaRP893uvqP8xN0flfTu9IoEAEA2hYRmLv4H1GaWl9SVXpEAAMimkBOBfi5ppZl9XaXL6b1H0s9SLRUAABkUEpofk7RI0vkqnQh0g6RvplkoAACyqObhWXcvuvvX3f0N7v56SXdJ+mqjE44ux3e7mf04ej7NzG40s3XR/dRGpwEAQDMF/TWYmR1tZl8ws/WSPiPpniZM+wOS7o49XyxplbvPV+nSfYubMA0AAJpm1NA0syPM7EIzu1vS11T6H01z95PdvaGWppkdJunVkr4VG3yGpEujx5dKOrORaQAA0GzV+jTvkfQrSa919/skycw+1KTpfkXS30s6MDZslrtvkSR332JmhzRpWgAANEW10Hy9pHMkrTazn0m6UqUTgRpiZq+RtNXd15jZggSfX6TSiUmaOXOm+vv7Gy3Sfmfnzp3UW0LUXTLUWzLUW/aYu1d/g9kBKh0qfZOkU1Q6dPoDd78h0QTN/knSW1T6Q+uJkqZIulbS/5K0IGplzpbU7+691cbV29vra9euTVKM/Vp/f78WLFjQ7mKMSdRdMtRbMtRbMma2xt2PS2PcIWfPPuHufe7+GkmHSfqdGjhJx90/7u6Hufs8lVqyN7n7uZKul3Re9LbzJF2XdBoAAKQh6OzZMnff7u7fcPdTUijL5yW93MzWSXp59BwAgMwIubhBaty9X1J/9PgRSae2szwAAFRTV0sTAID9GaEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEanlomtnhZrbazO42s7vM7APR8GlmdqOZrYvup7a6bAAAVNOOluagpI+4+7MknSDpfWZ2lKTFkla5+3xJq6LnAABkRstD0923uPtt0ePHJd0taY6kMyRdGr3tUklntrpsAABUY+7evombzZP0S0nPkbTR3Q+Ovfaou+9ziNbMFklaJEkzZ848duXKla0p7Diyc+dOTZ48ud3FGJOou2Sot2Sot2ROPvnkNe5+XBrjbltomtlkSb+QtNTdrzWzHSGhGdfb2+tr165Nu6jjTn9/vxYsWNDuYoxJ1F0y1Fsy1FsyZpZaaLbl7Fkz65R0jaQ+d782GvyQmc2OXp8taWs7ygYAwGjacfasSfq2pLvd/V9iL10v6bzo8XmSrmt12QAAqKajDdN8saS3SLrDzH4XDfuEpM9LWmlm75S0UdLZbSgbAACjanlouvuvJdkoL5/ayrIAAFAPrggEAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEHxiQ5IAAAbkSURBVIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEylxomtmrzGytmd1nZovbXR4AAMoyFZpmlpf0b5JOk3SUpDeZ2VHtLRUAACWZCk1Jx0u6z93/6O4Dkq6UdEabywQAgKTsheYcSQ/Enm+KhgEA0HYd7S7ACFZhmA97g9kiSYuip7vN7M7USzX+zJD0cLsLMUZRd8lQb8lQb8n0pjXirIXmJkmHx54fJunP8Te4+3JJyyXJzG519+NaV7zxgXpLjrpLhnpLhnpLxsxuTWvcWTs8+1tJ883s6WbWJekcSde3uUwAAEjKWEvT3QfN7P9I+rmkvKTvuPtdbS4WAACSMhaakuTuP5H0k8C3L0+zLOMY9ZYcdZcM9ZYM9ZZMavVm7l77XQAAIHN9mgAAZNaYDU0ut7eXmR1uZqvN7G4zu8vMPhANn2ZmN5rZuuh+auwzH4/qbq2ZvTI2/FgzuyN67WIzq/QzoHHFzPJmdruZ/Th6Tr0FMLODzexqM7snWvZOpO5qM7MPRevpnWZ2hZlNpN72ZWbfMbOt8Z8VNrOezGyCmX0/Gn6zmc0LKpi7j7mbSicJ3S/pGZK6JP1e0lHtLlcb62O2pBdEjw+UdK9KlyH8oqTF0fDFkr4QPT4qqrMJkp4e1WU+eu0WSSeq9JvZn0o6rd3z14L6+7Ck70n6cfScegurt0slvSt63CXpYOquZp3NkfQnSZOi5yslvY16q1hXJ0l6gaQ7Y8OaVk+S3ivp69HjcyR9P6RcY7WlyeX2Ytx9i7vfFj1+XNLdKq2cZ6i0YVN0f2b0+AxJV7r7bnf/k6T7JB1vZrMlTXH333hpSbos9plxycwOk/RqSd+KDabeajCzKSpt1L4tSe4+4O47RN2F6JA0ycw6JHWr9Ft06m0Ed/+lpO0jBjeznuLjulrSqSGt9bEamlxubxTRIYZjJN0saZa7b5FKwSrpkOhto9XfnOjxyOHj2Vck/b2kYmwY9VbbMyRtk/Td6ND2t8zsAFF3Vbn7ZknLJG2UtEXSY+5+g6i3UM2sp6HPuPugpMckTa9VgLEamjUvt7c/MrPJkq6R9EF3/0u1t1YY5lWGj0tm9hpJW919TehHKgzb7+ot0qHSobP/6+7HSHpCpcNlo6HuJEV9cGeodAjxUEkHmNm51T5SYdh+V28BktRTojocq6FZ83J7+xsz61QpMPvc/dpo8EPR4QlF91uj4aPV36bo8cjh49WLJb3OzNardIj/FDNbIeotxCZJm9z95uj51SqFKHVX3csk/cndt7n7HknXSnqRqLdQzaynoc9Eh8oP0r6Hg/cxVkOTy+3FRMfhvy3pbnf/l9hL10s6L3p8nqTrYsPPic4ee7qk+ZJuiQ53PG5mJ0TjfGvsM+OOu3/c3Q9z93kqLUM3ufu5ot5qcvcHJT1gZuULY58q6Q+i7mrZKOkEM+uO5vdUlc5BoN7CNLOe4uN6g0rrf+3WervPkEp6k3S6SmeJ3i9pSbvL0+a6eIlKhxX+R9LvotvpKh2fXyVpXXQ/LfaZJVHdrVXsrDtJx0m6M3rta4ougDHeb5IWaO/Zs9RbWJ0dLenWaLn7oaSp1F1QvX1K0j3RPF+u0hmf1Nu+9XSFSv2+e1RqFb6zmfUkaaKkq1Q6aegWSc8IKRdXBAIAINBYPTwLAEDLEZoAAAQiNAEACERoAgAQiNAEACAQoQlkiJkVzOx3sVvT/sHHzObF/zECQP062l0AAMM86e5Ht7sQACqjpQmMAWa23sy+YGa3RLdnRsN7zGyVmf1PdD83Gj7LzH5gZr+Pbi+KRpU3s29a6f8cbzCzSW2bKWAMIjSBbJk04vDsG2Ov/cXdj1fpqiZfiYZ9TdJl7v48SX2SLo6GXyzpF+7+fJWuCXtXNHy+pH9z92dL2iHp9SnPDzCucEUgIEPMbKe7T64wfL2kU9z9j9HF+R909+lm9rCk2e6+Jxq+xd1nmNk2SYe5++7YOOZJutHd50fPPyap090/m/6cAeMDLU1g7PBRHo/2nkp2xx4XxHkNQF0ITWDseGPs/jfR4/9S6R9aJGmhpF9Hj1dJOl+SzCxvZlNaVUhgPGMvE8iWSWb2u9jzn7l7+WcnE8zsZpV2dt8UDXu/pO+Y2UclbZP09mj4ByQtN7N3qtSiPF+lf4wA0AD6NIExIOrTPM7dH253WYD9GYdnAQAIREsTAIBAtDQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgf4/VCnwWHAmHwMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -337,51 +329,35 @@ "name": "stdout", "output_type": "stream", "text": [ - "Running...\n", - "[# ] 6%\n", + "[##############################] 100%\n", "\n", "================= Iteration Stats ================\n", - " step: 650 of 10000\n", - " loss: 0.340414\n", + " step: 10000 of 10000\n", + " loss: 0.403381\n", + "\n", " accuracy: 82.00 %\n", - " AVG: 80.38 %\n", + " AVG: 82.22 %\n", + " Best: 89.33 %\n", + "\n", " Trend slope: 0.000\n", " MAD Dispersion: nan\n", - " Skewness: Moderately skewed distribution ( -0.82 )\n", + " Skewness: Approximately symmetric distribution ( -0.22 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 0 min and 9 sec\n", - " ETC: 0h, 2 min and 15 sec\n", + " Elapsed: 0h, 2 min and 30 sec\n", + " ETC: 0h, 0 min and 0 sec\n", "\n", "================= Network Setup ================\n", - " number of classes: 2\n", - " number of features: 14\n", - " learning rate: 0.1\n", + " number of classes: 100\n", + " number of features: 32460\n", + " learning rate: 1\n", " training steps: 10000\n", - " batch size: 100\n", + " batch size: 150\n", "1st layer n. of neurons: 512\n", "2st layer n. of neurons: 512\n", - " Normalized data: True, type: mean, Discrete Binary 0/1\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mstep\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_y\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtrain_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtake\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtraining_steps\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;31m# Run the optimization to update W and b values.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[0mrun_optimization\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbatch_x\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_y\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mstep\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mdisplay_step\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m\u001b[0m in \u001b[0;36mrun_optimization\u001b[1;34m(x, y)\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;31m# Compute gradients.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 14\u001b[1;33m \u001b[0mgradients\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mg\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgradient\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloss\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrainable_variables\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 15\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[1;31m# Update W and b following gradients.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\backprop.py\u001b[0m in \u001b[0;36mgradient\u001b[1;34m(self, target, sources, output_gradients, unconnected_gradients)\u001b[0m\n\u001b[0;32m 1065\u001b[0m for x in nest.flatten(output_gradients)]\n\u001b[0;32m 1066\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1067\u001b[1;33m flat_grad = imperative_grad.imperative_grad(\n\u001b[0m\u001b[0;32m 1068\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_tape\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1069\u001b[0m \u001b[0mflat_targets\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\imperative_grad.py\u001b[0m in \u001b[0;36mimperative_grad\u001b[1;34m(tape, target, sources, output_gradients, sources_raw, unconnected_gradients)\u001b[0m\n\u001b[0;32m 69\u001b[0m \"Unknown value for unconnected_gradients: %r\" % unconnected_gradients)\n\u001b[0;32m 70\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 71\u001b[1;33m return pywrap_tfe.TFE_Py_TapeGradient(\n\u001b[0m\u001b[0;32m 72\u001b[0m \u001b[0mtape\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_tape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;31m# pylint: disable=protected-access\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\eager\\backprop.py\u001b[0m in \u001b[0;36m_gradient_function\u001b[1;34m(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads, skip_input_indices, forward_pass_name_scope)\u001b[0m\n\u001b[0;32m 160\u001b[0m \u001b[0mgradient_name_scope\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0mforward_pass_name_scope\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m\"/\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 161\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mname_scope\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mgradient_name_scope\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 162\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mgrad_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmock_op\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mout_grads\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 163\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 164\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mgrad_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmock_op\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mout_grads\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_grad.py\u001b[0m in \u001b[0;36m_MeanGrad\u001b[1;34m(op, grad)\u001b[0m\n\u001b[0;32m 264\u001b[0m factor = _safe_shape_div(\n\u001b[0;32m 265\u001b[0m math_ops.reduce_prod(input_shape), math_ops.reduce_prod(output_shape))\n\u001b[1;32m--> 266\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtruediv\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msum_grad\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfactor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msum_grad\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 267\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 268\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\util\\dispatch.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 199\u001b[0m \u001b[1;34m\"\"\"Call target, and fall back on dispatchers if there is a TypeError.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 200\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 201\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mtarget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 202\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mTypeError\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 203\u001b[0m \u001b[1;31m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\u001b[0m in \u001b[0;36mtruediv\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 1295\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mIf\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mx\u001b[0m\u001b[0;31m`\u001b[0m \u001b[1;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0my\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mhave\u001b[0m \u001b[0mdifferent\u001b[0m \u001b[0mdtypes\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1296\u001b[0m \"\"\"\n\u001b[1;32m-> 1297\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0m_truediv_python3\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1298\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1299\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py\u001b[0m in \u001b[0;36m_truediv_python3\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 1234\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1235\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1236\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mgen_math_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreal_div\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1237\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1238\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32m~\\anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py\u001b[0m in \u001b[0;36mreal_div\u001b[1;34m(x, y, name)\u001b[0m\n\u001b[0;32m 7436\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtld\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_eager\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7437\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 7438\u001b[1;33m _result = pywrap_tfe.TFE_Py_FastPathExecute(\n\u001b[0m\u001b[0;32m 7439\u001b[0m \u001b[0m_ctx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_context_handle\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtld\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdevice_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"RealDiv\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7440\u001b[0m tld.op_callbacks, x, y)\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + " Normalized data: True, type: mean, Discrete Binary 0/1\n", + "\n", + "Analysis finished.\n" ] } ], @@ -425,8 +401,11 @@ " print(\"================= Iteration Stats ================\")\n", " print(\" step: %i of %i\" % (step,training_steps))\n", " print(\" loss: %f\" % loss)\n", + " print(\"\")\n", " print(\" accuracy: %.2f %%\" % (acc*100))\n", " print(\" AVG: %.2f %%\" % (avg/avgCounter))\n", + " print(\" Best: %.2f %%\" % (np.max(accuracyValue)))\n", + " print(\"\")\n", " print(\" Trend slope: %.3f\" % (trendSlope))\n", " print(\" MAD Dispersion: \" + str(stats.mad()))\n", " print(\" Skewness: \" + measureSkewness(stats))\n", From dc2af8d7fa47aaab67a4dd8104638a51fea015ef Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 11:26:35 +0200 Subject: [PATCH 05/13] Add files via upload --- .../Multilayer_Perceptron.ipynb | 50 +++++++++---------- 1 file changed, 25 insertions(+), 25 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index eeb2445d..b5c13d3e 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -49,18 +49,18 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# parameters initialization.\n", "num_classes = 100 # total classes : number of output results\n", - "num_features = 0 # data features : number of samples(rows) for the variable set. a value of 0 loads from the dataset bellow\n", + "num_features = 0 # data features : number of input variables on the dataset. a value of 0 loads from the dataset bellow\n", "\n", "# Training parameters.\n", "learning_rate = 1\n", "training_steps = 10000\n", - "batch_size = 150\n", + "batch_size = 100\n", "display_step = 100\n", "\n", "#normalization of data\n", @@ -75,7 +75,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -90,16 +90,16 @@ "df_tr_raw_y= df_tr['y']\n", "if num_classes==0:\n", " num_classes= df_tr_raw_y.shape[0]\n", - "if num_features==0:\n", - " num_features= df_tr_raw_y.shape[0]\n", - "else:\n", - " rs=\"\"\n", - " #TODO: fill possible empty values on the datasets\n", - " \n", + "\n", "df_tr_raw_values_y = df_tr_raw_y.values\n", "data_tr_y = np.float32(df_tr_raw_values_y)\n", "\n", "df_tr_raw_x= df_tr.drop('y',1)\n", + "if num_features==0:\n", + " num_features= df_tr_raw_x.shape[1]\n", + "else:\n", + " rs=\"\"\n", + " #TODO: fill possible empty values on the datasets\n", "df_tr_raw_values_x = df_tr_raw_x.values\n", "data_tr_x = np.float32(df_tr_raw_values_x)\n", "\n", @@ -139,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -172,7 +172,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -213,7 +213,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -238,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": { "scrolled": true }, @@ -310,12 +310,12 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZwcdZ3/8fene2aSDCGQixgCmegaBvEC4YfgwQbwAg9YlJ9oUDyzoj881zWaFdYjrkd2ddHdn8aLIyMYDgVdD9iQ8fitCxLQBYQQ0CQkBhIIQUIgk+n+/P7o6knNpKf729Vd3TWT1/Px6Ed3V3dXfevbVfWub32rq83dBQAAasu1uwAAAIwVhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAECi10DSz75jZVjO7MzZsmpndaGbrovupsdc+bmb3mdlaM3tlWuUCACCpNFual0h61YhhiyWtcvf5klZFz2VmR0k6R9Kzo8/8u5nlUywbAAB1Sy003f2XkraPGHyGpEujx5dKOjM2/Ep33+3uf5J0n6Tj0yobAABJtLpPc5a7b5Gk6P6QaPgcSQ/E3rcpGgYAQGZ0tLsAEaswrOL1/cxskaRFkjRx4sRj586dm2a5xqVisahcjnPAkqDukqHekqHekrn33nsfdveZaYy71aH5kJnNdvctZjZb0tZo+CZJh8fed5ikP1cagbsvl7Rcknp7e33t2rVplndc6u/v14IFC9pdjDGJukuGekuGekvGzDakNe5W78JcL+m86PF5kq6LDT/HzCaY2dMlzZd0S4vLBgBAVam1NM3sCkkLJM0ws02SLpL0eUkrzeydkjZKOluS3P0uM1sp6Q+SBiW9z90LaZUNAIAkUgtNd3/TKC+dOsr7l0pamlZ5AABoFD3MAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITwH6hr69P8+bNUy6X07x589TX19fuImEM6mh3AQAgbX19fVq0aJF27dolSdqwYYMWLVokSVq4cGE7i4YxhpYmgHFvyZIlQ4FZtmvXLi1ZsqRNJcJYRWgCGPc2btxY13BgNIQmgHFv7ty5NYfT54kQhCb2C2wQK9tf6mXp0qXq7u4eNqy7u1tLly6VtLfPc8OGDXL3oT7P8VofaIC7j9nbEUcc4ajf6tWr212EllqxYoV3d3e7pKFbd3e3r1ixou5xjae6a2a91JKFeluxYoX39PS4mXlPT8+w+ezp6RlWD+VbT09P+wrs2ai3sUjSrZ5S7tDS3I/tL62Mdp8EktV6bkW9lOd9zZo1bZ/3hQsXav369SoWi1q/fv2ws2bp82yeZi7vmVx30krjVtxoaSazevXqlrYy2s3MKrYizKzucdW755/lem5mvVQSn/dly5Zlat5HoqXZHM1c3hsZl1JsabY9+Bq5EZrJrF69OrMbiTQ0c17r3YhluZ7TLlt8/OXQTHPeqx1+DflsFnduxlpoNnOZamRcaYYmh2f3U/vT4ahaJ4GkKcv1nHa9tHLeGz2RZ+HChVq+fLl6enpkZurp6dHy5cu58EGdmvmdZ3XdITT3UyGn4LdavP9ixowZmjFjRlP6Mtq5QcxiPZelXS/1znsj/VdJ+mdHTk/SqH2ezSxr2tpZtlrfeT1ly+y6k1YTthU3Ds8mk8U+zUrlyUrZ4sZTn2ba6unTbLSe6u2fbWR6WT7ruN3LW7Xp11s2+jQJTXdvrN+lWcorYq2yjHz9/PPPT63so/VfxG9Z6AdM0seUhe+8XcrzvmzZsqrznqT/Kl6v+Xy+rs830l/Win7q0HprR9lqGW27Mdp6nc/ng7dBofVAaDYYmvWGQ1obtVbsBYbMy2gb/vhnp0+f7l1dXVVDrJllH62lENJqaKWQ0Gx0ecpyyCYtW616a0ZLsZ7ls5Ezh7N41nH5e2nFulPPMhDyPaWxTSE0GwjNWkHVysMZae8Fhs5LpQ1YvQt3s8s+XlqajS5P7T68llbZatVbvevGaO+v1mppZHrN+myI+PhDzjoOWXdbvY2pNC+t3KYQmg2EZq0FPGQFaNaef9p7qKEbkkobsCQLd7z88cMwzTrlv5HgSKu11+yN/8hp1XuYMel8JHl/I2HR7J2NRtelLPdpxuctHprxdS3ke0mjbPUuAyFHkBrZHo62vBKaDYRmrZWr1uvNXEHS3kMNWUC7u7v9mmuuSfTZem+NBN306dN9+vTpbfnNXbXPt+MwY70bkpD5SPL+RoKq2Ye1m7EuNfq7zmbsSFcyWkuz3u+lXB/NLFu9y0C1QG90B7Ha8kpo1hma9ey5N6MlGirtPdTQ1uLFF1+c+LP13kJbWM3caDX6nVX7fDNamiHLZzOWt3rrIc11odknULX6MHYr+5kr9Wk28r00ek5HI0dCqn1Ptb7DQqHoA4MFf3Jg0B9/ao/v2DXgj+zc7Q/95UnfsuNJ73nWMd5x0CzvmHqod0w/zDtn9HjnIc/wnmNemmpomrtrrOrt7fW1a9cOGzbyH9or6e7uHvo9WqX3x1/P5XKqVEdmpmKxWHeZ+/r6tGTJEm3cuFFz587V0qVLm/a7uJB5l6Rly5bpIx/5SM3PdnZ2asqUKdq+fbvmzp2r008/XT/5yU+0cePGinVSyWj1VKveq0n7O6v2+ZtuukkLFixIXLbQ7ygutF7qmY9K9VDr/Y18Z/39/VXrbaSQaaW5LtVblka4u4ouFYquQtE1WCzqyu9fpaWf+5ze8c536dOfXSpZTpbLS7m8LJeTLC/L53XzLb/VT376M33xS8u0e2CPlMtJubwmTpyk977vAhUlfWP5NzWwZ1DKlcbRNWGS3nzuuXrBscfpt7eu0cqrrtaewcLQ+DsnTNBpp79aRz7rKN151x+06qbVGiwUo2nnY2UpTaujs0vPe/7RetrsQ4fKX7p3FYuurQ8/oi1bHtRAoaiurgmaNmOGJnVPVqHo2rlrl3bufEJFmXL5DnV2TZByORWKpTpJasMXXrPG3Y9r+MupYFyEZnzlyeVyKhQK+7w3n8+rWCxWXLmqrXzz5s3Thg0b6hpfO4XUxcUXX6wLLrig6mdrzddo9TJST0+P1q9fH/z50d5fz2cbGXet8V9yySXavHlz1XpKsjyNFF++4jsr9Sxv9dZDyPuTBlU5NFes6NM/fPKT2rhps+b2zNMnL7xQZ73+bBXchza0hYLrpAULtHnLFpnlhzb2yuU1e/ahunLlVUMBM/SZYlGFojRYLKrorsFC/LXh7937erH0upemOfRatLG/9777dNvtv9cTu3aVAsNKZSiXZ1L3AXrhCSdWnM72HTu0bdvDGiy6Ojq7dOBBB2vCxIlD7909sEcDewbl5QDKEC8WZF7UxIkT9NSuJ1QYHJS8KC8WpPLNXV4cVGc+r6c9bZZmTJ+qfC6njpwpnzPlzdSR3/s4lzN15k05M3XkSs9L7419Jme695679atf/kKP7dihgw6crJe97BQde8wxyuekfC6nvEn5fE55M31i8cf08LatpbJ5USoMyosF5Ux6Yt3NcndLo37GfGheeOGFQXvujbQM62m5Zsloe8iXX365zjrrrKaPe6Rq9dJIazDNFpFUvWUxadIkveUtbwkad7G8QY6FwfSZM+VmI/bYy3vwpVbExO5uLV78CZ368lfo5zfcqH/+8pe1e2CPzEp79hMmdWvR375HJ77oxXs31F6eRnFoA77mttv1gx9epz2FYmlDb6VWxMtf/grN7z0yahFoKDzu/+OfdPMtv1Wh6EPl6ujs1FHPfo5mHvK04dMpFjVY2BsyhaIPe14sDr/fM1hQwV2uVLZjiZU32OUNefnx7qee0o5Ht8ujDfFQYAyFR2lDfdJLX6LOvO3doOdMWzZv0po1a1TYs1teLEpeUD6X00kvfYmOPOII3b/uXv3njTdoz8DuaHyl8DnjjNfpuBccUyqLlcryx/vW6bHHduiyS76rgd1PDZWjq6tT7z3/PXrZyScPBU7OomAqz4+Zjj3maBWLg1KxKBULQ+WRF7XtoYc0Y/o0eXFwaJ7kpXWvvC41+0hbNfWut7W2QYRmBb29vb579+66Wzz17i2HtN5CWzH1avQQVKXPz5kzp65DZUHj7unRK097tX7+8xv0wObNOnxujz6+5B905t+cNaJFULq98lWnacuDD+4NjFxeZjnNmj1b3730sn32/Msb6ULRtfjjn9Ajj+4oHaYaagHkNHXaNL3/gx9WoVjUHXfepV/+6tf6y84nNGXKQTr+hBP1V8985vAWyCgtjMFiUVse3KoNGzdq956CJkyYoFmHztGBUw7SI9u3a+u2R/aZdvlwVS7XoXxnp4oyZWnVci/KikV1duQ1oatTOZM68rm9gRG1DJ54/HE9vG2rBnY/pa6OvObMOVSzZs4Y2jB35HKxVsLesOkc1nrY28LI53LK56Q/b9qk//jx9drx6KOloCjsbb1MO/hgfebT/zjU6sjlTH/34Q9p29aHovcUpWjDPmvmDH3ve33qiMZbCquoLPm9YdMRPR96LZdTLqehx+XpjCbkiEDSFns9R6/KLfSk24Fa06q1PUvz6ENoWattW6ttmwnNCnp7e33dunU1+9fq6cOsJZfLy82GtxIsJ8t3aNPmP8c2xMW9e+YV9sjLr422x15w13/95r91+Yo+7RkslPoPLK+uCRN15lln6bnPff7ew0sjDw/FwqBQLKrgGjadrdse0UFTpw7rdxg+nmLFccXLOHKaWTJ8o13aeA4FQ86Uz8cOGcVCYGQY5OPBEI3rvnX36vY1t5b2yL0oLxQkL+/Bl0KgM5/T6aedpuc/77lDrZDy+G9fc6uu+F5f1GoohUFXR4cWvftd+uuTXhoFmaJWQ04vO/UUeaFQOvxUHIw+U5DkuucPd+0TBvkR5Y4fHmun/v5+nXLKKcGtlrT7EWsZrYUVUpZarbNa446Pv9Ed3Eb70JP00beqD77W5wnNCuItze4jX6LuZ54w1DmdiwJtUvcB+qv58zXzkFkqFqVbbr1VuwcGh7UOzHLq7JqoOYfPjYVZPBz2dmxnrbry5urI54fv4VfbgOZMu3bu1MEHTxnxmVwsHKJWyD79D/v2R+RzivovcvtM67Y1t+pH112nRx7epunTpurs15+ll7zkxUNl+/WvfqEVl12mrQ89qENmTNe73vUOveoVr6ha/vK0f/iDa/VPSz+rBzZu1OFzDtWn/vEinbvwzcpZaSVLy1e/+lW9//3vr/m+0L3jpH3HaR3ZSEt/f7/e9ra31TUvrTrRp5JqLc2enp5E31mt1l2l6VxyySUVQ7OeumnHOR9Jls9mn4swrkLTzD4k6V0qnWZ8h6S3S+qW9H1J8yStl/S/3f3RauOJ92nmn/1KHXjMaVKxIJPrsDlzhndOmymXk1bftGrvsf1ieQ++dIz/reeeu/eQT05DG+54UNx15x360XXXaWBg99Aho86OvBa+6U068YQXDmvhDOsrsXKLZ3gYxFsyP//pf+iiCz+pJ3c9EStfYW9/hBeHlV3yRHt19Z7JmESrWwqt2sBee+21+/RpVtKsPp92t7iapb+/X5s3b264r7lVIZqkf61ctmnTpunxxx/XwMBAQ2UY7WztRpaJZvdRNnN8zT4XIa3QbPlvKyXNkfQnSZOi5yslvU3SFyUtjoYtlvSFWuMq/05zLP0oupqkv5Ws9zd8rfhj22b+vrWWVv5mr/wPMUl/t5ZElq9FGyr0TwJG047LC4aWtVLZOjs7hy7OMdoyUr5SV7VlqJ6rd4Usc81eL5s9vmZdyasUbePk4gZRaD4gaZqkDkk/lvQKSWslzY7eM1vS2lrjSvIvJ1m+tmfSq/LUe7WYVoRm2pcMjGtlQI+suyxvzLOk0WWuld9xs8vWyFXHKtVbI+tWs5fXrG5PNd4ubmBmH5C0VNKTkm5w94VmtsPdD46951F3n1rhs4skLZKkmTNnHrty5cq6p799+3Zt3rxZAwMD6urq0pw5czRt2rTE89Msd9xxR6JDOl1dXXruc58b/P6dO3dq8uTJdU+nHqPNS71lDbFmzZpRXzv22GObOq1KddfK5Wn79u3asGHDsENfuVxOPT09mViGR9PoMtfK77hetcoWsi6MtgxVqrdG161mL69Z3J6efPLJqV3coB0tzamSbpI0U1KnpB9KOlfSjhHve7TWuLLwf5oj9/pHXrS8nouYJ/lHlvhhoNBWRytammns0Y5Wj0laIUlba62ou2pGm9fQf/do5gXc6xnfaP+sk2a3Sqta5LXK1si6EPqPRFlo3WWJxtO1ZyWdLenbsedvlfTvatHh2WYKvdh2PQt3PRupSv95GbLytGrD36yNVpKdibT+Eb7doRl6Uf5K89LseqpnfI0e1m7ld1yvkGk1eydtLB6ib6XxFpovlHSXSmfLmqRLJV0g6UsafiLQF2uNq92hOdoeZq1bs/phkvbztGvDn3RFD5nPVp0M1u7QDF3mKrU8653vWu+vZ3wj6y3tlmMj33ESaYVYO5a38RDI4yo0S/OjT0m6R9Kdki6XNEHSdEmrJK2L7qfVGk+7Q7NVJ+7UO/1a42/Xiph0z7/ZJxWl/RdXaWrk6Ea9893o3+rFjay3tE8Ua+WJaGlq9fI2Xg79phmaObWBu1/k7ke6+3Pc/S3uvtvdH3H3U919fnS/vR1lq8fcuXNb+rnQ8TRr/M20ZMmSfX7buGvXLi1ZsqTmZ5s9n0nG19fXp3nz5mnNmjWaN2+e+vr6Ek27UQsXLtTy5cvV09MjM1M+X/ti3+V6rne+aw0f7fVcLqdcLle1ntJedsfSupEljaynrVBeD2stX6lKK41bcWt3SzONPs1Gp5+lPs24rJ8mX+2Eqkr/b5iVve/QZdDMWtKnOdry3uqf6oyXFlOr19Ust9Dr+U413g7PNuvW7tB0b+7Zs82YflZPZmm0j6nZ/Sz1nFAVL3v8T4HT6h+rV3xeal1sIc2zZ+v9kX7afWfjoW+u1etqq/uC0yobodni0BwPK1sl5flatmxZy+cry3v+tVbG+N53PDSzsPc9UjvruVorpd19wWMVfZp71dMKJjRbGJpZXmgakYVDjFndGam1Mma9pTlSu+q52s4HoZkMZ8/uRUszo6GZ5cMTjRhrG/5WqvWdZ2GHYyyotsNJaCZDve2VlT7Ntpw9m2UbN26sa/hYMV7nqxmWLl2q7u7uYcO6u7u1dOlSScPPWJVKf1U01v5lpBVGntlLPaGZMrN8pZXGrbiNh5ZmOy71RUtzX6HfA3v+yVBvyVBvyYiWZuvUanU0U/n/3zZs2CB314YNG7Ro0aJUfnvUyvkaixYuXKj169erWCxq/fr1tI4AVERojtDKQwCt/CExhxgBoHEd7S5AFi1cuLAlYdLqfsbyfPX392v9+vWpTAMAxjNamm3Epb4AYGwhNNuIfkYAGFsIzTbKzCnUAIAg9Gm2Wav6TwEAjaOlCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEKgtoWlmB5vZ1WZ2j5ndbWYnmtk0M7vRzNZF91PbUTYAAEbTrpbmv0r6mbsfKen5ku6WtFjSKnefL2lV9BwAgMxoeWia2RRJJ0n6tiS5+4C775B0hqRLo7ddKunMVpcNAIBqgkPTzJ5pZivM7BozO7GBaT5D0jZJ3zWz283sW2Z2gKRZ7r5FkqL7QxqYBgAATWfuXvkFs4nu/lTs+RWSLpLkkq5y96MTTdDsOEn/LenF7n6zmf2rpL9IusDdD46971F336df08wWSVokSTNnzjx25cqVSYqxX9u5c6cmT57c7mKMSdRdMtRbMtRbMieffPIadz8ujXF3VHntR2Z2mbtfHj3fI2meSqFZaGCamyRtcvebo+dXq9R/+ZCZzXb3LWY2W9LWSh929+WSlktSb2+vL1iwoIGi7J/6+/tFvSVD3SVDvSVDvWVPtcOzr5J0kJn9zMxeKunvVOqLPE3SwqQTdPcHJT1gZr3RoFMl/UHS9ZLOi4adJ+m6pNMAACANo7Y03b0g6WtmdrmkCyXNlvRJd7+/CdO9QFKfmXVJ+qOkt6sU4CvN7J2SNko6uwnTAQCgaUYNTTN7oaSPShqQ9DlJT0paamabJH3G3R9LOlF3/52kSsebT006TgAA0latT/Prkt4gabKkb7j7iyWdY2Z/LWmlpFe2oHwAAGRGtdAsqHTiT7dKrU1Jkrv/QtIv0i0WAADZUy003yzpb1UKzLe2pjgAAGRXtROB7pX0kRaWBQCATONfTgAACERoAgAQqGZomtlrzIxwBQDs90LC8BxJ68zsi2b2rLQLBABAVtUMTXc/V9Ixku5X6Z9JfmNmi8zswNRLBwBAhgQddnX3v0i6RtKVKl1O728k3WZmF6RYNgAAMiWkT/O1ZvYDSTdJ6pR0vLufJun5Kl3EHQCA/UK1ixuUnS3py+7+y/hAd99lZu9Ip1gAAGRPSGheJGlL+YmZTZI0y93Xu/uq1EoGAEDGhPRpXiWpGHteiIYBALBfCQnNDnePX7B9QFJXekUCACCbQkJzm5m9rvzEzM6Q9HB6RQIAIJtC+jTfI6nPzL4mySQ9IP71BACwH6oZmu5+v6QTzGyyJHP3x9MvFgAA2RPS0pSZvVrSsyVNNDNJkrt/OsVyAQCQOSEXN/i6pDdKukClw7NnS+pJuVwAAGROyIlAL3L3t0p61N0/JelESYenWywAALInJDSfiu53mdmhkvZIenp6RQIAIJtC+jR/ZGYHS/qSpNskuaRvploqAAAyqGpoRn8+vcrdd0i6xsx+LGmiuz/WktIBAJAhVQ/PuntR0j/Hnu8mMAEA+6uQPs0bzOz1Vv6tCQAA+6mQPs0PSzpA0qCZPaXSz07c3aekWjIAADIm5IpAB7aiIAAAZF3N0DSzkyoNH/mn1AAAjHchh2c/Gns8UdLxktZIOiWVEgEAkFEhh2dfG39uZodL+mJqJQIAIKNCzp4daZOk5zS7IAAAZF1In+ZXVboKkFQK2aMl/T7NQgEAkEUhfZq3xh4PSrrC3f9fSuUBACCzQkLzaklPuXtBkswsb2bd7r4r3aIBAJAtIX2aqyRNij2fJOk/0ykOAADZFRKaE919Z/lJ9Lg7vSIBAJBNIaH5hJm9oPzEzI6V9GR6RQIAIJtC+jQ/KOkqM/tz9Hy2pDemVyQAALIp5OIGvzWzIyX1qnSx9nvcfU/qJQMAIGNqHp41s/dJOsDd73T3OyRNNrP3pl80AACyJaRP893uvqP8xN0flfTu9IoEAEA2hYRmLv4H1GaWl9SVXpEAAMimkBOBfi5ppZl9XaXL6b1H0s9SLRUAABkUEpofk7RI0vkqnQh0g6RvplkoAACyqObhWXcvuvvX3f0N7v56SXdJ+mqjE44ux3e7mf04ej7NzG40s3XR/dRGpwEAQDMF/TWYmR1tZl8ws/WSPiPpniZM+wOS7o49XyxplbvPV+nSfYubMA0AAJpm1NA0syPM7EIzu1vS11T6H01z95PdvaGWppkdJunVkr4VG3yGpEujx5dKOrORaQAA0GzV+jTvkfQrSa919/skycw+1KTpfkXS30s6MDZslrtvkSR332JmhzRpWgAANEW10Hy9pHMkrTazn0m6UqUTgRpiZq+RtNXd15jZggSfX6TSiUmaOXOm+vv7Gy3Sfmfnzp3UW0LUXTLUWzLUW/aYu1d/g9kBKh0qfZOkU1Q6dPoDd78h0QTN/knSW1T6Q+uJkqZIulbS/5K0IGplzpbU7+691cbV29vra9euTVKM/Vp/f78WLFjQ7mKMSdRdMtRbMtRbMma2xt2PS2PcIWfPPuHufe7+GkmHSfqdGjhJx90/7u6Hufs8lVqyN7n7uZKul3Re9LbzJF2XdBoAAKQh6OzZMnff7u7fcPdTUijL5yW93MzWSXp59BwAgMwIubhBaty9X1J/9PgRSae2szwAAFRTV0sTAID9GaEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEanlomtnhZrbazO42s7vM7APR8GlmdqOZrYvup7a6bAAAVNOOluagpI+4+7MknSDpfWZ2lKTFkla5+3xJq6LnAABkRstD0923uPtt0ePHJd0taY6kMyRdGr3tUklntrpsAABUY+7evombzZP0S0nPkbTR3Q+Ovfaou+9ziNbMFklaJEkzZ848duXKla0p7Diyc+dOTZ48ud3FGJOou2Sot2Sot2ROPvnkNe5+XBrjbltomtlkSb+QtNTdrzWzHSGhGdfb2+tr165Nu6jjTn9/vxYsWNDuYoxJ1F0y1Fsy1FsyZpZaaLbl7Fkz65R0jaQ+d782GvyQmc2OXp8taWs7ygYAwGjacfasSfq2pLvd/V9iL10v6bzo8XmSrmt12QAAqKajDdN8saS3SLrDzH4XDfuEpM9LWmlm75S0UdLZbSgbAACjanlouvuvJdkoL5/ayrIAAFAPrggEAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEHxiQ5IAAAbkSURBVIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEylxomtmrzGytmd1nZovbXR4AAMoyFZpmlpf0b5JOk3SUpDeZ2VHtLRUAACWZCk1Jx0u6z93/6O4Dkq6UdEabywQAgKTsheYcSQ/Enm+KhgEA0HYd7S7ACFZhmA97g9kiSYuip7vN7M7USzX+zJD0cLsLMUZRd8lQb8lQb8n0pjXirIXmJkmHx54fJunP8Te4+3JJyyXJzG519+NaV7zxgXpLjrpLhnpLhnpLxsxuTWvcWTs8+1tJ883s6WbWJekcSde3uUwAAEjKWEvT3QfN7P9I+rmkvKTvuPtdbS4WAACSMhaakuTuP5H0k8C3L0+zLOMY9ZYcdZcM9ZYM9ZZMavVm7l77XQAAIHN9mgAAZNaYDU0ut7eXmR1uZqvN7G4zu8vMPhANn2ZmN5rZuuh+auwzH4/qbq2ZvTI2/FgzuyN67WIzq/QzoHHFzPJmdruZ/Th6Tr0FMLODzexqM7snWvZOpO5qM7MPRevpnWZ2hZlNpN72ZWbfMbOt8Z8VNrOezGyCmX0/Gn6zmc0LKpi7j7mbSicJ3S/pGZK6JP1e0lHtLlcb62O2pBdEjw+UdK9KlyH8oqTF0fDFkr4QPT4qqrMJkp4e1WU+eu0WSSeq9JvZn0o6rd3z14L6+7Ck70n6cfScegurt0slvSt63CXpYOquZp3NkfQnSZOi5yslvY16q1hXJ0l6gaQ7Y8OaVk+S3ivp69HjcyR9P6RcY7WlyeX2Ytx9i7vfFj1+XNLdKq2cZ6i0YVN0f2b0+AxJV7r7bnf/k6T7JB1vZrMlTXH333hpSbos9plxycwOk/RqSd+KDabeajCzKSpt1L4tSe4+4O47RN2F6JA0ycw6JHWr9Ft06m0Ed/+lpO0jBjeznuLjulrSqSGt9bEamlxubxTRIYZjJN0saZa7b5FKwSrpkOhto9XfnOjxyOHj2Vck/b2kYmwY9VbbMyRtk/Td6ND2t8zsAFF3Vbn7ZknLJG2UtEXSY+5+g6i3UM2sp6HPuPugpMckTa9VgLEamjUvt7c/MrPJkq6R9EF3/0u1t1YY5lWGj0tm9hpJW919TehHKgzb7+ot0qHSobP/6+7HSHpCpcNlo6HuJEV9cGeodAjxUEkHmNm51T5SYdh+V28BktRTojocq6FZ83J7+xsz61QpMPvc/dpo8EPR4QlF91uj4aPV36bo8cjh49WLJb3OzNardIj/FDNbIeotxCZJm9z95uj51SqFKHVX3csk/cndt7n7HknXSnqRqLdQzaynoc9Eh8oP0r6Hg/cxVkOTy+3FRMfhvy3pbnf/l9hL10s6L3p8nqTrYsPPic4ee7qk+ZJuiQ53PG5mJ0TjfGvsM+OOu3/c3Q9z93kqLUM3ufu5ot5qcvcHJT1gZuULY58q6Q+i7mrZKOkEM+uO5vdUlc5BoN7CNLOe4uN6g0rrf+3WervPkEp6k3S6SmeJ3i9pSbvL0+a6eIlKhxX+R9LvotvpKh2fXyVpXXQ/LfaZJVHdrVXsrDtJx0m6M3rta4ougDHeb5IWaO/Zs9RbWJ0dLenWaLn7oaSp1F1QvX1K0j3RPF+u0hmf1Nu+9XSFSv2+e1RqFb6zmfUkaaKkq1Q6aegWSc8IKRdXBAIAINBYPTwLAEDLEZoAAAQiNAEACERoAgAQiNAEACAQoQlkiJkVzOx3sVvT/sHHzObF/zECQP062l0AAMM86e5Ht7sQACqjpQmMAWa23sy+YGa3RLdnRsN7zGyVmf1PdD83Gj7LzH5gZr+Pbi+KRpU3s29a6f8cbzCzSW2bKWAMIjSBbJk04vDsG2Ov/cXdj1fpqiZfiYZ9TdJl7v48SX2SLo6GXyzpF+7+fJWuCXtXNHy+pH9z92dL2iHp9SnPDzCucEUgIEPMbKe7T64wfL2kU9z9j9HF+R909+lm9rCk2e6+Jxq+xd1nmNk2SYe5++7YOOZJutHd50fPPyap090/m/6cAeMDLU1g7PBRHo/2nkp2xx4XxHkNQF0ITWDseGPs/jfR4/9S6R9aJGmhpF9Hj1dJOl+SzCxvZlNaVUhgPGMvE8iWSWb2u9jzn7l7+WcnE8zsZpV2dt8UDXu/pO+Y2UclbZP09mj4ByQtN7N3qtSiPF+lf4wA0AD6NIExIOrTPM7dH253WYD9GYdnAQAIREsTAIBAtDQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgf4/VCnwWHAmHwMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5wcZZ3v8e+ve2aSDCGQhIBjQmZAMSuuigZZlNUN4hVFWBHBE5R1cUdRWXV3FTQePV7GVTaLENGDUVzRjGKAiMhBbiGDl3VRgiBgCEFIQkK4xFzIEEhmun/nj64JnUlP99PVXd01M5/36zWv6a7prnrqN9X17eep6mpzdwEAgMoyzW4AAACjBaEJAEAgQhMAgECEJgAAgQhNAAACEZoAAARKLDTN7Htm9oSZ3Vs0bZqZ3Wxma6LfU4v+9mkze9DMVpvZm5NqFwAAcSXZ0/y+pLcMm3a+pOXufoSk5dF9mdmRks6Q9JLoOd8ys2yCbQMAoGqJhaa7/1LSlmGTT5Z0eXT7ckmnFE2/wt13ufvDkh6UdExSbQMAII5GH9M8xN03SVL0++Bo+kxJjxQ9bkM0DQCA1GhpdgMiVmJayev7mVm3pG5Jmjhx4tzZs2cn2a4xKZ/PK5PhHLA4qF081C0e6hbPAw88sNndZyQx70aH5uNm1uHum8ysQ9IT0fQNkg4tetwsSY+WmoG7L5a0WJLmzJnjq1evTrK9Y1JfX5/mzZvX7GaMStQuHuoWD3WLx8zWJTXvRr+FuVbSWdHtsyT9rGj6GWY2wcwOk3SEpN81uG0AAJSVWE/TzH4saZ6kg8xsg6TPS/qqpKVmdrak9ZJOkyR3v8/Mlkr6k6RBSR9x91xSbQMAII7EQtPd3zPCn04Y4fE9knqSag8AALXiCDMAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQBosN7eXnV1dSmTyairq0u9vb3NbhICtTS7AQAwnvT29qq7u1s7d+6UJK1bt07d3d2SpPnz5zezaQhAT3OM4R0sUJDW18KCBQv2BOaQnTt3asGCBU1qEapBT3MM4R0sUJDm18L69eurmo50oac5hvAOFihI82th9uzZVU1HuhCaAYYP83z4wx9O5bBPpXewQ+uxcuXKVKxHmobPaEv621KNpHtztdSlp6dH7e3te01rbW1Vf3//qKtzteq9PTVl+3T3Ufvzohe9yJO2ZMkSb29vd0kj/rS3t/uSJUsSb0slnZ2dJdvX2dm513osXLiw6etRqq7NqmM1bVmxYkVq2pK0erYl6boNV+61UKt61GXJkiXe2dnpZubTp0/3tra2kvNrdN2SVO9tu9z8JN3hCeVO04Ovlp9GhOZIL74kXoy1KrcRFa/HSKHZyPVIcqeWZFuS3omN1rpU0uidf5JvPur9Pyo3v7EUmo2sG6HZxNA0s6DQNLOSzy9+RznU40vSSMsrXo9yoTnSetTbSHVt1PLjtiXpndhorUsljdj5D9/2zznnnERee/X+H5WbX2jdqtnPNHqfNCSkbtW0rdK+2QnN5oRmLT3NNA210dOsT1voaaazp9nI11raeprVrHsz90mV6lZt2yrtm53QbE5o1nJMM007QI5p1qctY2nnH6ctra2tPn369BF7AiP1FEJ3/nF7QCGvtXr1sBp5bC6kbtXsZ5LYJ4XWtdL2lM1mq2pbpX2zE5rNCU33+MM+aRpqc39uPRYuXJjo8FW17WnW8uO0pRnDjGmpS7kTVoYeG3fnX2sQVXqtJRF09fwf1fJmo5r9TL33SdXWtdL2VG3biudHaKYoNONKU0+z2Fg6uaDRxnPtKm3PtQwz1vpaqaVtaZb2nmYt86s0vFrrNuAJ5Q6f00xQqc9jtbe3q6enZ8/90fo5uBC1rNtorstobns5lT77WMtnI+M8t7jO/f39amtr2+vvxa+1sXwVnpD9TLnH1vIZ0ZC6jvR6CKn9SOtRSql1S0RSadyIn7T3NN3LD+M06/hVo4YY465bmo7rDZf0MGOapamnWe3x1rHc03SPf/ZspSH3SirVNfRjcMU/2Ww29rB38Xw9odxpevDV8jMaQrOcZr2QGxGaSQzbpGEHl/QwY5pVekPQyGOa9QjZ0fBmJu1na1eqa7n5J/k/EZ/TrG9oJnmiRT0+Z1TNQfk46xL3hdiodWtWXUKeX6l25T47lvRJI3EeW22d4s6v3mfPxtlGkvwcZ1L7lKG61fI/L7eeSdcx5AStJOpGaNYxNJN8d5P0u+V6rUuc0GzkujWrLiHPj9vTrNf2Vs261dIzrLd695iavY0kNa/hVqxYUfP/vNz2t08dM1m3lgne+cI5/pf+Xf749md8w9advnZzv695fIcv/O6PfErnS7yt40U+YeaRPmH2S/2AOcf6Z791hf/ink1+3d2P+jV/2OBX3vGI//j2dd55wpm+/9yTfMoxf+9Tjj3ND3jNGX7Aa8/0zpP+2b/08/v88z+71z+z7I/+qSvv9k/85A9+7o/u9HOW3OEfuPz3/g/fu93P/O7/+Onf/m8/9Vu/8Xdc8ms/8eJf+psuvM2PX7jCX/u1W/3VX7nFj/7yzX7UF270v/7cDT7ns9f7Cz79/xINTXN3jVZz5szx1atXV/Wcrq4urVu3bp/pnZ2dWrt2bU3tqXbew7++SCoc+F68eHHQ1xfFXZe+vj7Nmzev4vxrWVYt69asuoQ8//vf/37Z2pVqeylxt7dq1q3SY5N8LQwXZ5srp9nbyBB312GHv0DrNzwqZbKybIssk5UyLZo1e7ZuubVPg/m8BnOugVxeg/nod841mM9rIOfDbuc1kC/8Hsy5Vj/4oK66epm2PdUvy7RI2awsU1jG/gccqHee9u69nn/zLcv1zK7de9pg2aHfLXtNa2mdoKnTD9LOZ3fr2V2797S9EdzzasmYJrS2qCVjas1mlI1+t2ZNLdnMnuktWVNrpvC7JZtRa8aG3Y6eEz2mNXrueW998Up3PzqJ9o+L0Ozt7dWCBQu0fv16jbS+ZqZ8Pl9TezKZTMn5l5t3cdtmz56tnp6e4O/7i7M8Kd4OrBHrVvz4adOmSZK2bNnSsLqEPP/WW2/Vxo0by65Xvbe3uPOrVIeR/j70mGrrXk7xNufuyuV9rwAZiIJlMOfancsHBc1tv/qVll55tf6ybbumHzRDbzvpHXrFK+dqYOh5RQE0ED23ME/XD5YsKQRFpmWfsDv2NcdpMJ/Xk5u36vEnn9RAzpVtaZUyWblllG1pVeuESXLLaDDfuP2n5wbkuZyUH5Tnc/L8oDpnzdoraO6+604pl5Pnix6XG5Ryg/LovvKDUj6ncz74QbVkTWtW369f//I2bd+6RQfsP1lvftMb9Kq5r1RLFEpt2edC6z2nv1uee24+Q+1RPqeVd/xOLZmMfnH9dbroPxdq44ZHNLPjeXrDCcfrlhtv1Pp1D2v2rOer58tfTvw7Tc2M0CwlJDSTfudfrJHv3GtZXiN6mtWqtedQLMme5oUXXqj3vve9we2stS171cUyhd7A0M6+qNcx89DZuvHm5XtCZjCX17vefboef3LzPj2NGQcfoq9e8B86/zMLtGXrNin6W2GeLXvNu7Vtgl77d/PUdfgL9oTQwOAIQTYs6IpvP7Nrt2TZPY9tlFK9kNZsRhsfWa+B3c/uEwAT21r02r89Tk88tkl/vOtODe7eFf09CqLo8S0Z01vf/Ea9/GUv1aKvX6itWzbv9XflBzV96oG6+KKv77Xclqg95XtUz93+7W9+re4PnK11ax/eZ92qGV0IeW6ISttzPV/HtRhzoWlmn5D0ARXG0e+R9H5J7ZJ+IqlL0lpJ73b3reXmExKaIRtRa2urpkyZEqtXU6weG0w1vbO4y4sTmiHLqqXXHPJijFWXKGja99tfX794kU5+5zv39GgG9tnJF3boN918iy5a9A3tGhjcE1ItrRM0ab/JesuJb9Oyn14zLGiyOnDqdHV/6Jx9gmTNnx/S7b+/Q3m3KOyyyra26UVzXqypBx20Z/mlgmYgl9eO/qfllik81xrzserhPZqsuWZ2dEQ7/BI7/xKhtHc4mB7f9Ki6Zh+617Ba6aG3wnNqCZqh52YzJjOrvI1EirfnkP1GuaCo1z6lr69PGzduDH6dh3QSagmxuHVLquMwkjEVmmY2U9KvJR3p7s+Y2VJJ10s6UtIWd/+qmZ0vaaq7n1duXiGhWWkIatq0adqxY4d27969Z3qtG1Xc4IgTgnGWVyk0c/l9g2Qwn9dVy67Rf174dW167Al1zJylcz7yUb3hTW/SQM5148236KKLFxWCJuqxTJg4SWe9/2zNfdUxhWM0Q0Nyg0XHbaJlLfrGN6Nhsui4SxRIlm3Ry456he5bdb/ysj3DadnWVnXMPFT7Td6/ZC9n18Cgcl56h5kEzw1q0sS2kiGw8+kd2vz4Y9q961m1ZTPqnH2onv+8QyoGTUsmo0UXfT3qDRWGwIp7RsrnNO3AA3TqO0/R6/72uKLwei7IViy/Rd+59FJt2rRRHQfP0Mf/+Vy985ST9wTNNcuW6Stf/qIeWbdO+dyAlM/ts271OHRR72Oa9VDutVNuvzGkuC7DDy3Ua58yVLdq3zQWP/bEE0/U9ddfH2ufFDL/kLrVYxuqxlgMzf+R9HJJT0m6RtIiSd+QNM/dN5lZh6Q+d59Tbl619DTrfTLESEFT6bjMc8dy8jrnIx/V5i1bnwuNqJczbfpB+rdPnbfPcZmB6NhP8QkEuaL5Dz9eNNSOHf1Pq6VtYunhtHxejdokWjLP9RB2PLVNgwO79zpO4vmc2rIZyfN69pmno2M1g3uGwdonTtA7Tnp7yV7GvicIRIHUMtIJBCP3mN7yxjdq44b18lxOn/vsZ/SF//P5wnGi6LiS8rnUDcGnbVlpDM1yqulphj43Th3HSt3oada6ULOPSeqR9Iykm9x9vpltc/cDix6z1d2nlnhut6RuSZoxY8bcpUuXSpIe2p7Tuu155VyFn7xr0KX+p5/R1u3blctLeZlybnIzte+3v7Jtbdr8l63KuykvKeemvKKfaJpbRpmWVsmy0XylQXfl8tpzP+eFceZGyMiVkcvMlTVFZ5xllDUpm1Hht5myGamleFrGor9Jnh/UxNbWoscPPa7oecXP2etxtvd8o2kPPrBaWSu0LWNRO6P7r3jZS0vOq3jobMuWLVq3bt1e70YzmYw6Ozv18MP7Hs8p1tbWppkzZ+45eSjEli1btHHjRu3evbvi81euXLnn9qxZs7Rhw4a9/ydRO0OXX82yy9Wl+GSp0PlValelZcXV39+vyZMnV73uxY894IADtH379prXM0SpWhQrV5fi7WW4uXPnVtWOobqVal89/uel1FL3JLehUm0bqS3HH398YqHZ8M9WSpoq6VZJMyS1qtDTPFPStmGP21ppXsWf07zghlXeed51JX8OO+/n3vmvy/zQjy/1zo9f4S9ZcK0f+5Vb/LVfu9U7z7nMO/7xm97xDxf78957oR8y/wI/5Iyv+MHv/qLPeNfnfcY7P+vPO/WzftJXlvknrviDf/LKu/zTy/7on7vmHv/Sz+/zf79+lS+88X6/6OYH/JJb1/i3b3vQL/vVQ/6D/37Yf3T7Ol/6+/X+0zs3+M/v3ui/uGeT3/Knx7xv9RP+mzVP+u0P/cVXrtvif3xkm//p0e3e+dJjvOXADs9OmeHZydM8M2mK24T9vPPwI3zXQM5/8MP6fB4siauM1Pq5OfeRP+hc788+1vKZ0+Ffq1btB7LjfKavkZdiTPJD+kl+3jAJwy83V+4r0YrV47UwpNRrtdGfNa+27kltQ9Wst8bSxQ0knSbpsqL775P0LUmrJXVE0zokra40r+LQ3P7Mbn9s+zO+ecezvm3nbn9614DvGsh5Lpev+h9Rrw2+WrVckqoaSYRms1/I1dSh2joWL38oNOOuWz13qEnMLykrVqyoqq0hb5TSuJ7u9X0tlHqtJvk/T3Pdq1nvsRaafyPpPhXOljVJl0s6V9J/SDo/esz5ki6oNK96XXu2+J3RSBvJSJeVSvoyZMWXqKq2bSMtr16hmeRlycotq9Y61PL8oe8ijbtu9b7MXtq+s3UkK1asKLvuw9e73GPTvJ5D6tXbKvVaTfJ/nua6V7PeYyo0C+ujL0i6X9K9kn4oaYKk6ZKWS1oT/Z5WaT5JXLC9mncz1b6jrMfjq3nXN9Lyrr766rjlib0u9VRLTzFOHYvV+oaj3kPNY6GnWWq909zjaSR6mpXbNuZ7mvX8SSI0qwmDajfeej0+dAc70vMXLVoUtzyx16We6nUd3DhBVWto1nuouZlvXqox0jHNkdY7Dcc002A0HtNMyrg9plnPn6S+Gix0aKXaYZJ6PX7oOZWGfUZ6/sKFC6svSo3rUm/VDH/Vc0i0HkPbtQ4Vl5tfvYfF67Xs4d/WEbLejRz+T5tKhwOS/J+nqe5x20JoNjg0QzWrpxnaCxmrPc1q1bOtafu2jmaq5p3/8LqN5vVOWj1PPBvNaulRE5oVQrNZ77SbcUyzHh+tGO3HNKuV9NmMtWx/ja5jPV8rIcE3Uo9pNG0/9VBN3YvrWvwRp/H2hqKWN1aEZpnQbPaLr95nz9b6+JDnJ3X2bJp3eEmdzViP7a9Rdaz3ayXkC4bL9ZhG0/ZTi2rrXlzX4tBM65nCSanlEBChWSY0GeapXhKf0xwvRvMwY73bWml+9JgKajksQ93S19NszNcmJGj9+vVVTUe43t5edXV1KZPJqKurS729vc1uUuqMpu2v3m3t6elRe3v7XtPa29vV09OTyPKSltT2Xm0dKtV1vEhtHZJK40b80NOMJ6Sn2exh77Sip7m3ckOso6nHlOT2Hqfu9bqYxmgXdwhfDM+OHJrs3KsXEpqjKQwaKYljmo3SjJOORstZoElu77XUnUMp8RCaZULTffycUFAvI70Q6/35wXLzr/f/qVHbQL3Pnm20Rrd1tPSYkv7ccdy6E5rxEJoVQhPVCb3KSD3feTf6KiZJ9WjYicWT9rqldWQl7XVLqyRDc9SfCIT6WLBggXbu3Fn2MbUchC81/507d2rBggWx5teoeY9GnMBVvdSedILUITQhqfwZjWamzs5OLV68WPPnz6/r/OtxJuVoO0szSb29veru7ta6devk7lq3bp26u7sJzgrmz5+vxYsXq7Ozsy7bO8YuQhOSpNmzZ5ec3tnZqXw+r7Vr19a0Axlp/iNNT8u8Rxt63fHNnz9fa9eurcv2jrGL0ISk5Ienkpw/Q2vPodcNJIvQhKTkh6eSnD9Da8+h1w0kq6XZDUB6zJ8/P9GgSXL+Sbd9tOjp6VF3d/deQ7TjtdcNJIGeJjCG0OsGkkVPExhj6HUDyaGnCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAECgMRmafAkvACAJY+4yekNfwjt0weqhL+GVxKXFAAA1GXM9Tb6EFwCQlDEXmnwJLwAgKWMuNPkSXgBAUsZcaPb09Ki9vX2vaXwJLwCgHsZcaPIlvACApIy5s2clvoQXAJCMMdfTBAAgKYQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIGaEppmdqCZXWVm95vZKjN7tZlNM7ObzWxN9HtqM9oGAMBImtXTvFjSDe7+V5JeLmmVpPMlLXf3IyQtj+4DAJAaDQ9NM5si6XWSLpMkd9/t7tsknSzp8uhhl0s6pdFtAwCgnODQNLMXmtkSM7vazF5dwzIPl/SkpP8ysz+Y2XfNbD9Jh7j7JkmKfh9cwzIAAKg7c/fSfzCb6O7PFt3/saTPS3JJV7r7UbEWaHa0pP+RdJy7325mF0t6StK57n5g0eO2uvs+xzXNrFtStyTNmDFj7tKlS+M0Y1zr7+/X5MmTm92MUYnaxUPd4qFu8Rx//PEr3f3oJOZd7vs0f25mP3D3H0b3ByR1qRCauRqWuUHSBne/Pbp/lQrHLx83sw5332RmHZKeKPVkd18sabEkzZkzx+fNm1dDU8anvr4+Ubd4qF081C0e6pY+5YZn3yLpADO7wcxeK+nfVDgW+VZJsb/h2d0fk/SImc2JJp0g6U+SrpV0VjTtLEk/i7sMAACSMGJP091zki4xsx9K+pykDkn/293/XIflniup18zaJD0k6f0qBPhSMztb0npJp9VhOQAA1M2IoWlmfyPpk5J2S/qKpGck9ZjZBklfcvftcRfq7ndJKjXefELceQIAkLRyxzQvlfQuSZMlfdvdj5N0hpn9naSlkt7cgPYBAJAa5UIzp8KJP+0q9DYlSe5+m6Tbkm0WAADpUy40/5ekD6oQmO9rTHMAAEivcicCPSDpXxvYFgAAUo1vOQEAIBChCQBAoIqhaWZvNzPCFQAw7oWE4RmS1pjZBWb24qQbBABAWlUMTXc/U9IrJP1ZhW8m+a2ZdZvZ/om3DgCAFAkadnX3pyRdLekKFS6n9/eS7jSzcxNsGwAAqRJyTPMkM/uppFsltUo6xt3fKunlKlzEHQCAcaHcxQ2GnCbp6+7+y+KJ7r7TzP4xmWYBAJA+IaH5eUmbhu6Y2SRJh7j7WndfnljLAABImZBjmldKyhfdz0XTAAAYV0JCs8Xdiy/YvltSW3JNAgAgnUJC80kze8fQHTM7WdLm5JoEAEA6hRzT/JCkXjO7RJJJekR86wkAYByqGJru/mdJx5rZZEnm7juSbxYAAOkT0tOUmb1N0kskTTQzSZK7fzHBdgEAkDohFze4VNLpks5VYXj2NEmdCbcLAIDUCTkR6DXu/j5JW939C5JeLenQZJsFAED6hITms9HvnWb2fEkDkg5LrkkAAKRTyDHNn5vZgZL+Q9KdklzSdxJtFQAAKVQ2NKMvn17u7tskXW1m10ma6O7bG9I6AABSpOzwrLvnJf1n0f1dBCYAYLwKOaZ5k5mdakOfNQEAYJwKOab5L5L2kzRoZs+q8LETd/cpibYMAICUCbki0P6NaAgAAGlXMTTN7HWlpg//UmoAAMa6kOHZTxbdnijpGEkrJb0+kRYBAJBSIcOzJxXfN7NDJV2QWIsAAEipkLNnh9sg6a/r3RAAANIu5JjmN1S4CpBUCNmjJN2dZKMAAEijkGOadxTdHpT0Y3f/TULtAQAgtUJC8ypJz7p7TpLMLGtm7e6+M9mmAQCQLiHHNJdLmlR0f5KkW5JpDgAA6RUSmhPdvX/oTnS7PbkmAQCQTiGh+bSZvXLojpnNlfRMck0CACCdQo5pflzSlWb2aHS/Q9LpyTUJAIB0Crm4we/N7K8kzVHhYu33u/tA4i0DACBlKg7PmtlHJO3n7ve6+z2SJpvZh5NvGgAA6RJyTPOf3H3b0B133yrpn5JrEgAA6RQSmpniL6A2s6yktuSaBABAOoWcCHSjpKVmdqkKl9P7kKQbEm0VAAApFBKa50nqlnSOCicC3STpO0k2CgCANKo4POvueXe/1N3f5e6nSrpP0jdqXXB0Ob4/mNl10f1pZnazma2Jfk+tdRkAANRT0FeDmdlRZvY1M1sr6UuS7q/Dsj8maVXR/fMlLXf3I1S4dN/5dVgGAAB1M2JomtmLzOxzZrZK0iUqfI+mufvx7l5TT9PMZkl6m6TvFk0+WdLl0e3LJZ1SyzIAAKi3csc075f0K0knufuDkmRmn6jTci+S9ClJ+xdNO8TdN0mSu28ys4PrtCwAAOqiXGieKukMSSvM7AZJV6hwIlBNzOztkp5w95VmNi/G87tVODFJM2bMUF9fX61NGnf6+/upW0zULh7qFg91Sx9z9/IPMNtPhaHS90h6vQpDpz9195tiLdDs3yW9V4UvtJ4oaYqkZZJeJWle1MvskNTn7nPKzWvOnDm+evXqOM0Y1/r6+jRv3rxmN2NUonbxULd4qFs8ZrbS3Y9OYt4hZ88+7e697v52SbMk3aUaTtJx90+7+yx371KhJ3uru58p6VpJZ0UPO0vSz+IuAwCAJASdPTvE3be4+7fd/fUJtOWrkt5oZmskvTG6DwBAaoRc3CAx7t4nqS+6/RdJJzSzPQAAlFNVTxMAgPGM0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAI1PDTN7FAzW2Fmq8zsPjP7WDR9mpndbGZrot9TG902AADKaUZPc1DSv7r7iyUdK+kjZnakpPMlLXf3IyQtj+4DAJAaDQ9Nd9/k7ndGt3dIWiVppqSTJV0ePexySac0um0AAJRj7t68hZt1SfqlpL+WtN7dDyz621Z332eI1sy6JXVL0owZM+YuXbq0MY0dQ/r7+zV58uRmN2NUonbxULd4qFs8xx9//Ep3PzqJeTctNM1ssqTbJPW4+zIz2xYSmsXmzJnjq1evTrqpY05fX5/mzZvX7GaMStQuHuoWD3WLx8wSC82mnD1rZq2SrpbU6+7LosmPm1lH9PcOSU80o20AAIykGWfPmqTLJK1y9wuL/nStpLOi22dJ+lmj2wYAQDktTVjmcZLeK+keM7srmvYZSV+VtNTMzpa0XtJpTWgbAAAjanhouvuvJdkIfz6hkW0BAKAaXBEIAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhPIYwg8AAAbSSURBVCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIlLrQNLO3mNlqM3vQzM5vdnsAABiSqtA0s6ykb0p6q6QjJb3HzI5sbqsAAChIVWhKOkbSg+7+kLvvlnSFpJOb3CYAACSlLzRnSnqk6P6GaBoAAE3X0uwGDGMlpvleDzDrltQd3d1lZvcm3qqx5yBJm5vdiFGK2sVD3eKhbvHMSWrGaQvNDZIOLbo/S9KjxQ9w98WSFkuSmd3h7kc3rnljA3WLj9rFQ93ioW7xmNkdSc07bcOzv5d0hJkdZmZtks6QdG2T2wQAgKSU9TTdfdDMPirpRklZSd9z9/ua3CwAACSlLDQlyd2vl3R94MMXJ9mWMYy6xUft4qFu8VC3eBKrm7l75UcBAIDUHdMEACC1Rm1ocrm955jZoWa2wsxWmdl9ZvaxaPo0M7vZzNZEv6cWPefTUe1Wm9mbi6bPNbN7or8tMrNSHwMaU8wsa2Z/MLProvvULYCZHWhmV5nZ/dG292pqV5mZfSJ6nd5rZj82s4nUbV9m9j0ze6L4Y4X1rJOZTTCzn0TTbzezrqCGufuo+1HhJKE/SzpcUpukuyUd2ex2NbEeHZJeGd3eX9IDKlyG8AJJ50fTz5f0tej2kVHNJkg6LKplNvrb7yS9WoXPzP5C0lubvX4NqN+/SPqRpOui+9QtrG6XS/pAdLtN0oHUrmLNZkp6WNKk6P5SSf9A3UrW6nWSXinp3qJpdauTpA9LujS6fYakn4S0a7T2NLncXhF33+Tud0a3d0hapcKL82QVdmyKfp8S3T5Z0hXuvsvdH5b0oKRjzKxD0hR3/60XtqQfFD1nTDKzWZLeJum7RZOpWwVmNkWFndplkuTuu919m6hdiBZJk8ysRVK7Cp9Fp27DuPsvJW0ZNrmedSqe11WSTgjprY/W0ORyeyOIhhheIel2SYe4+yapEKySDo4eNlL9Zka3h08fyy6S9ClJ+aJp1K2ywyU9Kem/oqHt75rZfqJ2Zbn7RkkLJa2XtEnSdne/SdQtVD3rtOc57j4oabuk6ZUaMFpDs+Ll9sYjM5ss6WpJH3f3p8o9tMQ0LzN9TDKzt0t6wt1Xhj6lxLRxV7dIiwpDZ//X3V8h6WkVhstGQu0kRcfgTlZhCPH5kvYzszPLPaXEtHFXtwBx6hSrhqM1NCtebm+8MbNWFQKz192XRZMfj4YnFP1+Ipo+Uv02RLeHTx+rjpP0DjNbq8IQ/+vNbImoW4gNkja4++3R/atUCFFqV94bJD3s7k+6+4CkZZJeI+oWqp512vOcaKj8AO07HLyP0RqaXG6vSDQOf5mkVe5+YdGfrpV0VnT7LEk/K5p+RnT22GGSjpD0u2i4Y4eZHRvN831Fzxlz3P3T7j7L3btU2IZudfczRd0qcvfHJD1iZkMXxj5B0p9E7SpZL+lYM2uP1vcEFc5BoG5h6lmn4nm9S4XXf+XeerPPkIr7I+lEFc4S/bOkBc1uT5Nr8bcqDCv8UdJd0c+JKozPL5e0Jvo9reg5C6LarVbRWXeSjpZ0b/S3SxRdAGOs/0iap+fOnqVuYTU7StId0XZ3jaSp1C6obl+QdH+0zj9U4YxP6rZvnX6swnHfARV6hWfXs06SJkq6UoWThn4n6fCQdnFFIAAAAo3W4VkAABqO0AQAIBChCQBAIEITAIBAhCYAAIEITSBFzCxnZncV/dTtG3zMrKv4GyMAVK+l2Q0AsJdn3P2oZjcCQGn0NIFRwMzWmtnXzOx30c8Lo+mdZrbczP4Y/Z4dTT/EzH5qZndHP6+JZpU1s+9Y4fscbzKzSU1bKWAUIjSBdJk0bHj29KK/PeXux6hwVZOLommXSPqBu79MUq+kRdH0RZJuc/eXq3BN2Pui6UdI+qa7v0TSNkmnJrw+wJjCFYGAFDGzfnefXGL6Wkmvd/eHoovzP+bu081ss6QOdx+Ipm9y94PM7ElJs9x9V9E8uiTd7O5HRPfPk9Tq7l9Ofs2AsYGeJjB6+Ai3R3pMKbuKbufEeQ1AVQhNYPQ4vej3b6Pb/63CN7RI0nxJv45uL5d0jiSZWdbMpjSqkcBYxrtMIF0mmdldRfdvcPehj51MMLPbVXiz+55o2j9L+p6ZfVLSk5LeH03/mKTFZna2Cj3Kc1T4xggANeCYJjAKRMc0j3b3zc1uCzCeMTwLAEAgepoAAASipwkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAI9P8B2XuBzwVIixYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -333,26 +333,26 @@ "\n", "================= Iteration Stats ================\n", " step: 10000 of 10000\n", - " loss: 0.403381\n", + " loss: 0.341034\n", "\n", - " accuracy: 82.00 %\n", - " AVG: 82.22 %\n", - " Best: 89.33 %\n", + " accuracy: 85.00 %\n", + " AVG: 81.03 %\n", + " Best: 88.00 %\n", "\n", " Trend slope: 0.000\n", " MAD Dispersion: nan\n", - " Skewness: Approximately symmetric distribution ( -0.22 )\n", + " Skewness: Moderately skewed distribution ( -0.6 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 2 min and 30 sec\n", + " Elapsed: 0h, 2 min and 17 sec\n", " ETC: 0h, 0 min and 0 sec\n", "\n", "================= Network Setup ================\n", " number of classes: 100\n", - " number of features: 32460\n", + " number of features: 14\n", " learning rate: 1\n", " training steps: 10000\n", - " batch size: 150\n", + " batch size: 100\n", "1st layer n. of neurons: 512\n", "2st layer n. of neurons: 512\n", " Normalized data: True, type: mean, Discrete Binary 0/1\n", From ed46a9344a5fd4034819e0252f3055ec32dfe905 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 13:19:11 +0200 Subject: [PATCH 06/13] Add files via upload --- .../Multilayer_Perceptron.ipynb | 102 ++++++++---------- 1 file changed, 42 insertions(+), 60 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index b5c13d3e..be190c0b 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -49,18 +49,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ + "# task type to perform\n", + "taskRunning=\"regression\" # can be: classification / regression\n", + "\n", "# parameters initialization.\n", - "num_classes = 100 # total classes : number of output results\n", + "num_classes = 1 # total classes : number of output results wanted\n", "num_features = 0 # data features : number of input variables on the dataset. a value of 0 loads from the dataset bellow\n", "\n", "# Training parameters.\n", "learning_rate = 1\n", "training_steps = 10000\n", - "batch_size = 100\n", + "batch_size = 24\n", "display_step = 100\n", "\n", "#normalization of data\n", @@ -75,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -88,8 +91,6 @@ "df_tr=pd.read_csv('./week3_exam_dataset_train.csv')\n", "\n", "df_tr_raw_y= df_tr['y']\n", - "if num_classes==0:\n", - " num_classes= df_tr_raw_y.shape[0]\n", "\n", "df_tr_raw_values_y = df_tr_raw_y.values\n", "data_tr_y = np.float32(df_tr_raw_values_y)\n", @@ -139,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -172,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -180,9 +181,12 @@ "# Note that this will apply 'softmax' to the logits.\n", "def cross_entropy_loss(x, y):\n", " # Convert labels to int 64 for tf cross-entropy function.\n", - " y = tf.cast(y, tf.int64)\n", + " y = tf.cast(y, tf.int32)\n", + " if (taskRunning==\"classification\"):\n", + " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n", + " else: \n", + " loss=tf.keras.losses.binary_crossentropy(y, x)\n", " # Apply softmax to logits and compute cross-entropy.\n", - " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n", " # Average loss across the batch.\n", " return tf.reduce_mean(loss)\n", "\n", @@ -213,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -238,7 +242,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "metadata": { "scrolled": true }, @@ -310,12 +314,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5wcZZ3v8e+ve2aSDCGQhIBjQmZAMSuuigZZlNUN4hVFWBHBE5R1cUdRWXV3FTQePV7GVTaLENGDUVzRjGKAiMhBbiGDl3VRgiBgCEFIQkK4xFzIEEhmun/nj64JnUlP99PVXd01M5/36zWv6a7prnrqN9X17eep6mpzdwEAgMoyzW4AAACjBaEJAEAgQhMAgECEJgAAgQhNAAACEZoAAARKLDTN7Htm9oSZ3Vs0bZqZ3Wxma6LfU4v+9mkze9DMVpvZm5NqFwAAcSXZ0/y+pLcMm3a+pOXufoSk5dF9mdmRks6Q9JLoOd8ys2yCbQMAoGqJhaa7/1LSlmGTT5Z0eXT7ckmnFE2/wt13ufvDkh6UdExSbQMAII5GH9M8xN03SVL0++Bo+kxJjxQ9bkM0DQCA1GhpdgMiVmJayev7mVm3pG5Jmjhx4tzZs2cn2a4xKZ/PK5PhHLA4qF081C0e6hbPAw88sNndZyQx70aH5uNm1uHum8ysQ9IT0fQNkg4tetwsSY+WmoG7L5a0WJLmzJnjq1evTrK9Y1JfX5/mzZvX7GaMStQuHuoWD3WLx8zWJTXvRr+FuVbSWdHtsyT9rGj6GWY2wcwOk3SEpN81uG0AAJSVWE/TzH4saZ6kg8xsg6TPS/qqpKVmdrak9ZJOkyR3v8/Mlkr6k6RBSR9x91xSbQMAII7EQtPd3zPCn04Y4fE9knqSag8AALXiCDMAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQBosN7eXnV1dSmTyairq0u9vb3NbhICtTS7AQAwnvT29qq7u1s7d+6UJK1bt07d3d2SpPnz5zezaQhAT3OM4R0sUJDW18KCBQv2BOaQnTt3asGCBU1qEapBT3MM4R0sUJDm18L69eurmo50oac5hvAOFihI82th9uzZVU1HuhCaAYYP83z4wx9O5bBPpXewQ+uxcuXKVKxHmobPaEv621KNpHtztdSlp6dH7e3te01rbW1Vf3//qKtzteq9PTVl+3T3Ufvzohe9yJO2ZMkSb29vd0kj/rS3t/uSJUsSb0slnZ2dJdvX2dm513osXLiw6etRqq7NqmM1bVmxYkVq2pK0erYl6boNV+61UKt61GXJkiXe2dnpZubTp0/3tra2kvNrdN2SVO9tu9z8JN3hCeVO04Ovlp9GhOZIL74kXoy1KrcRFa/HSKHZyPVIcqeWZFuS3omN1rpU0uidf5JvPur9Pyo3v7EUmo2sG6HZxNA0s6DQNLOSzy9+RznU40vSSMsrXo9yoTnSetTbSHVt1PLjtiXpndhorUsljdj5D9/2zznnnERee/X+H5WbX2jdqtnPNHqfNCSkbtW0rdK+2QnN5oRmLT3NNA210dOsT1voaaazp9nI11raeprVrHsz90mV6lZt2yrtm53QbE5o1nJMM007QI5p1qctY2nnH6ctra2tPn369BF7AiP1FEJ3/nF7QCGvtXr1sBp5bC6kbtXsZ5LYJ4XWtdL2lM1mq2pbpX2zE5rNCU33+MM+aRpqc39uPRYuXJjo8FW17WnW8uO0pRnDjGmpS7kTVoYeG3fnX2sQVXqtJRF09fwf1fJmo5r9TL33SdXWtdL2VG3biudHaKYoNONKU0+z2Fg6uaDRxnPtKm3PtQwz1vpaqaVtaZb2nmYt86s0vFrrNuAJ5Q6f00xQqc9jtbe3q6enZ8/90fo5uBC1rNtorstobns5lT77WMtnI+M8t7jO/f39amtr2+vvxa+1sXwVnpD9TLnH1vIZ0ZC6jvR6CKn9SOtRSql1S0RSadyIn7T3NN3LD+M06/hVo4YY465bmo7rDZf0MGOapamnWe3x1rHc03SPf/ZspSH3SirVNfRjcMU/2Ww29rB38Xw9odxpevDV8jMaQrOcZr2QGxGaSQzbpGEHl/QwY5pVekPQyGOa9QjZ0fBmJu1na1eqa7n5J/k/EZ/TrG9oJnmiRT0+Z1TNQfk46xL3hdiodWtWXUKeX6l25T47lvRJI3EeW22d4s6v3mfPxtlGkvwcZ1L7lKG61fI/L7eeSdcx5AStJOpGaNYxNJN8d5P0u+V6rUuc0GzkujWrLiHPj9vTrNf2Vs261dIzrLd695iavY0kNa/hVqxYUfP/vNz2t08dM1m3lgne+cI5/pf+Xf749md8w9advnZzv695fIcv/O6PfErnS7yt40U+YeaRPmH2S/2AOcf6Z791hf/ink1+3d2P+jV/2OBX3vGI//j2dd55wpm+/9yTfMoxf+9Tjj3ND3jNGX7Aa8/0zpP+2b/08/v88z+71z+z7I/+qSvv9k/85A9+7o/u9HOW3OEfuPz3/g/fu93P/O7/+Onf/m8/9Vu/8Xdc8ms/8eJf+psuvM2PX7jCX/u1W/3VX7nFj/7yzX7UF270v/7cDT7ns9f7Cz79/xINTXN3jVZz5szx1atXV/Wcrq4urVu3bp/pnZ2dWrt2bU3tqXbew7++SCoc+F68eHHQ1xfFXZe+vj7Nmzev4vxrWVYt69asuoQ8//vf/37Z2pVqeylxt7dq1q3SY5N8LQwXZ5srp9nbyBB312GHv0DrNzwqZbKybIssk5UyLZo1e7ZuubVPg/m8BnOugVxeg/nod841mM9rIOfDbuc1kC/8Hsy5Vj/4oK66epm2PdUvy7RI2awsU1jG/gccqHee9u69nn/zLcv1zK7de9pg2aHfLXtNa2mdoKnTD9LOZ3fr2V2797S9EdzzasmYJrS2qCVjas1mlI1+t2ZNLdnMnuktWVNrpvC7JZtRa8aG3Y6eEz2mNXrueW998Up3PzqJ9o+L0Ozt7dWCBQu0fv16jbS+ZqZ8Pl9TezKZTMn5l5t3cdtmz56tnp6e4O/7i7M8Kd4OrBHrVvz4adOmSZK2bNnSsLqEPP/WW2/Vxo0by65Xvbe3uPOrVIeR/j70mGrrXk7xNufuyuV9rwAZiIJlMOfancsHBc1tv/qVll55tf6ybbumHzRDbzvpHXrFK+dqYOh5RQE0ED23ME/XD5YsKQRFpmWfsDv2NcdpMJ/Xk5u36vEnn9RAzpVtaZUyWblllG1pVeuESXLLaDDfuP2n5wbkuZyUH5Tnc/L8oDpnzdoraO6+604pl5Pnix6XG5Ryg/LovvKDUj6ncz74QbVkTWtW369f//I2bd+6RQfsP1lvftMb9Kq5r1RLFEpt2edC6z2nv1uee24+Q+1RPqeVd/xOLZmMfnH9dbroPxdq44ZHNLPjeXrDCcfrlhtv1Pp1D2v2rOer58tfTvw7Tc2M0CwlJDSTfudfrJHv3GtZXiN6mtWqtedQLMme5oUXXqj3vve9we2stS171cUyhd7A0M6+qNcx89DZuvHm5XtCZjCX17vefboef3LzPj2NGQcfoq9e8B86/zMLtGXrNin6W2GeLXvNu7Vtgl77d/PUdfgL9oTQwOAIQTYs6IpvP7Nrt2TZPY9tlFK9kNZsRhsfWa+B3c/uEwAT21r02r89Tk88tkl/vOtODe7eFf09CqLo8S0Z01vf/Ea9/GUv1aKvX6itWzbv9XflBzV96oG6+KKv77Xclqg95XtUz93+7W9+re4PnK11ax/eZ92qGV0IeW6ISttzPV/HtRhzoWlmn5D0ARXG0e+R9H5J7ZJ+IqlL0lpJ73b3reXmExKaIRtRa2urpkyZEqtXU6weG0w1vbO4y4sTmiHLqqXXHPJijFWXKGja99tfX794kU5+5zv39GgG9tnJF3boN918iy5a9A3tGhjcE1ItrRM0ab/JesuJb9Oyn14zLGiyOnDqdHV/6Jx9gmTNnx/S7b+/Q3m3KOyyyra26UVzXqypBx20Z/mlgmYgl9eO/qfllik81xrzserhPZqsuWZ2dEQ7/BI7/xKhtHc4mB7f9Ki6Zh+617Ba6aG3wnNqCZqh52YzJjOrvI1EirfnkP1GuaCo1z6lr69PGzduDH6dh3QSagmxuHVLquMwkjEVmmY2U9KvJR3p7s+Y2VJJ10s6UtIWd/+qmZ0vaaq7n1duXiGhWWkIatq0adqxY4d27969Z3qtG1Xc4IgTgnGWVyk0c/l9g2Qwn9dVy67Rf174dW167Al1zJylcz7yUb3hTW/SQM5148236KKLFxWCJuqxTJg4SWe9/2zNfdUxhWM0Q0Nyg0XHbaJlLfrGN6Nhsui4SxRIlm3Ry456he5bdb/ysj3DadnWVnXMPFT7Td6/ZC9n18Cgcl56h5kEzw1q0sS2kiGw8+kd2vz4Y9q961m1ZTPqnH2onv+8QyoGTUsmo0UXfT3qDRWGwIp7RsrnNO3AA3TqO0/R6/72uKLwei7IViy/Rd+59FJt2rRRHQfP0Mf/+Vy985ST9wTNNcuW6Stf/qIeWbdO+dyAlM/ts271OHRR72Oa9VDutVNuvzGkuC7DDy3Ua58yVLdq3zQWP/bEE0/U9ddfH2ufFDL/kLrVYxuqxlgMzf+R9HJJT0m6RtIiSd+QNM/dN5lZh6Q+d59Tbl619DTrfTLESEFT6bjMc8dy8jrnIx/V5i1bnwuNqJczbfpB+rdPnbfPcZmB6NhP8QkEuaL5Dz9eNNSOHf1Pq6VtYunhtHxejdokWjLP9RB2PLVNgwO79zpO4vmc2rIZyfN69pmno2M1g3uGwdonTtA7Tnp7yV7GvicIRIHUMtIJBCP3mN7yxjdq44b18lxOn/vsZ/SF//P5wnGi6LiS8rnUDcGnbVlpDM1yqulphj43Th3HSt3oada6ULOPSeqR9Iykm9x9vpltc/cDix6z1d2nlnhut6RuSZoxY8bcpUuXSpIe2p7Tuu155VyFn7xr0KX+p5/R1u3blctLeZlybnIzte+3v7Jtbdr8l63KuykvKeemvKKfaJpbRpmWVsmy0XylQXfl8tpzP+eFceZGyMiVkcvMlTVFZ5xllDUpm1Hht5myGamleFrGor9Jnh/UxNbWoscPPa7oecXP2etxtvd8o2kPPrBaWSu0LWNRO6P7r3jZS0vOq3jobMuWLVq3bt1e70YzmYw6Ozv18MP7Hs8p1tbWppkzZ+45eSjEli1btHHjRu3evbvi81euXLnn9qxZs7Rhw4a9/ydRO0OXX82yy9Wl+GSp0PlValelZcXV39+vyZMnV73uxY894IADtH379prXM0SpWhQrV5fi7WW4uXPnVtWOobqVal89/uel1FL3JLehUm0bqS3HH398YqHZ8M9WSpoq6VZJMyS1qtDTPFPStmGP21ppXsWf07zghlXeed51JX8OO+/n3vmvy/zQjy/1zo9f4S9ZcK0f+5Vb/LVfu9U7z7nMO/7xm97xDxf78957oR8y/wI/5Iyv+MHv/qLPeNfnfcY7P+vPO/WzftJXlvknrviDf/LKu/zTy/7on7vmHv/Sz+/zf79+lS+88X6/6OYH/JJb1/i3b3vQL/vVQ/6D/37Yf3T7Ol/6+/X+0zs3+M/v3ui/uGeT3/Knx7xv9RP+mzVP+u0P/cVXrtvif3xkm//p0e3e+dJjvOXADs9OmeHZydM8M2mK24T9vPPwI3zXQM5/8MP6fB4siauM1Pq5OfeRP+hc788+1vKZ0+Ffq1btB7LjfKavkZdiTPJD+kl+3jAJwy83V+4r0YrV47UwpNRrtdGfNa+27kltQ9Wst8bSxQ0knSbpsqL775P0LUmrJXVE0zokra40r+LQ3P7Mbn9s+zO+ecezvm3nbn9614DvGsh5Lpev+h9Rrw2+WrVckqoaSYRms1/I1dSh2joWL38oNOOuWz13qEnMLykrVqyoqq0hb5TSuJ7u9X0tlHqtJvk/T3Pdq1nvsRaafyPpPhXOljVJl0s6V9J/SDo/esz5ki6oNK96XXu2+J3RSBvJSJeVSvoyZMWXqKq2bSMtr16hmeRlycotq9Y61PL8oe8ijbtu9b7MXtq+s3UkK1asKLvuw9e73GPTvJ5D6tXbKvVaTfJ/nua6V7PeYyo0C+ujL0i6X9K9kn4oaYKk6ZKWS1oT/Z5WaT5JXLC9mncz1b6jrMfjq3nXN9Lyrr766rjlib0u9VRLTzFOHYvV+oaj3kPNY6GnWWq909zjaSR6mpXbNuZ7mvX8SSI0qwmDajfeej0+dAc70vMXLVoUtzyx16We6nUd3DhBVWto1nuouZlvXqox0jHNkdY7Dcc002A0HtNMyrg9plnPn6S+Gix0aKXaYZJ6PX7oOZWGfUZ6/sKFC6svSo3rUm/VDH/Vc0i0HkPbtQ4Vl5tfvYfF67Xs4d/WEbLejRz+T5tKhwOS/J+nqe5x20JoNjg0QzWrpxnaCxmrPc1q1bOtafu2jmaq5p3/8LqN5vVOWj1PPBvNaulRE5oVQrNZ77SbcUyzHh+tGO3HNKuV9NmMtWx/ja5jPV8rIcE3Uo9pNG0/9VBN3YvrWvwRp/H2hqKWN1aEZpnQbPaLr95nz9b6+JDnJ3X2bJp3eEmdzViP7a9Rdaz3ayXkC4bL9ZhG0/ZTi2rrXlzX4tBM65nCSanlEBChWSY0GeapXhKf0xwvRvMwY73bWml+9JgKajksQ93S19NszNcmJGj9+vVVTUe43t5edXV1KZPJqKurS729vc1uUuqMpu2v3m3t6elRe3v7XtPa29vV09OTyPKSltT2Xm0dKtV1vEhtHZJK40b80NOMJ6Sn2exh77Sip7m3ckOso6nHlOT2Hqfu9bqYxmgXdwhfDM+OHJrs3KsXEpqjKQwaKYljmo3SjJOORstZoElu77XUnUMp8RCaZULTffycUFAvI70Q6/35wXLzr/f/qVHbQL3Pnm20Rrd1tPSYkv7ccdy6E5rxEJoVQhPVCb3KSD3feTf6KiZJ9WjYicWT9rqldWQl7XVLqyRDc9SfCIT6WLBggXbu3Fn2MbUchC81/507d2rBggWx5teoeY9GnMBVvdSedILUITQhqfwZjWamzs5OLV68WPPnz6/r/OtxJuVoO0szSb29veru7ta6devk7lq3bp26u7sJzgrmz5+vxYsXq7Ozsy7bO8YuQhOSpNmzZ5ec3tnZqXw+r7Vr19a0Axlp/iNNT8u8Rxt63fHNnz9fa9eurcv2jrGL0ISk5Ienkpw/Q2vPodcNJIvQhKTkh6eSnD9Da8+h1w0kq6XZDUB6zJ8/P9GgSXL+Sbd9tOjp6VF3d/deQ7TjtdcNJIGeJjCG0OsGkkVPExhj6HUDyaGnCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAECgMRmafAkvACAJY+4yekNfwjt0weqhL+GVxKXFAAA1GXM9Tb6EFwCQlDEXmnwJLwAgKWMuNPkSXgBAUsZcaPb09Ki9vX2vaXwJLwCgHsZcaPIlvACApIy5s2clvoQXAJCMMdfTBAAgKYQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIGaEppmdqCZXWVm95vZKjN7tZlNM7ObzWxN9HtqM9oGAMBImtXTvFjSDe7+V5JeLmmVpPMlLXf3IyQtj+4DAJAaDQ9NM5si6XWSLpMkd9/t7tsknSzp8uhhl0s6pdFtAwCgnODQNLMXmtkSM7vazF5dwzIPl/SkpP8ysz+Y2XfNbD9Jh7j7JkmKfh9cwzIAAKg7c/fSfzCb6O7PFt3/saTPS3JJV7r7UbEWaHa0pP+RdJy7325mF0t6StK57n5g0eO2uvs+xzXNrFtStyTNmDFj7tKlS+M0Y1zr7+/X5MmTm92MUYnaxUPd4qFu8Rx//PEr3f3oJOZd7vs0f25mP3D3H0b3ByR1qRCauRqWuUHSBne/Pbp/lQrHLx83sw5332RmHZKeKPVkd18sabEkzZkzx+fNm1dDU8anvr4+Ubd4qF081C0e6pY+5YZn3yLpADO7wcxeK+nfVDgW+VZJsb/h2d0fk/SImc2JJp0g6U+SrpV0VjTtLEk/i7sMAACSMGJP091zki4xsx9K+pykDkn/293/XIflniup18zaJD0k6f0qBPhSMztb0npJp9VhOQAA1M2IoWlmfyPpk5J2S/qKpGck9ZjZBklfcvftcRfq7ndJKjXefELceQIAkLRyxzQvlfQuSZMlfdvdj5N0hpn9naSlkt7cgPYBAJAa5UIzp8KJP+0q9DYlSe5+m6Tbkm0WAADpUy40/5ekD6oQmO9rTHMAAEivcicCPSDpXxvYFgAAUo1vOQEAIBChCQBAoIqhaWZvNzPCFQAw7oWE4RmS1pjZBWb24qQbBABAWlUMTXc/U9IrJP1ZhW8m+a2ZdZvZ/om3DgCAFAkadnX3pyRdLekKFS6n9/eS7jSzcxNsGwAAqRJyTPMkM/uppFsltUo6xt3fKunlKlzEHQCAcaHcxQ2GnCbp6+7+y+KJ7r7TzP4xmWYBAJA+IaH5eUmbhu6Y2SRJh7j7WndfnljLAABImZBjmldKyhfdz0XTAAAYV0JCs8Xdiy/YvltSW3JNAgAgnUJC80kze8fQHTM7WdLm5JoEAEA6hRzT/JCkXjO7RJJJekR86wkAYByqGJru/mdJx5rZZEnm7juSbxYAAOkT0tOUmb1N0kskTTQzSZK7fzHBdgEAkDohFze4VNLpks5VYXj2NEmdCbcLAIDUCTkR6DXu/j5JW939C5JeLenQZJsFAED6hITms9HvnWb2fEkDkg5LrkkAAKRTyDHNn5vZgZL+Q9KdklzSdxJtFQAAKVQ2NKMvn17u7tskXW1m10ma6O7bG9I6AABSpOzwrLvnJf1n0f1dBCYAYLwKOaZ5k5mdakOfNQEAYJwKOab5L5L2kzRoZs+q8LETd/cpibYMAICUCbki0P6NaAgAAGlXMTTN7HWlpg//UmoAAMa6kOHZTxbdnijpGEkrJb0+kRYBAJBSIcOzJxXfN7NDJV2QWIsAAEipkLNnh9sg6a/r3RAAANIu5JjmN1S4CpBUCNmjJN2dZKMAAEijkGOadxTdHpT0Y3f/TULtAQAgtUJC8ypJz7p7TpLMLGtm7e6+M9mmAQCQLiHHNJdLmlR0f5KkW5JpDgAA6RUSmhPdvX/oTnS7PbkmAQCQTiGh+bSZvXLojpnNlfRMck0CACCdQo5pflzSlWb2aHS/Q9LpyTUJAIB0Crm4we/N7K8kzVHhYu33u/tA4i0DACBlKg7PmtlHJO3n7ve6+z2SJpvZh5NvGgAA6RJyTPOf3H3b0B133yrpn5JrEgAA6RQSmpniL6A2s6yktuSaBABAOoWcCHSjpKVmdqkKl9P7kKQbEm0VAAApFBKa50nqlnSOCicC3STpO0k2CgCANKo4POvueXe/1N3f5e6nSrpP0jdqXXB0Ob4/mNl10f1pZnazma2Jfk+tdRkAANRT0FeDmdlRZvY1M1sr6UuS7q/Dsj8maVXR/fMlLXf3I1S4dN/5dVgGAAB1M2JomtmLzOxzZrZK0iUqfI+mufvx7l5TT9PMZkl6m6TvFk0+WdLl0e3LJZ1SyzIAAKi3csc075f0K0knufuDkmRmn6jTci+S9ClJ+xdNO8TdN0mSu28ys4PrtCwAAOqiXGieKukMSSvM7AZJV6hwIlBNzOztkp5w95VmNi/G87tVODFJM2bMUF9fX61NGnf6+/upW0zULh7qFg91Sx9z9/IPMNtPhaHS90h6vQpDpz9195tiLdDs3yW9V4UvtJ4oaYqkZZJeJWle1MvskNTn7nPKzWvOnDm+evXqOM0Y1/r6+jRv3rxmN2NUonbxULd4qFs8ZrbS3Y9OYt4hZ88+7e697v52SbMk3aUaTtJx90+7+yx371KhJ3uru58p6VpJZ0UPO0vSz+IuAwCAJASdPTvE3be4+7fd/fUJtOWrkt5oZmskvTG6DwBAaoRc3CAx7t4nqS+6/RdJJzSzPQAAlFNVTxMAgPGM0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAI1PDTN7FAzW2Fmq8zsPjP7WDR9mpndbGZrot9TG902AADKaUZPc1DSv7r7iyUdK+kjZnakpPMlLXf3IyQtj+4DAJAaDQ9Nd9/k7ndGt3dIWiVppqSTJV0ePexySac0um0AAJRj7t68hZt1SfqlpL+WtN7dDyz621Z332eI1sy6JXVL0owZM+YuXbq0MY0dQ/r7+zV58uRmN2NUonbxULd4qFs8xx9//Ep3PzqJeTctNM1ssqTbJPW4+zIz2xYSmsXmzJnjq1evTrqpY05fX5/mzZvX7GaMStQuHuoWD3WLx8wSC82mnD1rZq2SrpbU6+7LosmPm1lH9PcOSU80o20AAIykGWfPmqTLJK1y9wuL/nStpLOi22dJ+lmj2wYAQDktTVjmcZLeK+keM7srmvYZSV+VtNTMzpa0XtJpTWgbAAAjanhouvuvJdkIfz6hkW0BAKAaXBEIAIBAhCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIRGgCABCI0AQAIBChCQBAIEITAIBAhPIYwg8AAAbSSURBVCYAAIEITQAAAhGaAAAEIjQBAAhEaAIAEIjQBAAgEKEJAEAgQhMAgECEJgAAgQhNAAACEZoAAAQiNAEACERoAgAQiNAEACAQoQkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAIlLrQNLO3mNlqM3vQzM5vdnsAABiSqtA0s6ykb0p6q6QjJb3HzI5sbqsAAChIVWhKOkbSg+7+kLvvlnSFpJOb3CYAACSlLzRnSnqk6P6GaBoAAE3X0uwGDGMlpvleDzDrltQd3d1lZvcm3qqx5yBJm5vdiFGK2sVD3eKhbvHMSWrGaQvNDZIOLbo/S9KjxQ9w98WSFkuSmd3h7kc3rnljA3WLj9rFQ93ioW7xmNkdSc07bcOzv5d0hJkdZmZtks6QdG2T2wQAgKSU9TTdfdDMPirpRklZSd9z9/ua3CwAACSlLDQlyd2vl3R94MMXJ9mWMYy6xUft4qFu8VC3eBKrm7l75UcBAIDUHdMEACC1Rm1ocrm955jZoWa2wsxWmdl9ZvaxaPo0M7vZzNZEv6cWPefTUe1Wm9mbi6bPNbN7or8tMrNSHwMaU8wsa2Z/MLProvvULYCZHWhmV5nZ/dG292pqV5mZfSJ6nd5rZj82s4nUbV9m9j0ze6L4Y4X1rJOZTTCzn0TTbzezrqCGufuo+1HhJKE/SzpcUpukuyUd2ex2NbEeHZJeGd3eX9IDKlyG8AJJ50fTz5f0tej2kVHNJkg6LKplNvrb7yS9WoXPzP5C0lubvX4NqN+/SPqRpOui+9QtrG6XS/pAdLtN0oHUrmLNZkp6WNKk6P5SSf9A3UrW6nWSXinp3qJpdauTpA9LujS6fYakn4S0a7T2NLncXhF33+Tud0a3d0hapcKL82QVdmyKfp8S3T5Z0hXuvsvdH5b0oKRjzKxD0hR3/60XtqQfFD1nTDKzWZLeJum7RZOpWwVmNkWFndplkuTuu919m6hdiBZJk8ysRVK7Cp9Fp27DuPsvJW0ZNrmedSqe11WSTgjprY/W0ORyeyOIhhheIel2SYe4+yapEKySDo4eNlL9Zka3h08fyy6S9ClJ+aJp1K2ywyU9Kem/oqHt75rZfqJ2Zbn7RkkLJa2XtEnSdne/SdQtVD3rtOc57j4oabuk6ZUaMFpDs+Ll9sYjM5ss6WpJH3f3p8o9tMQ0LzN9TDKzt0t6wt1Xhj6lxLRxV7dIiwpDZ//X3V8h6WkVhstGQu0kRcfgTlZhCPH5kvYzszPLPaXEtHFXtwBx6hSrhqM1NCtebm+8MbNWFQKz192XRZMfj4YnFP1+Ipo+Uv02RLeHTx+rjpP0DjNbq8IQ/+vNbImoW4gNkja4++3R/atUCFFqV94bJD3s7k+6+4CkZZJeI+oWqp512vOcaKj8AO07HLyP0RqaXG6vSDQOf5mkVe5+YdGfrpV0VnT7LEk/K5p+RnT22GGSjpD0u2i4Y4eZHRvN831Fzxlz3P3T7j7L3btU2IZudfczRd0qcvfHJD1iZkMXxj5B0p9E7SpZL+lYM2uP1vcEFc5BoG5h6lmn4nm9S4XXf+XeerPPkIr7I+lEFc4S/bOkBc1uT5Nr8bcqDCv8UdJd0c+JKozPL5e0Jvo9reg5C6LarVbRWXeSjpZ0b/S3SxRdAGOs/0iap+fOnqVuYTU7StId0XZ3jaSp1C6obl+QdH+0zj9U4YxP6rZvnX6swnHfARV6hWfXs06SJkq6UoWThn4n6fCQdnFFIAAAAo3W4VkAABqO0AQAIBChCQBAIEITAIBAhCYAAIEITSBFzCxnZncV/dTtG3zMrKv4GyMAVK+l2Q0AsJdn3P2oZjcCQGn0NIFRwMzWmtnXzOx30c8Lo+mdZrbczP4Y/Z4dTT/EzH5qZndHP6+JZpU1s+9Y4fscbzKzSU1bKWAUIjSBdJk0bHj29KK/PeXux6hwVZOLommXSPqBu79MUq+kRdH0RZJuc/eXq3BN2Pui6UdI+qa7v0TSNkmnJrw+wJjCFYGAFDGzfnefXGL6Wkmvd/eHoovzP+bu081ss6QOdx+Ipm9y94PM7ElJs9x9V9E8uiTd7O5HRPfPk9Tq7l9Ofs2AsYGeJjB6+Ai3R3pMKbuKbufEeQ1AVQhNYPQ4vej3b6Pb/63CN7RI0nxJv45uL5d0jiSZWdbMpjSqkcBYxrtMIF0mmdldRfdvcPehj51MMLPbVXiz+55o2j9L+p6ZfVLSk5LeH03/mKTFZna2Cj3Kc1T4xggANeCYJjAKRMc0j3b3zc1uCzCeMTwLAEAgepoAAASipwkAQCBCEwCAQIQmAACBCE0AAAIRmgAABCI0AQAI9P8B2XuBzwVIixYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd+UlEQVR4nO3dfbRldXnY8e8zIAyXEXkbdRyYe3UJk6CrvkCpbzWDlPoe6FKX2FFJanObwarR1IiZtepK02kxpalRE831rVhuMCNgQJsqZJzRprUaQBAQBjQyI4KCQdBx5G14+sfZg4fLffndfc8++5xzv5+1zjpn/84+ez/7OWfuM/vlPCcyE0mStLAVbQcgSdKwsGhKklTIoilJUiGLpiRJhSyakiQVsmhKklSosaIZEZ+MiDsj4vqusSMj4oqIuKW6P6LrufdGxHciYmdEvLSpuCRJqqvJPc3/Drxsxtg5wLbMPA7YVk0TEScAZwLPqF7zZxFxQIOxSZK0aI0Vzcz8KnD3jOHTgfOrx+cDZ3SNfyYz78/M7wHfAU5uKjZJkuro9znNJ2XmHQDV/ROr8bXA97vmu60akyRpYBzYdgCVmGVs1v5+ETEJTAKsXLnyxHXr1jUZ10h6+OGHWbHCa8DqMHf1mLd6zFs9N998848zc3UTy+530fxRRKzJzDsiYg1wZzV+G3Bs13zHALfPtoDMnAKmANavX587d+5sMt6RtGPHDjZs2NB2GEPJ3NVj3uoxb/VExK6mlt3v/8JcBpxVPT4LuLRr/MyIODgingocB3yjz7FJkjSvxvY0I+JCYANwdETcBrwPOBfYGhFvAXYDrwPIzBsiYivwbeAh4K2Zua+p2CRJqqOxopmZb5jjqVPnmH8LsKWpeCRJWirPMEuSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFRqJoTk9PMzExwYoVK5iYmGB6errtkDTghvkzs5jYh3k7pYGUmUN7O/744/OCCy7IsbGxBB65jY2N5QUXXJCa3fbt29sOoVVL+cy0nbvFxD5I/zbaztuwMm/1AFdmQ3Vn6Pc0N2/ezN69ex81tnfvXjZv3txSRBp0w/yZWUzsw7yd0qAa+qK5e/fuRY1Lw/yZWUzsw7yd0qAa+qK5bt26RY1Lw/yZWUzsw7yd0qAa+qK5ZcsWxsbGHjU2NjbGli1bWopIg26YPzOLiX2Yt1MaVENfNDdu3MjU1BTj4+NEBOPj40xNTbFx48a2Q9OAGubPzGJiH+btlAZVdC40Gk7r16/PnTt3th3G0NmxYwcbNmxoO4yhZO7qMW/1mLd6IuKqzDypiWUP/Z6mJEn9YtGUJKmQRVOSpELLsmi22VpsoXXb9mz4+J5Jy0hTrYb6cTv++OMX3V6pzdZiC627X7HZmqu+mbkbpFZ1g8zPXD3mrR5so9c7bbYWW2jdtj0bPr5n0vKy7Ipmm63FFlq3bc+Gj++ZtLwsu6LZZmuxhdZt27Ph43smLS/Lrmi22VpsoXXb9mz4+J5Jy8uyK5ptthZbaN22PRs+vmfS8mIbvWXI1lz1mbt6zFs95q0e2+hJkjQALJqSJBWyaEqSVGgki+Zi25ot1zZoM7f77LPP7mkemszrKL9no7xt0tBrqtVQP26ztdFbbFuz5dgGbfv27bNu98zbUvLQZF7bfM+abms2qp9H28HVY97qocE2eq0XvqXcZiua4+PjsxaA8fHxWZO72PlHwfbt2+fc7l7locm8tvmeNf1HbFQ/j/7xr8e81dNk0Ry5w7OLbWu2XNuglW5f3Tw0mddRfs9GedukUTByRXOxbc2Waxu00u2rm4cm8zrK79kob5s0CkauaC62rdlybYM223bPtJQ8NJnXUX7PRnnbpJHQ1HHfftzm+j3NCy64IMfHxzMicnx8fMGLKBY7/7Dbf55k5nZv2rSpp3loMq9tvWf9OMc0ip9Hz83VY97qocFzmrbRW4ZszVWfuavHvNVj3uqxjZ4kSQOglaIZEe+MiBsi4vqIuDAiVkbEkRFxRUTcUt0f0UZskiTNpe9FMyLWAm8HTsrMZwIHAGcC5wDbMvM4YFs1LUnSwGjr8OyBwCERcSAwBtwOnA6cXz1/PnBGS7FJkjSrVi4Eioh3AFuAXwCXZ+bGiLgnMw/vmucnmfmYQ7QRMQlMAqxevfrErVu39ivsVtx999384Ac/4IEHHuCggw5i7dq1HHnkkUta5p49e1i1alWPIvylJmKtu+ym5u9F7nqdp5nLe8ITnsC9997byPtQV1OfuVFn3uo55ZRTGrsQqO9fEwGOAL4MrAYeB/wV8Ebgnhnz/WShZc31lZNR0VQf0iYuYx+kXrNNzr/U3PU6T033EO4VvzpRj3mrh1HqPQu8DvhE1/SbgT8DdgJrqrE1wM6FljXqRbOpPqRN/EMcpF6zTc6/1Nz1Ok9N9xDuFf/412Pe6mmyaLZxTnM38LyIGIuIAE4FbgQuA86q5jkLuLSF2AbKMPUhHaRes4Pcf7jX62q6h7CkR+t70czMrwMXAVcD11UxTAHnAqdFxC3AadX0sjZMfUgHqdfsIPcf7vW6mu4hLOnRWrl6NjPfl5m/kpnPzMw3Zeb9mfkPmXlqZh5X3d/dRmyDZJj6kA5Sr9lB7j/c63U13UNY0gxNHfftx23Uz2lmNtOHtKnzJIPUa7ap+XuRu17nqekewr3gubl6zFs92Ht2dvaercd+lvWZu3rMWz3mrR57z0qSNAAsmpIkFbJoSpJUyKJZYHp6momJCVasWMHExATT09NFz5U8r97oZ559z6VlrKkrjPpx68fVs/O1PVuoJVqTreWWYtSuyOtnni+++OKhfM/bNmqfuX4xb/XQ4NWzB/a5Rjfm8ht+yI6b7+r5cv/ic9ex8kW/yUqg8zewY/Ml1wGw8kW/UT3Ho5779th1TF9y3bzPL0bEYiOf2+0/uJ+/uWeR66eHASzSQtv+6Yuv5eAXvJmDZ4xvvvhadq56Vk9j+dYN93HwC940y7qu4eZVz+L8i6+Z9/mliCV+CP7Nrz2NNU84ZEnLkJa7kSmat9y5h8tv+FHPl7vvyc9k7Mkws2bsq+5n+1r5PuBLN/yQfU955rzPl+r1t4IeePAhDrp7Eevv7eoXJQs2ft8xz+HQWaLcR/D5a2/vXSzAfb9YxaEn/Nos64JLr72dfcc+l0Nni7F6vva6e/AmnHnysRZNaYlGpmi+9ZSn89ZTnt7z5U5MTLBr167HjI+PjwPM+dyVt94672uvvPXWnsdaatS++zVfnr/Z4zx/6EMf4u1vf/us67pmgff8mhbfc0m94YVAC5iv7dlCLdGGqQ3eMOtnnteuXet7Li1nTZ0s7cetX2305mt7tlBLtCZby9U1ihcX9CvP27dvH8r3vG2j+JnrB/NWD7bRm51t9OoZtcOz/WTu6jFv9Zi3emyjJ0nSALBoSpJUyKIpSVKhZVE0B6nFWq9jm/n6s88+e2BbuNlerh7zJg2Qpq4w6set5OrZfrY1W+y6lhrbbK+feZtteW1ckTcq7eX6nTvztryZt3po8OrZ1gvfUm4lRXN8fHzWYjI+Pr7gaxdrsetaamxzvX6h5bXxD7Gf70OT+p0787a8mbd6miyaI394dvfu3Ysa7+e6lhpbr+drUj/fh1Fi3qTBMvJFc926dYsa7+e6lhpbr+drUj/fh1Fi3qTBMvJFs59tzRa7rqXGNtvrZxqUFm62l6vHvEkDpqnjvv24lbbR62dbs8Wua6mxzXz9pk2bFlxeW+dJRqG9XFsXUZm35cm81YNt9GZnG716bM1Vn7mrx7zVY97qsY2eJEkDwKIpSVIhi6YkSYUsmpIkFbJozmKhXp9t9gJdSm/bo48+mqOPPpqrrrqqJ3Evx765vcrdbMsexO2WNENTl+X241b6lZPFWKjXZ5u9QHvR2xbI8847b8lxt9U3tw3dsfYid3Mte9C2u5f86kQ95q0e7D3bv6K5UK/PNnuB9qq37f4//EuJu62+uW3ojrUXuZtr2YO23b3kH/96zFs9TRZND8/OsFCvzzZ7gTbRw7Zu3PbN7U1s9paVhotFc4aFen222Qu0iR62deO2b25vYrO3rDRcLJozLNTrs81eoL3obVv62l7HstjYlhpfLzX5nttbVhoyTR337cetiXOamQv3+myzF+hSetseddRRedRRR+V5553Xk7jb6Jvblv2x9ip3sy17ELe7Vzw3V495qwd7z87O3rP12M+yPnNXj3mrx7zVY+9ZSZIGgEVTkqRCFk1JkgpZNDWnYWpzN8hskyeNjgPbDkCDaXp6msnJSfbu3QvArl27+MhHPvLI87t27WJychKAjRs3thLjMJgtj+ZNGl7uaWpWmzdvfuQP/Vz27t3L5s2b+xTRcJotj+ZNGl4WTc1qmNrcDTLb5EmjxaKpWQ1Tm7tBZps8abRYNDWrYWpzN8hskyeNllaKZkQcHhEXRcRNEXFjRDw/Io6MiCsi4pbq/og2YlPHxo0bmZqaYnx8nIhgfHycTZs2PWp6amrKi1kWMFsezZs0vNq6evZPgC9m5msj4iBgDPh9YFtmnhsR5wDnAO9pKT7R+YPvH/elM4/S6Oj7nmZEHAa8GPgEQGY+kJn3AKcD51eznQ+c0e/YJEmaT3HRjIinR8QFEXFxRDx/Cet8GnAX8KmI+GZEfDwiDgWelJl3AFT3T1zCOiRJ6rk5f+UkIlZm5n1d0xcC7wMS+GxmPrvWCiNOAv4f8MLM/HpE/AnwU+BtmXl413w/yczHnNeMiElgEmD16tUnbt26tU4Yy9qePXtYtWpV22EMJXNXj3mrx7zVc8oppzT2Kydz/mYYcAXwpq7pTwP/HDgNuKrub5EBTwZu7Zr+p8D/BHYCa6qxNcDOhZbV1O9pjrrl+Bt9S/kd0u75l2PuesG81WPe6qHB39Oc70KglwGbIuKLwBbg3wFvp3PRTu2rGjLzhxHx/YhYn5k7gVOBb1e3s4Bzq/tL665D6rbYVnbzzb927do+RS1pEM15TjMz92Xmh4HX07ko5wPApzLzXZl50xLX+zZgOiK+BTwb+E90iuVpEXELnb3Zc5e4DglYfCs7W99Jmsuce5oR8U+AdwMP0ClqvwC2RMRtwB9m5r11V5qZ1wCzHW8+te4ypbkstpWdre8kzWW+q2c/Sud7ku8H/jwzv5uZZwKfB7z6RkNjsa3sbH0naS7zFc19wASwjs7eJgCZ+ZXMfGnDcUk9s9hWdra+kzSX+YrmvwReAbwAeHN/wpF6b7Gt7Gx9J2kuc57TzMybgd/tYyxSYxbbys7Wd5Jm46+cSJJUyKIpSVKhBYtmRLwqIiyukqRlr6QYngncEhF/FBG/2nRAkiQNqgWLZma+EXgO8F06v0zytYiYjIjHNx6dJEkDpOiwa2b+FLgY+AydZur/Arg6It7WYGySJA2UknOar46IzwFfBh4HnJyZLweeRaeJuyRJy8J8v3Ky3+uA/5aZX+0ezMy9EfGvmglLkqTBU1I03wfcsX8iIg4BnpSZt2bmtsYikyRpwJSc0/ws8HDX9L5qTJKkZaWkaB6Ymd0N2x8ADmouJEmSBlNJ0bwrIn59/0REnA78uLmQJEkaTCXnNH8bmI6IDwMBfB9/9USStAwtWDQz87vA8yJiFRCZ+bPmw5IkafCU7GkSEa8EngGsjAgAMvM/NBiXJEkDp6S5wUeB1wNvo3N49nXAeMNxSZI0cEouBHpBZr4Z+Elm/gHwfODYZsOSJGnwlBTN+6r7vRHxFOBB4KnNhSRJ0mAqOaf5+Yg4HPgvwNVAAh9rNCpJkgbQvEWz+vHpbZl5D3BxRHwBWJmZ9/YlOkmSBsi8h2cz82Hgv3ZN32/BlCQtVyXnNC+PiNfE/u+aSJK0TJWc03wXcCjwUETcR+drJ5mZhzUamSRJA6akI9Dj+xGIJEmDbsGiGREvnm185o9SS5I06koOz7676/FK4GTgKuAljUQkSdKAWvBCoMx8ddftNOCZwI+aD03L2fT0NBMTE6xYsYKJiQmmp6fbDkmSyhq2z3AbncIpNWJ6eprJyUn27t0LwK5du5icnARg48aNbYYmaZkrOaf5ITpdgKCzZ/ps4Nomg9Lytnnz5kcK5n579+5l8+bNFk1JrSrZ07yy6/FDwIWZ+X8aikdi9+7dixqXpH4pKZoXAfdl5j6AiDggIsYyc+8Cr5NqWbduHbt27Zp1XJLaVNIRaBtwSNf0IcDfNBOOBFu2bGFsbOxRY2NjY2zZsqWliCSpo6RorszMPfsnqsdj88wvLcnGjRuZmppifHyciGB8fJypqSnPZ0pqXcnh2Z9HxHMz82qAiDgR+EWzYWm527hxo0VS0sApKZq/A3w2Im6vptcAr28uJEmSBlNJ79m/i4hfAdbTadZ+U2Y+2HhkkiQNmAXPaUbEW4FDM/P6zLwOWBURZzcfmiRJg6XkQqDfysx79k9k5k+A32ouJEmSBlNJ0VzR/QPUEXEAcFBzIUmSNJhKLgT6ErA1Ij5Kp53ebwNfbDQqSZIGUEnRfA8wCWyicyHQ5cDHmgxKkqRBVPLTYA9n5kcz87WZ+RrgBuBDS11x1Y7vmxHxhWr6yIi4IiJuqe6PWOo6JEnqpZJzmkTEsyPi/RFxK/CHwE09WPc7gBu7ps8BtmXmcXRa953Tg3VIktQzcxbNiDg+Iv59RNwIfJjO72hGZp6SmUva04yIY4BXAh/vGj4dOL96fD5wxlLWIUlSr813TvMm4H8Dr87M7wBExDt7tN4PAL8HPL5r7EmZeQdAZt4REU/s0bokSeqJ+Yrma4Azge0R8UXgM3QuBFqSiHgVcGdmXhURG2q8fpLOhUmsXr2aHTt2LDWkZWfPnj3mrSZzV495q8e8DZ7IzPlniDiUzqHSNwAvoXPo9HOZeXmtFUb8Z+BNdH7QeiVwGHAJ8I+BDdVe5hpgR2aun29Z69evz507d9YJY1nbsWMHGzZsaDuMoWTu6jFv9Zi3eiLiqsw8qYlll1w9+/PMnM7MVwHHANewhIt0MvO9mXlMZk7Q2ZP9cma+EbgMOKua7Szg0rrrkCSpCUVXz+6XmXdn5p9n5ksaiOVc4LSIuAU4rZqWJGlglDQ3aExm7gB2VI//ATi1zXgkSZrPovY0JUlaziyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQV6nvRjIhjI2J7RNwYETdExDuq8SMj4oqIuKW6P6LfsUmSNJ829jQfAn43M38VeB7w1og4ATgH2JaZxwHbqmlJkgZG34tmZt6RmVdXj38G3AisBU4Hzq9mOx84o9+xSZI0n8jM9lYeMQF8FXgmsDszD+967ieZ+ZhDtBExCUwCrF69+sStW7f2J9gRsmfPHlatWtV2GEPJ3NVj3uoxb/WccsopV2XmSU0su7WiGRGrgK8AWzLzkoi4p6Rodlu/fn3u3Lmz6VBHzo4dO9iwYUPbYQwlc1ePeavHvNUTEY0VzVauno2IxwEXA9OZeUk1/KOIWFM9vwa4s43YJEmaSxtXzwbwCeDGzPzjrqcuA86qHp8FXNrv2CRJms+BLazzhcCbgOsi4ppq7PeBc4GtEfEWYDfwuhZikyRpTn0vmpn5t0DM8fSp/YxFkqTFsCOQJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFBq5oRsTLImJnRHwnIs5pOx5JkvYbqKIZEQcAfwq8HDgBeENEnNBuVJIkdQxU0QROBr6TmX+fmQ8AnwFObzkmSZKAwSuaa4Hvd03fVo1JktS6A9sOYIaYZSwfNUPEJDBZTd4fEdc3HtXoORr4cdtBDClzV495q8e81bO+qQUPWtG8DTi2a/oY4PbuGTJzCpgCiIgrM/Ok/oU3GsxbfeauHvNWj3mrJyKubGrZg3Z49u+A4yLiqRFxEHAmcFnLMUmSBAzYnmZmPhQR/xb4EnAA8MnMvKHlsCRJAgasaAJk5l8Df104+1STsYww81afuavHvNVj3uppLG+RmQvPJUmSBu6cpiRJA2toi6bt9n4pIo6NiO0RcWNE3BAR76jGj4yIKyLilur+iK7XvLfK3c6IeGnX+IkRcV313AcjYravAY2UiDggIr4ZEV+ops1bgYg4PCIuioibqs/e883dwiLindW/0+sj4sKIWGneHisiPhkRd3Z/rbCXeYqIgyPiL6vxr0fERFFgmTl0NzoXCX0XeBpwEHAtcELbcbWYjzXAc6vHjwduptOG8I+Ac6rxc4D3V49PqHJ2MPDUKpcHVM99A3g+ne/M/i/g5W1vXx/y9y7gL4AvVNPmrSxv5wP/unp8EHC4uVswZ2uB7wGHVNNbgd8wb7Pm6sXAc4Hru8Z6lifgbOCj1eMzgb8siWtY9zRtt9clM+/IzKurxz8DbqTzj/N0On/YqO7PqB6fDnwmM+/PzO8B3wFOjog1wGGZ+bXsfJI+3fWakRQRxwCvBD7eNWzeFhARh9H5o/YJgMx8IDPvwdyVOBA4JCIOBMbofBfdvM2QmV8F7p4x3Ms8dS/rIuDUkr31YS2attubQ3WI4TnA14EnZeYd0CmswBOr2ebK39rq8czxUfYB4PeAh7vGzNvCngbcBXyqOrT98Yg4FHM3r8z8AXAesBu4A7g3My/HvJXqZZ4eeU1mPgTcCxy1UADDWjQXbLe3HEXEKuBi4Hcy86fzzTrLWM4zPpIi4lXAnZl5VelLZhlbdnmrHEjn0NlHMvM5wM/pHC6bi7kDqnNwp9M5hPgU4NCIeON8L5llbNnlrUCdPNXK4bAWzQXb7S03EfE4OgVzOjMvqYZ/VB2eoLq/sxqfK3+3VY9njo+qFwK/HhG30jnE/5KIuADzVuI24LbM/Ho1fRGdImru5vfPgO9l5l2Z+SBwCfACzFupXubpkddUh8qfwGMPBz/GsBZN2+11qY7DfwK4MTP/uOupy4CzqsdnAZd2jZ9ZXT32VOA44BvV4Y6fRcTzqmW+ues1Iycz35uZx2TmBJ3P0Jcz842YtwVl5g+B70fE/sbYpwLfxtwtZDfwvIgYq7b3VDrXIJi3Mr3MU/eyXkvn3//Ce+ttXyFV9wa8gs5Vot8FNrcdT8u5eBGdwwrfAq6pbq+gc3x+G3BLdX9k12s2V7nbSddVd8BJwPXVcx+maoAx6jdgA7+8eta8leXs2cCV1efur4AjzF1R3v4AuKna5v9B54pP8/bYPF1I57zvg3T2Ct/SyzwBK4HP0rlo6BvA00risiOQJEmFhvXwrCRJfWfRlCSpkEVTkqRCFk1JkgpZNCVJKmTRlAZIROyLiGu6bj37BZ+ImOj+xQhJi3dg2wFIepRfZOaz2w5C0uzc05SGQETcGhHvj4hvVLenV+PjEbEtIr5V3a+rxp8UEZ+LiGur2wuqRR0QER+Lzu85Xh4Rh7S2UdIQsmhKg+WQGYdnX9/13E8z82Q6XU0+UI19GPh0Zv4jYBr4YDX+QeArmfksOj1hb6jGjwP+NDOfAdwDvKbh7ZFGih2BpAESEXsyc9Us47cCL8nMv6+a8/8wM4+KiB8DazLzwWr8jsw8OiLuAo7JzPu7ljEBXJGZx1XT7wEel5n/sfktk0aDe5rS8Mg5Hs81z2zu73q8D69rkBbFoikNj9d33X+tevx/6fxCC8BG4G+rx9uATQARcUBEHNavIKVR5v8ypcFySERc0zX9xczc/7WTgyPi63T+s/uGauztwCcj4t3AXcBvVuPvAKYi4i109ig30fnFCElL4DlNaQhU5zRPyswftx2LtJx5eFaSpELuaUqSVMg9TUmSClk0JUkqZNGUJKmQRVOSpEIWTUmSClk0JUkq9P8BCXZET/KohxIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -329,35 +333,34 @@ "name": "stdout", "output_type": "stream", "text": [ - "[##############################] 100%\n", + "Running...\n", + "[############### ] 52%\n", "\n", "================= Iteration Stats ================\n", - " step: 10000 of 10000\n", - " loss: 0.341034\n", + " step: 5200 of 10000\n", + " loss: 1.285412\n", "\n", - " accuracy: 85.00 %\n", - " AVG: 81.03 %\n", - " Best: 88.00 %\n", + " accuracy: 91.67 %\n", + " AVG: 74.92 %\n", + " Best: 91.67 %\n", "\n", - " Trend slope: 0.000\n", + " Trend slope: -0.000\n", " MAD Dispersion: nan\n", - " Skewness: Moderately skewed distribution ( -0.6 )\n", + " Skewness: Approximately symmetric distribution ( -0.29 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 2 min and 17 sec\n", - " ETC: 0h, 0 min and 0 sec\n", + " Elapsed: 0h, 1 min and 10 sec\n", + " ETC: 0h, 1 min and 22 sec\n", "\n", "================= Network Setup ================\n", - " number of classes: 100\n", + " number of classes: 1\n", " number of features: 14\n", " learning rate: 1\n", " training steps: 10000\n", - " batch size: 100\n", + " batch size: 24\n", "1st layer n. of neurons: 512\n", "2st layer n. of neurons: 512\n", - " Normalized data: True, type: mean, Discrete Binary 0/1\n", - "\n", - "Analysis finished.\n" + " Normalized data: True, type: mean, Discrete Binary 0/1\n" ] } ], @@ -428,8 +431,11 @@ "\n", " start_time = datetime.now()\n", "print(\"\")\n", - "print(\"Analysis finished.\") \n", - "#print(\"Final Average accuracy is %.2f %%\" % (avg/avgCounter))" + "print(\"Trainning Analysis Finished.\") \n", + "print(\"Start testing test dataset...\")\n", + "run_test = neural_net(x_test, is_training=False)\n", + "print(\"Accuracy of highest score in prediction dataset\")\n", + "print(\" Test Accuracy: %.2f %%\" % (tf.math.round(100*accuracy(run_test, y_test))))\n" ] }, { @@ -438,36 +444,12 @@ "metadata": {}, "outputs": [], "source": [ - "# +++++++++++++++++++++++++++++++++++++++++++++++++++\n", - "#!!! code bellow this line is not yet finished !!!\n", - "# +++++++++++++++++++++++++++++++++++++++++++++++++++\n", - "\n", - "# Test model on validation set.\n", - "print(x_test.shape)\n", - "\n", - "pred = neural_net(x_test, is_training=False)\n", - "\n", - "print(\"Accuracy of highest score in prediction vector\")\n", - "print(\" Test Accuracy: %.2f %%\" % (tf.math.round(100*accuracy(pred, y_test))))\n", - "print(\"\")\n", + "print(data_predict_x.shape)\n", "\n", - "prediction= np.round(pred.numpy(),2)\n", - "print(\"Model prediction shape:\" + str(prediction.shape))\n", - "print(\" Model initial shape:\" + str(y_test.shape))\n", + "run_prediction = neural_net(data_predict_x, is_training=False)\n", + "print(run_prediction.shape)\n", "\n", - "print(\"\")\n", - "print(\"Model prediction value:\")\n", - "print(prediction)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "predictions = neural_net(data_predict_x)\n", - "print(\"Model prediction: %i\" % np.argmax(predictions.numpy()))" + "print(np.round(run_prediction.numpy(),0))\n" ] }, { From 988cc5264d0c3ab090aba96856dac822b01c1a2b Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 16:14:28 +0200 Subject: [PATCH 07/13] Add files via upload --- .../Multilayer_Perceptron.ipynb | 136 +++++++++++++----- 1 file changed, 101 insertions(+), 35 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index be190c0b..ad247b53 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -54,7 +54,7 @@ "outputs": [], "source": [ "# task type to perform\n", - "taskRunning=\"regression\" # can be: classification / regression\n", + "taskRunning=\"classification\" # can be: classification / regression\n", "\n", "# parameters initialization.\n", "num_classes = 1 # total classes : number of output results wanted\n", @@ -63,12 +63,12 @@ "# Training parameters.\n", "learning_rate = 1\n", "training_steps = 10000\n", - "batch_size = 24\n", + "batch_size = 100\n", "display_step = 100\n", "\n", "#normalization of data\n", "normalizeDataValues=True\n", - "normalizationType= \"mean\" # accepts: max, mean\n", + "normalizationType= \"max\" # accepts: max, mean\n", "normalizationTypeBinary=True\n", "\n", "# Network parameters.\n", @@ -154,8 +154,11 @@ " # First fully-connected hidden layer.\n", " self.fc2 = layers.Dense(n_hidden_2, activation=tf.nn.relu)\n", " # Second fully-connecter hidden layer.\n", - " self.out = layers.Dense(num_classes)\n", - "\n", + " if (taskRunning==\"classification\"):\n", + " self.out = layers.Dense(num_classes+1)\n", + " else:\n", + " self.out = layers.Dense(num_classes)\n", + " \n", " # Set forward pass.\n", " def call(self, x, is_training=False):\n", " x = self.fc1(x)\n", @@ -173,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -182,10 +185,10 @@ "def cross_entropy_loss(x, y):\n", " # Convert labels to int 64 for tf cross-entropy function.\n", " y = tf.cast(y, tf.int32)\n", - " if (taskRunning==\"classification\"):\n", - " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n", - " else: \n", + " if (taskRunning==\"regression\"):\n", " loss=tf.keras.losses.binary_crossentropy(y, x)\n", + " else: \n", + " loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=x)\n", " # Apply softmax to logits and compute cross-entropy.\n", " # Average loss across the batch.\n", " return tf.reduce_mean(loss)\n", @@ -217,7 +220,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -242,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -314,12 +317,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd+UlEQVR4nO3dfbRldXnY8e8zIAyXEXkbdRyYe3UJk6CrvkCpbzWDlPoe6FKX2FFJanObwarR1IiZtepK02kxpalRE831rVhuMCNgQJsqZJzRprUaQBAQBjQyI4KCQdBx5G14+sfZg4fLffndfc8++5xzv5+1zjpn/84+ez/7OWfuM/vlPCcyE0mStLAVbQcgSdKwsGhKklTIoilJUiGLpiRJhSyakiQVsmhKklSosaIZEZ+MiDsj4vqusSMj4oqIuKW6P6LrufdGxHciYmdEvLSpuCRJqqvJPc3/Drxsxtg5wLbMPA7YVk0TEScAZwLPqF7zZxFxQIOxSZK0aI0Vzcz8KnD3jOHTgfOrx+cDZ3SNfyYz78/M7wHfAU5uKjZJkuro9znNJ2XmHQDV/ROr8bXA97vmu60akyRpYBzYdgCVmGVs1v5+ETEJTAKsXLnyxHXr1jUZ10h6+OGHWbHCa8DqMHf1mLd6zFs9N998848zc3UTy+530fxRRKzJzDsiYg1wZzV+G3Bs13zHALfPtoDMnAKmANavX587d+5sMt6RtGPHDjZs2NB2GEPJ3NVj3uoxb/VExK6mlt3v/8JcBpxVPT4LuLRr/MyIODgingocB3yjz7FJkjSvxvY0I+JCYANwdETcBrwPOBfYGhFvAXYDrwPIzBsiYivwbeAh4K2Zua+p2CRJqqOxopmZb5jjqVPnmH8LsKWpeCRJWirPMEuSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFRqJoTk9PMzExwYoVK5iYmGB6errtkDTghvkzs5jYh3k7pYGUmUN7O/744/OCCy7IsbGxBB65jY2N5QUXXJCa3fbt29sOoVVL+cy0nbvFxD5I/zbaztuwMm/1AFdmQ3Vn6Pc0N2/ezN69ex81tnfvXjZv3txSRBp0w/yZWUzsw7yd0qAa+qK5e/fuRY1Lw/yZWUzsw7yd0qAa+qK5bt26RY1Lw/yZWUzsw7yd0qAa+qK5ZcsWxsbGHjU2NjbGli1bWopIg26YPzOLiX2Yt1MaVENfNDdu3MjU1BTj4+NEBOPj40xNTbFx48a2Q9OAGubPzGJiH+btlAZVdC40Gk7r16/PnTt3th3G0NmxYwcbNmxoO4yhZO7qMW/1mLd6IuKqzDypiWUP/Z6mJEn9YtGUJKmQRVOSpELLsmi22VpsoXXb9mz4+J5Jy0hTrYb6cTv++OMX3V6pzdZiC627X7HZmqu+mbkbpFZ1g8zPXD3mrR5so9c7bbYWW2jdtj0bPr5n0vKy7Ipmm63FFlq3bc+Gj++ZtLwsu6LZZmuxhdZt27Ph43smLS/Lrmi22VpsoXXb9mz4+J5Jy8uyK5ptthZbaN22PRs+vmfS8mIbvWXI1lz1mbt6zFs95q0e2+hJkjQALJqSJBWyaEqSVGgki+Zi25ot1zZoM7f77LPP7mkemszrKL9no7xt0tBrqtVQP26ztdFbbFuz5dgGbfv27bNu98zbUvLQZF7bfM+abms2qp9H28HVY97qocE2eq0XvqXcZiua4+PjsxaA8fHxWZO72PlHwfbt2+fc7l7locm8tvmeNf1HbFQ/j/7xr8e81dNk0Ry5w7OLbWu2XNuglW5f3Tw0mddRfs9GedukUTByRXOxbc2Waxu00u2rm4cm8zrK79kob5s0CkauaC62rdlybYM223bPtJQ8NJnXUX7PRnnbpJHQ1HHfftzm+j3NCy64IMfHxzMicnx8fMGLKBY7/7Dbf55k5nZv2rSpp3loMq9tvWf9OMc0ip9Hz83VY97qocFzmrbRW4ZszVWfuavHvNVj3uqxjZ4kSQOglaIZEe+MiBsi4vqIuDAiVkbEkRFxRUTcUt0f0UZskiTNpe9FMyLWAm8HTsrMZwIHAGcC5wDbMvM4YFs1LUnSwGjr8OyBwCERcSAwBtwOnA6cXz1/PnBGS7FJkjSrVi4Eioh3AFuAXwCXZ+bGiLgnMw/vmucnmfmYQ7QRMQlMAqxevfrErVu39ivsVtx999384Ac/4IEHHuCggw5i7dq1HHnkkUta5p49e1i1alWPIvylJmKtu+ym5u9F7nqdp5nLe8ITnsC9997byPtQV1OfuVFn3uo55ZRTGrsQqO9fEwGOAL4MrAYeB/wV8Ebgnhnz/WShZc31lZNR0VQf0iYuYx+kXrNNzr/U3PU6T033EO4VvzpRj3mrh1HqPQu8DvhE1/SbgT8DdgJrqrE1wM6FljXqRbOpPqRN/EMcpF6zTc6/1Nz1Ok9N9xDuFf/412Pe6mmyaLZxTnM38LyIGIuIAE4FbgQuA86q5jkLuLSF2AbKMPUhHaRes4Pcf7jX62q6h7CkR+t70czMrwMXAVcD11UxTAHnAqdFxC3AadX0sjZMfUgHqdfsIPcf7vW6mu4hLOnRWrl6NjPfl5m/kpnPzMw3Zeb9mfkPmXlqZh5X3d/dRmyDZJj6kA5Sr9lB7j/c63U13UNY0gxNHfftx23Uz2lmNtOHtKnzJIPUa7ap+XuRu17nqekewr3gubl6zFs92Ht2dvaercd+lvWZu3rMWz3mrR57z0qSNAAsmpIkFbJoSpJUyKJZYHp6momJCVasWMHExATT09NFz5U8r97oZ559z6VlrKkrjPpx68fVs/O1PVuoJVqTreWWYtSuyOtnni+++OKhfM/bNmqfuX4xb/XQ4NWzB/a5Rjfm8ht+yI6b7+r5cv/ic9ex8kW/yUqg8zewY/Ml1wGw8kW/UT3Ho5779th1TF9y3bzPL0bEYiOf2+0/uJ+/uWeR66eHASzSQtv+6Yuv5eAXvJmDZ4xvvvhadq56Vk9j+dYN93HwC940y7qu4eZVz+L8i6+Z9/mliCV+CP7Nrz2NNU84ZEnLkJa7kSmat9y5h8tv+FHPl7vvyc9k7Mkws2bsq+5n+1r5PuBLN/yQfU955rzPl+r1t4IeePAhDrp7Eevv7eoXJQs2ft8xz+HQWaLcR/D5a2/vXSzAfb9YxaEn/Nos64JLr72dfcc+l0Nni7F6vva6e/AmnHnysRZNaYlGpmi+9ZSn89ZTnt7z5U5MTLBr167HjI+PjwPM+dyVt94672uvvPXWnsdaatS++zVfnr/Z4zx/6EMf4u1vf/us67pmgff8mhbfc0m94YVAC5iv7dlCLdGGqQ3eMOtnnteuXet7Li1nTZ0s7cetX2305mt7tlBLtCZby9U1ihcX9CvP27dvH8r3vG2j+JnrB/NWD7bRm51t9OoZtcOz/WTu6jFv9Zi3emyjJ0nSALBoSpJUyKIpSVKhZVE0B6nFWq9jm/n6s88+e2BbuNlerh7zJg2Qpq4w6set5OrZfrY1W+y6lhrbbK+feZtteW1ckTcq7eX6nTvztryZt3po8OrZ1gvfUm4lRXN8fHzWYjI+Pr7gaxdrsetaamxzvX6h5bXxD7Gf70OT+p0787a8mbd6miyaI394dvfu3Ysa7+e6lhpbr+drUj/fh1Fi3qTBMvJFc926dYsa7+e6lhpbr+drUj/fh1Fi3qTBMvJFs59tzRa7rqXGNtvrZxqUFm62l6vHvEkDpqnjvv24lbbR62dbs8Wua6mxzXz9pk2bFlxeW+dJRqG9XFsXUZm35cm81YNt9GZnG716bM1Vn7mrx7zVY97qsY2eJEkDwKIpSVIhi6YkSYUsmpIkFbJozmKhXp9t9gJdSm/bo48+mqOPPpqrrrqqJ3Evx765vcrdbMsexO2WNENTl+X241b6lZPFWKjXZ5u9QHvR2xbI8847b8lxt9U3tw3dsfYid3Mte9C2u5f86kQ95q0e7D3bv6K5UK/PNnuB9qq37f4//EuJu62+uW3ojrUXuZtr2YO23b3kH/96zFs9TRZND8/OsFCvzzZ7gTbRw7Zu3PbN7U1s9paVhotFc4aFen222Qu0iR62deO2b25vYrO3rDRcLJozLNTrs81eoL3obVv62l7HstjYlhpfLzX5nttbVhoyTR337cetiXOamQv3+myzF+hSetseddRRedRRR+V5553Xk7jb6Jvblv2x9ip3sy17ELe7Vzw3V495qwd7z87O3rP12M+yPnNXj3mrx7zVY+9ZSZIGgEVTkqRCFk1JkgpZNDWnYWpzN8hskyeNjgPbDkCDaXp6msnJSfbu3QvArl27+MhHPvLI87t27WJychKAjRs3thLjMJgtj+ZNGl7uaWpWmzdvfuQP/Vz27t3L5s2b+xTRcJotj+ZNGl4WTc1qmNrcDTLb5EmjxaKpWQ1Tm7tBZps8abRYNDWrYWpzN8hskyeNllaKZkQcHhEXRcRNEXFjRDw/Io6MiCsi4pbq/og2YlPHxo0bmZqaYnx8nIhgfHycTZs2PWp6amrKi1kWMFsezZs0vNq6evZPgC9m5msj4iBgDPh9YFtmnhsR5wDnAO9pKT7R+YPvH/elM4/S6Oj7nmZEHAa8GPgEQGY+kJn3AKcD51eznQ+c0e/YJEmaT3HRjIinR8QFEXFxRDx/Cet8GnAX8KmI+GZEfDwiDgWelJl3AFT3T1zCOiRJ6rk5f+UkIlZm5n1d0xcC7wMS+GxmPrvWCiNOAv4f8MLM/HpE/AnwU+BtmXl413w/yczHnNeMiElgEmD16tUnbt26tU4Yy9qePXtYtWpV22EMJXNXj3mrx7zVc8oppzT2Kydz/mYYcAXwpq7pTwP/HDgNuKrub5EBTwZu7Zr+p8D/BHYCa6qxNcDOhZbV1O9pjrrl+Bt9S/kd0u75l2PuesG81WPe6qHB39Oc70KglwGbIuKLwBbg3wFvp3PRTu2rGjLzhxHx/YhYn5k7gVOBb1e3s4Bzq/tL665D6rbYVnbzzb927do+RS1pEM15TjMz92Xmh4HX07ko5wPApzLzXZl50xLX+zZgOiK+BTwb+E90iuVpEXELnb3Zc5e4DglYfCs7W99Jmsuce5oR8U+AdwMP0ClqvwC2RMRtwB9m5r11V5qZ1wCzHW8+te4ypbkstpWdre8kzWW+q2c/Sud7ku8H/jwzv5uZZwKfB7z6RkNjsa3sbH0naS7zFc19wASwjs7eJgCZ+ZXMfGnDcUk9s9hWdra+kzSX+YrmvwReAbwAeHN/wpF6b7Gt7Gx9J2kuc57TzMybgd/tYyxSYxbbys7Wd5Jm46+cSJJUyKIpSVKhBYtmRLwqIiyukqRlr6QYngncEhF/FBG/2nRAkiQNqgWLZma+EXgO8F06v0zytYiYjIjHNx6dJEkDpOiwa2b+FLgY+AydZur/Arg6It7WYGySJA2UknOar46IzwFfBh4HnJyZLweeRaeJuyRJy8J8v3Ky3+uA/5aZX+0ezMy9EfGvmglLkqTBU1I03wfcsX8iIg4BnpSZt2bmtsYikyRpwJSc0/ws8HDX9L5qTJKkZaWkaB6Ymd0N2x8ADmouJEmSBlNJ0bwrIn59/0REnA78uLmQJEkaTCXnNH8bmI6IDwMBfB9/9USStAwtWDQz87vA8yJiFRCZ+bPmw5IkafCU7GkSEa8EngGsjAgAMvM/NBiXJEkDp6S5wUeB1wNvo3N49nXAeMNxSZI0cEouBHpBZr4Z+Elm/gHwfODYZsOSJGnwlBTN+6r7vRHxFOBB4KnNhSRJ0mAqOaf5+Yg4HPgvwNVAAh9rNCpJkgbQvEWz+vHpbZl5D3BxRHwBWJmZ9/YlOkmSBsi8h2cz82Hgv3ZN32/BlCQtVyXnNC+PiNfE/u+aSJK0TJWc03wXcCjwUETcR+drJ5mZhzUamSRJA6akI9Dj+xGIJEmDbsGiGREvnm185o9SS5I06koOz7676/FK4GTgKuAljUQkSdKAWvBCoMx8ddftNOCZwI+aD03L2fT0NBMTE6xYsYKJiQmmp6fbDkmSyhq2z3AbncIpNWJ6eprJyUn27t0LwK5du5icnARg48aNbYYmaZkrOaf5ITpdgKCzZ/ps4Nomg9Lytnnz5kcK5n579+5l8+bNFk1JrSrZ07yy6/FDwIWZ+X8aikdi9+7dixqXpH4pKZoXAfdl5j6AiDggIsYyc+8Cr5NqWbduHbt27Zp1XJLaVNIRaBtwSNf0IcDfNBOOBFu2bGFsbOxRY2NjY2zZsqWliCSpo6RorszMPfsnqsdj88wvLcnGjRuZmppifHyciGB8fJypqSnPZ0pqXcnh2Z9HxHMz82qAiDgR+EWzYWm527hxo0VS0sApKZq/A3w2Im6vptcAr28uJEmSBlNJ79m/i4hfAdbTadZ+U2Y+2HhkkiQNmAXPaUbEW4FDM/P6zLwOWBURZzcfmiRJg6XkQqDfysx79k9k5k+A32ouJEmSBlNJ0VzR/QPUEXEAcFBzIUmSNJhKLgT6ErA1Ij5Kp53ebwNfbDQqSZIGUEnRfA8wCWyicyHQ5cDHmgxKkqRBVPLTYA9n5kcz87WZ+RrgBuBDS11x1Y7vmxHxhWr6yIi4IiJuqe6PWOo6JEnqpZJzmkTEsyPi/RFxK/CHwE09WPc7gBu7ps8BtmXmcXRa953Tg3VIktQzcxbNiDg+Iv59RNwIfJjO72hGZp6SmUva04yIY4BXAh/vGj4dOL96fD5wxlLWIUlSr813TvMm4H8Dr87M7wBExDt7tN4PAL8HPL5r7EmZeQdAZt4REU/s0bokSeqJ+Yrma4Azge0R8UXgM3QuBFqSiHgVcGdmXhURG2q8fpLOhUmsXr2aHTt2LDWkZWfPnj3mrSZzV495q8e8DZ7IzPlniDiUzqHSNwAvoXPo9HOZeXmtFUb8Z+BNdH7QeiVwGHAJ8I+BDdVe5hpgR2aun29Z69evz507d9YJY1nbsWMHGzZsaDuMoWTu6jFv9Zi3eiLiqsw8qYlll1w9+/PMnM7MVwHHANewhIt0MvO9mXlMZk7Q2ZP9cma+EbgMOKua7Szg0rrrkCSpCUVXz+6XmXdn5p9n5ksaiOVc4LSIuAU4rZqWJGlglDQ3aExm7gB2VI//ATi1zXgkSZrPovY0JUlaziyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQVsmhKklTIoilJUiGLpiRJhSyakiQV6nvRjIhjI2J7RNwYETdExDuq8SMj4oqIuKW6P6LfsUmSNJ829jQfAn43M38VeB7w1og4ATgH2JaZxwHbqmlJkgZG34tmZt6RmVdXj38G3AisBU4Hzq9mOx84o9+xSZI0n8jM9lYeMQF8FXgmsDszD+967ieZ+ZhDtBExCUwCrF69+sStW7f2J9gRsmfPHlatWtV2GEPJ3NVj3uoxb/WccsopV2XmSU0su7WiGRGrgK8AWzLzkoi4p6Rodlu/fn3u3Lmz6VBHzo4dO9iwYUPbYQwlc1ePeavHvNUTEY0VzVauno2IxwEXA9OZeUk1/KOIWFM9vwa4s43YJEmaSxtXzwbwCeDGzPzjrqcuA86qHp8FXNrv2CRJms+BLazzhcCbgOsi4ppq7PeBc4GtEfEWYDfwuhZikyRpTn0vmpn5t0DM8fSp/YxFkqTFsCOQJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFLJqSJBWyaEqSVMiiKUlSIYumJEmFBq5oRsTLImJnRHwnIs5pOx5JkvYbqKIZEQcAfwq8HDgBeENEnNBuVJIkdQxU0QROBr6TmX+fmQ8AnwFObzkmSZKAwSuaa4Hvd03fVo1JktS6A9sOYIaYZSwfNUPEJDBZTd4fEdc3HtXoORr4cdtBDClzV495q8e81bO+qQUPWtG8DTi2a/oY4PbuGTJzCpgCiIgrM/Ok/oU3GsxbfeauHvNWj3mrJyKubGrZg3Z49u+A4yLiqRFxEHAmcFnLMUmSBAzYnmZmPhQR/xb4EnAA8MnMvKHlsCRJAgasaAJk5l8Df104+1STsYww81afuavHvNVj3uppLG+RmQvPJUmSBu6cpiRJA2toi6bt9n4pIo6NiO0RcWNE3BAR76jGj4yIKyLilur+iK7XvLfK3c6IeGnX+IkRcV313AcjYravAY2UiDggIr4ZEV+ops1bgYg4PCIuioibqs/e883dwiLindW/0+sj4sKIWGneHisiPhkRd3Z/rbCXeYqIgyPiL6vxr0fERFFgmTl0NzoXCX0XeBpwEHAtcELbcbWYjzXAc6vHjwduptOG8I+Ac6rxc4D3V49PqHJ2MPDUKpcHVM99A3g+ne/M/i/g5W1vXx/y9y7gL4AvVNPmrSxv5wP/unp8EHC4uVswZ2uB7wGHVNNbgd8wb7Pm6sXAc4Hru8Z6lifgbOCj1eMzgb8siWtY9zRtt9clM+/IzKurxz8DbqTzj/N0On/YqO7PqB6fDnwmM+/PzO8B3wFOjog1wGGZ+bXsfJI+3fWakRQRxwCvBD7eNWzeFhARh9H5o/YJgMx8IDPvwdyVOBA4JCIOBMbofBfdvM2QmV8F7p4x3Ms8dS/rIuDUkr31YS2attubQ3WI4TnA14EnZeYd0CmswBOr2ebK39rq8czxUfYB4PeAh7vGzNvCngbcBXyqOrT98Yg4FHM3r8z8AXAesBu4A7g3My/HvJXqZZ4eeU1mPgTcCxy1UADDWjQXbLe3HEXEKuBi4Hcy86fzzTrLWM4zPpIi4lXAnZl5VelLZhlbdnmrHEjn0NlHMvM5wM/pHC6bi7kDqnNwp9M5hPgU4NCIeON8L5llbNnlrUCdPNXK4bAWzQXb7S03EfE4OgVzOjMvqYZ/VB2eoLq/sxqfK3+3VY9njo+qFwK/HhG30jnE/5KIuADzVuI24LbM/Ho1fRGdImru5vfPgO9l5l2Z+SBwCfACzFupXubpkddUh8qfwGMPBz/GsBZN2+11qY7DfwK4MTP/uOupy4CzqsdnAZd2jZ9ZXT32VOA44BvV4Y6fRcTzqmW+ues1Iycz35uZx2TmBJ3P0Jcz842YtwVl5g+B70fE/sbYpwLfxtwtZDfwvIgYq7b3VDrXIJi3Mr3MU/eyXkvn3//Ce+ttXyFV9wa8gs5Vot8FNrcdT8u5eBGdwwrfAq6pbq+gc3x+G3BLdX9k12s2V7nbSddVd8BJwPXVcx+maoAx6jdgA7+8eta8leXs2cCV1efur4AjzF1R3v4AuKna5v9B54pP8/bYPF1I57zvg3T2Ct/SyzwBK4HP0rlo6BvA00risiOQJEmFhvXwrCRJfWfRlCSpkEVTkqRCFk1JkgpZNCVJKmTRlAZIROyLiGu6bj37BZ+ImOj+xQhJi3dg2wFIepRfZOaz2w5C0uzc05SGQETcGhHvj4hvVLenV+PjEbEtIr5V3a+rxp8UEZ+LiGur2wuqRR0QER+Lzu85Xh4Rh7S2UdIQsmhKg+WQGYdnX9/13E8z82Q6XU0+UI19GPh0Zv4jYBr4YDX+QeArmfksOj1hb6jGjwP+NDOfAdwDvKbh7ZFGih2BpAESEXsyc9Us47cCL8nMv6+a8/8wM4+KiB8DazLzwWr8jsw8OiLuAo7JzPu7ljEBXJGZx1XT7wEel5n/sfktk0aDe5rS8Mg5Hs81z2zu73q8D69rkBbFoikNj9d33X+tevx/6fxCC8BG4G+rx9uATQARcUBEHNavIKVR5v8ypcFySERc0zX9xczc/7WTgyPi63T+s/uGauztwCcj4t3AXcBvVuPvAKYi4i109ig30fnFCElL4DlNaQhU5zRPyswftx2LtJx5eFaSpELuaUqSVMg9TUmSClk0JUkqZNGUJKmQRVOSpEIWTUmSClk0JUkq9P8BCXZET/KohxIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5wcdZnv8e/Tk0ySSbibcCIwM/haGAXvIAqc9UzAOyAuyoE4SlzZHWVdjquiiyevBT3unCMuK4LsLsYbSEYwEC/IoisbEy+7rkgUFQxDRDIhGAh3CIFcZp7zR9dMeiZ9+XV1VVd15/N+veY1XdXVVU893V3Pr351aXN3AQCA2gpZBwAAQKugaAIAEIiiCQBAIIomAACBKJoAAASiaAIAECi1omlmXzGzLWZ2Z8m4A83sVjNbH/0/oOS5j5vZ781sxMzemFZcAADEleae5tWS3jRt3IWSVrn7EZJWRcMys6MknS3p6Og1/2xmHSnGBgBA3VIrmu7+Y0mPTRt9uqRrosfXSHpbyfjr3X27u98n6feSjksrNgAA4mj2Mc2D3X2zJEX/F0TjD5F0f8l0m6JxAADkxoysA4hYmXFl7+9nZoOSBiVp9uzZx3R3d6cZV1saHx9XocA5YHGQu3jIWzzkLZ577rnnEXefn8a8m100HzKzhe6+2cwWStoSjd8k6bCS6Q6V9MdyM3D3ZZKWSVJfX5+PjIykGW9bWrNmjfr7+7MOoyWRu3jIWzzkLR4zG01r3s1uwtwkaUn0eImk75SMP9vMZpnZ4ZKOkHRbk2MDAKCq1PY0zew6Sf2SnmdmmyRdLOnTklaY2bmSNko6U5Lc/S4zWyHpd5J2SfqAu4+lFRsAAHGkVjTdfXGFp06uMP2QpKG04gEAoFEcYQYAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTSBhA0PD6u3t1eFQkG9vb0aHh7OOiQACZmRdQBAOxkeHtbg4KC2bdsmSRodHdXg4KAkaWBgIMvQACSAPU0gQUuXLp0smBO2bdumpUuXZhQRgCRRNIEEbdy4sa7xAFoLRRNIUHd3d13jAbQWiiaQoKGhIXV1dU0Z19XVpaGhoYwiApAkiiaQoIGBAS1btkw9PT0yM/X09GjZsmWcBAS0Cc6eBRI2MDBAkQTaFHuaAAAEomgCABCIogkAQCCKJoBg3CIQeztOBAIQhFsEAuxpAgjELQIBimbi6L5Cu+IWga2JbVKy6J5NEN1XaGfd3d0aHR0tOx75xDYpeexpJihO9xWtQLQKbhHYeuhSTx5FM0H1dl9NtAJHR0fl7pOtQAon8ohbBLYeutSTR9FMUL2/cEErEK1mYGBAGzZs0Pj4uDZs2EDBzDl+dSd5FM0E1dt9RSswPXR7o5mfgbx+3vLQpZ7X3MTm7i37d+SRR3reLF++3Ht6etzMvKenx5cvX15x2p6eHpe0x19PT0+qMa5evTrV+Wdt+fLl3tXVNSWnXV1dVd+LUO2eu7Q0O29pfgaauawk8lbPNilpzXwfSkm63VOqO5kXvkb+8lg065HVB6rdN/xpNkbaPXdpaXbemtkg5fNWWVY7BmkWTbpnM5T1iRVt120SCen2bqd1T3NdWjVPzTz0wWGWytoyN2lV42b8tfqeZlZWr16d2V5uM9Rq3Tay7nlr+af5PiY5b/Y048nb561e7binmXnha+SPohnP6tWrM/swN0OtjX0j6563jVia72OS8+aYZjx5+7zVi2OaOfurVDSzPPCdtZB1X716tZtZ2Q2imWUQdfKq5aGRdY+zEUvz85jm+xgy79B1a8bGf3os5513XkN5r+d9S+s9bvWi6Z7N9piiWUfRbOdux1pC173d9zRraeaeZtqfxyz3NOtZt7Q3/knnOS/bkXYomllou6Ip6UOS7pJ0p6TrJM2WdKCkWyWtj/4fUGs+5YpmEhuRVtpTLY21o6MjaN1Dj2nWm4da0+clr808ppl24yTLY5r1rFvaG/+k85yXRuVE3vLy3WkVbVU0JR0i6T5Jc6LhFZLeI+kzki6Mxl0o6ZJa8ypXNBvtrspLCzNEuVhD1j3ki1hvHmpNn7e8xt0I1bvxb0Y3eJob1KS6udMumknnOS+HL9r9pL20tGPRvD/as5wh6WZJb5A0ImlhNM1CSSO15pXGnmZeWpghKsUasqcZd96V8lBr+lbKazV529PMEnua6dvbD6XElWbRtOL8m8vMPihpSNKzkn7g7gNm9oS7718yzePufkCZ1w5KGpSk+fPnH7NixYopzz/22GMaHR3V+Pj45LhCoaCenh4deOCBk9M88MAD2rFjhzo7O7XffvvpySef1I4dO6rGfcwxx8Rd5VSsXbu25jTT112Stm7dqnnz5sWed7k81Jo+ZH6l78uMGcVfrdu1a9ce71FnZ6cOOeSQKevULOVyN/3zVBpbyOcxadXymGTeyq2bmamjo2OP923BggXasmVLau9b0nnO4n0rZ+vWrRoZGan4fN62SXmxaNGite5+bCozT6saV/qTdICkH0qaL2mmpG9LepekJ6ZN93itecU5eza0S3P6Xx5bdZVaoB0dHTXPno0777T2NOt9X7LqnpqeuzSODTeiVh6Tzlvpuh100EHe2dlZdrmXXnpp6u9b0nnOw3FE9jTjUZt1z54p6cslw+dI+mcl1D1bS2iXZh420LXEPdYRUjSbfUwzzvuSxUZjeu7ytkELyWNasVVb9kTRZGNfH45pxtNuRfPVKp452yXJJF0j6XxJ/6CpJwJ9pta84hTNSgf4y/1leX1WqDhnrIYeX6r3urdGzp6t530pfX+SEhr7pZdeOuX5JE4YSfL6wtA8JnUtY+iyS4tmpdw0+7uU9Xc3JJY0zp5N+iz3RmJL6z1oq6JZXB99UtLdKl5ycq2kWZIOkrRKxUtOVkk6sNZ80tzTDGkN570FWCm+lStXJjavtK83bMYeUz17ydO7GRvd0wzplq4nz3HymNR72sieZrO/S3n67laLJekTqJI+y72RPKb5HqRZNDM5ESgpfX19PnGQ/Ef3PKz/+sOjKphUMJOZTT4umKJh06/v+JVuvPEG7dj+nFRsNch9PHpcPOjfOXOGlpyzRCeccHzJ/CbmtXt+73/foLY89JDk41PmcfCCBbruuuuKry1MXX61+RVKxplJHYUqzxdUdn6m3cOHH364RkdH98jbFVdcofPPP7+uXPf29padV09PjzZs2FD3ezfd8PCwBgcH9/hR7kq6uroSu7l9rXUrff7SSy/VBRdcMPn80NDQHnHXE1ulZVeKpZZ689jIsupZ9kTeKuUm7c/XdM1eXtxYrr76avX39zdlWdM/6+Wer3d+jcTSCDNL7USgtiiaw8PDWnrdf8pf+HpZoSArFOSyrMPL3JTGwETjYHxcs2fP0uxZs6KCXrlolxblkZG7S+bnUUOh+PjVx72q/GsL1Rowe04/OrpBv77jDm19+mnN6pwpybX9uWc1b+5cdXd3a+OGDXr66ae0z7y5OvGEE3TUUS+q2kCaaLSYSb+54w59/3vf0+OPP6YD9t9Pp55yio477lUyM33gvPOidZtYp2g95RpevlwD71wsHy+OW7LkHF391a9O5mDBgvl61bHH6he33aaHHnpQBy+Yr78491y94Q1vqJ7XKDcvPvroKe/TxHKk8SkNOpP0yMNbar5PZtLXv/51LV26VBs3bpxyFm/od93Mppw1Wo/h4eHJZXd3d+stb3mLbrnlFp1//vn6/Oc/r6GhocmCWTptpdgaiaWaQqFQdpmVlldpvSaGS9crRMi6S8XGxvS8NaLWetebl0rTT7xmem5C17vca+tB0aygr6/PL7roooot/cWL3ymXNO5e/Buf+tjlGvdo3LhPTusujY0X81KcfmJ49/Rj465T3nKKNj/4oFTokKwgM0kq6L8tXKivX3+95No9vbtW/3C1Pn/lldq+Y4dkHZJJs2bN1vve934df+KJu5c3Lo1FXQETy3YVu9LHx11jPtGtvnveE13tE8tzly6//HI9+dRT0bJMMpNZQf2LTtJLX/ay3fOf8nrXWJQbL1nXm2++Wc9se3ZyHsX5FdTVNVev7e8vee3EvMrHNmVdJqbX7ukn35uKsU2dfur8dr9ve7PphXTi8TNbt2psfGx3o6C0p0W7GwszOjrU09NdoSibOupsDBWsWLTnP+95k89vun+jbl97u8Z27ixpHExtKMhd+8ybq3POeXfZWFQmttJ4ShuF05+/+KK/06OPPlqyzOL6P++gA3XZZZ+dMv1//PSnuuqqf9H2555T8cM5LtfuxqPcNauzUxd85MNBjaVb/vVf9YmLL9azz27bs1E7rVH6yU9crIsvukhz5szW5Z+7TGeddVbV3qpamrWnWWpieyyp7l6QuD1KFM0K+vr6fPv27al3s0xvZU60fsp1R1V7k5vdJVQpvmuvvVZnnHFG2enLrWe1eTXz9z9DY53eoOjre6E23n+/ZAVJxY2hrKDDurv1i9vX6saVK/Wxj31Mzz63QzLJrKDZc7r090NDOvW003TTTd/VxZ/4hJ7bvkMf/shHdNlln5tsNEiSrKCFCxfqGytu2KPhtXs4aoxExd2j2H7yk5/qi1/8knbs3FmcXzRfK+yed+esWVq8+J065thjd7+2TCNvYp0n5l3agBobd61bt07/vuqH2jU2trvho6gxVSjmZsbMmXrN8Seop7e3ZH4T61Jch4lljJc0dHY3ejSlATox/NTTT2vu3HmT099zz3rt3LWruPxCIWp0WrT+HZKkQqFD++y7r2bOmlU2ll27xrRr15jcTDYxn71cwSSTa2zXruKeo6RZszrV2TlTBTPt3LFdW59+Wj4+XtJYchVMGh8bU8FM4+Nj8vGxyZ6kgkmHHVq8vnZ6A+nRRx7R+vX3aHxsbM+empKGQNec2ZK7ntn2zO7nx0sOa2lq46W04bDvvHl673vfO6XnqFpjycz01ycdkVrRnJHGTJsp7R85nV4sRkdHNTg4KEmTG+lKG+9mxzpdpfjKXZxdaz3rXdc01YrVJlrhMs2QtPG+e6d0BU082rj+d5q/zyyd9553at+ZPm3dPqWBgcWSpA+du1gLZo9r6dKlmj9ju3Y8dO8eMW3cPKJXv+Cgutfl1Jf+T710/50BXX9n1j3vPRd2lIaf/1zAsv6s8WVNs2bNGvX3/+nkcKGwKLBb77Sy01RqxH3hC8t09uLFQQX9xhtX6tOXXKIHHvijDjn0UF3w0Y/ptLe+der07nrJS14iV2FK42KycTPZ0Ck+d+utq7Rq1Spddvnl2r5jR/H50ulLGkNTGwrFxsLkcNQIOOOMM/Stb3178rWXXvqPU2Kb0ngZd/3mt3fqlu99r9ggiWKbObNTr3vd63XEkUfKJd09co9uu+02bX1mm2bNnq2dO3dp3H1y+kJHh2bO7NSunbvUNXeuXnT00TrkkOcX65h29/BI0pznH6wOc/3hvg16bvv2yQbp1PU27SgUG0IzZx9QzEHJ82ZW7K2bzItNyeu4FbTi9vurNtSaKq0zjJrxd+SRRzZ89mItSc4/7VhDlTsjLy+xhag31iTX7YorrmiZPOVJ0te3NvPzWu8Z93HPYC73+nqvb83yu1FrfrWW1UgsY2Pjvmts3HfsGvNnd+xytdslJ0n9HXnkkamfOp7kjZuTiDWJ65rKFc0469loLHFfX2+sSX5GVq5cmfmlCnm6vjBUnDspVZPGDdUr5bXey4LiXHMceolT0nlJOo/V3tckLncJvaaZolmlaJZLZJIbkaRbYo1eCJzEBjuJPc1GY2nk9XHek6Q+IxN3aMmqaOXp+sJ6lPvMNZLHNL6XtTboIRvrarFN/6t2u8tKN9NIOi9p7LFXe18bubFCPY0XimaNopmmPG2kkvqAV9qA1bOejcbSyOuzfE+y/lHgNDZyzdDsi/TrlWRek7xhRdo/ep6n7VstoY2RaDqKZrm/ZhRN9/x0hyXVlVLpi1jPejYaS6OvT/LWc/XIumjm5Xce65VG3pL8XqbRTZnE5zPOdzXt2+BltT2s5xaRFM2Mi2ZepLmn2exY0m7Zp9VazrposqeZjrzmNYleoSRluWz2NPeSoplkKy6J44hxjpNUmlcjP4mV5JevmRu8JDb+eTiunUZs1cTJW9KxNOvzmKS8neme5bI5prkXFM00ji/E3ZA0ckZetXk2shFKaqPYzC7LRotmEhvntApbmoUj7WNzScwvL4dhSiV1pntSsj48wNmzbV40622VpdmKK513M37bsJkt0lba08xrN2DasdWbt6RjyXPeq2FPM540iyb3nUpRvXcASvOOQc2+G1Ezlzc0NKSurq4p47q6ujQ0NJT4shoVJy/Dw8Pq7e1VoVBQb2+vhoeHcxNbvULXpdIyR0dHY+Wh2Z//NGX5eW/2spv12a9LWtW4GX/sacaLpd32NN2b17XW7D3NZh5rS3tPs551qRRL3Dy0yh7SdEmc6Z60Zi27kc++6J5tzaKZp2um0jimGbq8tDf2zdTsY5rN3NinfUyznnUJOemjnjy06ucx72cdp6mRzz5Fs8Gi2cyz8BpddpqtuCTPnq1neXk6saJRzT57ttknXqR59myc2x9OxFKpaNaTh1b8POahaObtusyQ95yi2UDRzOIsvLzLwxexVTU7d63arThdvXua07VLHuqV9Xc1j9dlsqeZctFM+svWDl/erL+IrazZuWuHRpp7/cc0p2uXPNQr6+9qlts7jmlmVDST7t7K+jqlJGT9RWxlWeSuFbsVp5vIW6M3dmj1PNQr6+9q1tu7uIe3JLlTNOMVTfY095T1F7GVkbt4yFs8WeetlbZ30/dMPaW60/bXaSZ9XVErXROI+HJ5fRjQZK20vVu6dKm2bduW/oLSqsbN+GuFs2fzKOvWa95VO5ZC7uIhb/HkIW+tsr2b3pXsKdUdc/f0K3NK+vr6fGRkJOswWs6aNWvU39+fdRi51dvbq9HR0T3G9/T06OqrryZ3MfCZi4e8hZv+vXV3S2M5bd89C9SrnW65BuwtynUlp4GiCUzT3d1d13gA2RsYGNCyZcvU09OT6nIomsA0rXTyA4DdBgYGtGHDBklam9YyKJrANKUtVjNTT0+Pli1bpoGBgaxDA5CxGVkHAOTRwMAARRLAHtjTBIAWx3XFzcOeJgC0sOHhYQ0ODk5e2D86OqrBwUFJorckBexpAkALK3cnnG3btmnp0qUZRdTeKJo5R7cLgGq4rri5KJo5NtHtMjo6Knef7HahcAKYwHXFzUXRzDG6XQDUwnXFzUXRzDG6XQDUwnXFzcXZsznW3d1d9sbhdLsAKMV1xc3DnmaO0e0CAPlC0cwxul0AIF/ons05ul0AID/Y0wQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIFAmRdPM9jezG83sbjNbZ2bHm9mBZnarma2P/h+QRWwAAFSS1Z7m5ZK+7+4vlPQySeskXShplbsfIWlVNAwAQG40vWia2b6SXivpy5Lk7jvc/QlJp0u6JprsGklva3ZsAABUE1w0zexPzGy5ma00s+MbWOYLJD0s6atm9isz+5KZzZV0sLtvlqTo/4IGlgEAQOLM3cs/YTbb3Z8rGb5O0sWSXNIN7v7yWAs0O1bSf0k60d1/bmaXS3pK0vnuvn/JdI+7+x7HNc1sUNKgJM2fP/+YFStWxAljr7Z161bNmzcv6zBaErmLh7zFQ97iWbRo0Vp3PzaNeVe7jd53zexr7n5tNLxTUq+KRXOsgWVukrTJ3X8eDd+o4vHLh8xsobtvNrOFkraUe7G7L5O0TJL6+vq8v7+/gVD2TmvWrBF5i4fcxUPe4iFv+VOte/ZNkvYzs++b2Z9KukDFY5FvlhT7Zqju/qCk+82sLxp1sqTfSbpJ0pJo3BJJ34m7DAAA0lBxT9PdxyRdaWbXSrpI0kJJf+fu9yaw3PMlDZtZp6Q/SPpzFQv4CjM7V9JGSWcmsBwAABJTsWia2aslfVTSDkn/V9KzkobMbJOkT7n7k3EX6u53SCrX33xy3HkCAJC2asc0r5L0DknzJH3B3U+UdLaZ/Q9JKyS9sQnxAQCQG9WK5piKJ/50qbi3KUly9x9J+lG6YQEAkD/ViuY7Jb1PxYJ5TnPCAQAgv6qdCHSPpI80MRYAAHKNXzkBACAQRRMAgEA1i6aZnWpmFFcAwF4vpBieLWm9mX3GzF6UdkAAAORVzaLp7u+S9ApJ96r4yyQ/M7NBM9sn9egAAMiRoG5Xd39K0kpJ16t4O70/k/RLMzs/xdgAAMiVkGOap5nZtyT9UNJMSce5+5slvUzFm7gDALBXqHZzgwlnSrrM3X9cOtLdt5nZe9MJCwCA/AkpmhdL2jwxYGZzJB3s7hvcfVVqkQEAkDMhxzRvkDReMjwWjQMAYK8SUjRnuHvpDdt3SOpMLyQAAPIppGg+bGZvnRgws9MlPZJeSAAA5FPIMc33Sxo2syslmaT7xa+eAAD2QjWLprvfK+k1ZjZPkrn70+mHBQBA/oTsacrMTpF0tKTZZiZJcvf/k2JcAADkTsjNDa6SdJak81Xsnj1TUk/KcQEAkDshJwKd4O7nSHrc3T8p6XhJh6UbFgAA+RNSNJ+L/m8zs+dL2inp8PRCAgAgn0KOaX7XzPaX9A+SfinJJX0x1agAAMihqkUz+vHpVe7+hKSVZnazpNnu/mRTogMAIEeqds+6+7ikfywZ3k7BBADsrUKOaf7AzN5uE9eaAACwlwo5pvlhSXMl7TKz51S87MTdfd9UIwMAIGdC7gi0TzMCAQAg72oWTTN7bbnx03+UGgCAdhfSPfvRksezJR0naa2kk1KJCACAnArpnj2tdNjMDpP0mdQiAgAgp0LOnp1uk6QXJx0IAAB5F3JM8/Mq3gVIKhbZl0v6dZpBAQCQRyHHNG8vebxL0nXu/h8pxQMAQG6FFM0bJT3n7mOSZGYdZtbl7tvSDQ0AgHwJOaa5StKckuE5kv49nXAAAMivkKI52923TgxEj7vSCwkAgHwKKZrPmNkrJwbM7BhJz6YXEgAA+RRyTPNvJN1gZn+MhhdKOiu9kAAAyKeQmxv8wsxeKKlPxZu13+3uO1OPDACAnKnZPWtmH5A0193vdPffSppnZn+VfmgAAORLyDHNv3T3JyYG3P1xSX+ZXkgAAORTSNEslP4AtZl1SOpMLyQAAPIp5ESgf5O0wsyuUvF2eu+X9P1UowIAIIdCiubfShqUdJ6KJwL9QNIX0wwKAIA8qtk96+7j7n6Vu7/D3d8u6S5Jn290wdHt+H5lZjdHwwea2a1mtj76f0CjywAAIElBPw1mZi83s0vMbIOkT0m6O4Flf1DSupLhCyWtcvcjVLx134UJLAMAgMRULJpmdqSZXWRm6yRdqeLvaJq7L3L3hvY0zexQSadI+lLJ6NMlXRM9vkbS2xpZBgAASat2TPNuST+RdJq7/16SzOxDCS33c5I+JmmfknEHu/tmSXL3zWa2IKFlAQCQiGpF8+2Szpa02sy+L+l6FU8EaoiZnSppi7uvNbP+GK8fVPHEJM2fP19r1qxpNKS9ztatW8lbTOQuHvIWD3nLH3P36hOYzVWxq3SxpJNU7Dr9lrv/INYCzf6fpHer+IPWsyXtK+mbkl4lqT/ay1woaY2791WbV19fn4+MjMQJY6+2Zs0a9ff3Zx1GSyJ38ZC3eMhbPGa21t2PTWPeIWfPPuPuw+5+qqRDJd2hBk7ScfePu/uh7t6r4p7sD939XZJukrQkmmyJpO/EXQYAAGkIOnt2grs/5u5fcPeTUojl05Jeb2brJb0+GgYAIDdCbm6QGndfI2lN9PhRSSdnGQ8AANXUtacJAMDejKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAECgphdNMzvMzFab2Tozu8vMPhiNP9DMbjWz9dH/A5odGwAA1WSxp7lL0kfc/UWSXiPpA2Z2lKQLJa1y9yMkrYqGAQDIjaYXTXff7O6/jB4/LWmdpEMknS7pmmiyayS9rdmxAQBQjbl7dgs365X0Y0kvlrTR3fcvee5xd9+ji9bMBiUNStL8+fOPWbFiRXOCbSNbt27VvHnzsg6jJZG7eMhbPOQtnkWLFq1192PTmHdmRdPM5kn6kaQhd/+mmT0RUjRL9fX1+cjISNqhtp01a9aov78/6zBaErmLh7zFQ97iMbPUimYmZ8+a2UxJKyUNu/s3o9EPmdnC6PmFkrZkERsAAJVkcfasSfqypHXu/tmSp26StCR6vETSd5odGwAA1czIYJknSnq3pN+a2R3RuP8t6dOSVpjZuZI2Sjozg9gAAKio6UXT3X8qySo8fXIzYwEAoB7cEQgAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEC5K5pm9iYzGzGz35vZhVnHAwDAhFwVTTPrkPRPkt4s6ShJi83sqGyjAgCgKFdFU9Jxkn7v7n9w9x2Srpd0esYxAQAgKX9F8xBJ95cMb4rGAVzPMjMAAAYcSURBVACQuRlZBzCNlRnnUyYwG5Q0GA1uN7M7U4+q/TxP0iNZB9GiyF085C0e8hZPX1ozzlvR3CTpsJLhQyX9sXQCd18maZkkmdnt7n5s88JrD+QtPnIXD3mLh7zFY2a3pzXvvHXP/kLSEWZ2uJl1Sjpb0k0ZxwQAgKSc7Wm6+y4z+2tJ/yapQ9JX3P2ujMMCAEBSzoqmJLn7LZJuCZx8WZqxtDHyFh+5i4e8xUPe4kktb+butacCAAC5O6YJAEButWzR5HZ7u5nZYWa22szWmdldZvbBaPyBZnarma2P/h9Q8pqPR7kbMbM3low/xsx+Gz13hZmVuwyorZhZh5n9ysxujobJWwAz29/MbjSzu6PP3vHkrjYz+1D0Pb3TzK4zs9nkbU9m9hUz21J6WWGSeTKzWWb2jWj8z82sNygwd2+5PxVPErpX0gskdUr6taSjso4rw3wslPTK6PE+ku5R8TaEn5F0YTT+QkmXRI+PinI2S9LhUS47ouduk3S8itfMfk/Sm7Nevybk78OSvi7p5miYvIXl7RpJfxE97pS0P7mrmbNDJN0naU40vELSe8hb2Vy9VtIrJd1ZMi6xPEn6K0lXRY/PlvSNkLhadU+T2+2VcPfN7v7L6PHTktap+OU8XcUNm6L/b4seny7penff7u73Sfq9pOPMbKGkfd39Z178JH2t5DVtycwOlXSKpC+VjCZvNZjZvipu1L4sSe6+w92fELkLMUPSHDObIalLxWvRyds07v5jSY9NG51knkrndaOkk0P21lu1aHK7vQqiLoZXSPq5pIPdfbNULKySFkSTVcrfIdHj6ePb2eckfUzSeMk48lbbCyQ9LOmrUdf2l8xsrshdVe7+gKRLJW2UtFnSk+7+A5G3UEnmafI17r5L0pOSDqoVQKsWzZq329sbmdk8SSsl/Y27P1Vt0jLjvMr4tmRmp0ra4u5rQ19SZtxel7fIDBW7zv7F3V8h6RkVu8sqIXeSomNwp6vYhfh8SXPN7F3VXlJm3F6XtwBx8hQrh61aNGvebm9vY2YzVSyYw+7+zWj0Q1H3hKL/W6LxlfK3KXo8fXy7OlHSW81sg4pd/CeZ2XKRtxCbJG1y959HwzeqWETJXXWvk3Sfuz/s7jslfVPSCSJvoZLM0+Rroq7y/bRnd/AeWrVocru9ElE//JclrXP3z5Y8dZOkJdHjJZK+UzL+7OjsscMlHSHptqi742kze000z3NKXtN23P3j7n6ou/eq+Bn6obu/S+StJnd/UNL9ZjZxY+yTJf1O5K6WjZJeY2Zd0fqerOI5COQtTJJ5Kp3XO1T8/tfeW8/6DKm4f5LeouJZovdKWpp1PBnn4r+r2K3wG0l3RH9vUbF/fpWk9dH/A0teszTK3YhKzrqTdKykO6PnrlR0A4x2/5PUr91nz5K3sJy9XNLt0efu25IOIHdBefukpLujdb5WxTM+ydueebpOxeO+O1XcKzw3yTxJmi3pBhVPGrpN0gtC4uKOQAAABGrV7lkAAJqOogkAQCCKJgAAgSiaAAAEomgCABCIognkiJmNmdkdJX+J/YKPmfWW/mIEgPrNyDoAAFM86+4vzzoIAOWxpwm0ADPbYGaXmNlt0d+fRON7zGyVmf0m+t8djT/YzL5lZr+O/k6IZtVhZl+04u85/sDM5mS2UkALomgC+TJnWvfsWSXPPeXux6l4V5PPReOulPQ1d3+ppGFJV0Tjr5D0I3d/mYr3hL0rGn+EpH9y96MlPSHp7SmvD9BWuCMQkCNmttXd55UZv0HSSe7+h+jm/A+6+0Fm9oikhe6+Mxq/2d2fZ2YPSzrU3beXzKNX0q3ufkQ0/LeSZrr736e/ZkB7YE8TaB1e4XGlacrZXvJ4TJzXANSFogm0jrNK/v8sevyfKv5CiyQNSPpp9HiVpPMkycw6zGzfZgUJtDNamUC+zDGzO0qGv+/uE5edzDKzn6vY2F0cjftfkr5iZh+V9LCkP4/Gf1DSMjM7V8U9yvNU/MUIAA3gmCbQAqJjmse6+yNZxwLszeieBQAgEHuaAAAEYk8TAIBAFE0AAAJRNAEACETRBAAgEEUTAIBAFE0AAAL9fxpEJPIQoK9kAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -333,34 +336,38 @@ "name": "stdout", "output_type": "stream", "text": [ - "Running...\n", - "[############### ] 52%\n", + "[##############################] 100%\n", "\n", "================= Iteration Stats ================\n", - " step: 5200 of 10000\n", - " loss: 1.285412\n", + " step: 10000 of 10000\n", + " loss: 0.522784\n", "\n", - " accuracy: 91.67 %\n", - " AVG: 74.92 %\n", - " Best: 91.67 %\n", + " step accuracy: 70.00 %\n", + " AVG: 77.28 %\n", + " Best: 90.00 %\n", "\n", " Trend slope: -0.000\n", " MAD Dispersion: nan\n", - " Skewness: Approximately symmetric distribution ( -0.29 )\n", + " Skewness: Approximately symmetric distribution ( -0.12 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 1 min and 10 sec\n", - " ETC: 0h, 1 min and 22 sec\n", + " Elapsed: 0h, 2 min and 12 sec\n", + " ETC: 0h, 0 min and 0 sec\n", "\n", "================= Network Setup ================\n", " number of classes: 1\n", " number of features: 14\n", " learning rate: 1\n", " training steps: 10000\n", - " batch size: 24\n", + " batch size: 100\n", "1st layer n. of neurons: 512\n", "2st layer n. of neurons: 512\n", - " Normalized data: True, type: mean, Discrete Binary 0/1\n" + " Normalized data: True, type: max, Discrete Binary 0/1\n", + "\n", + "Trainning Analysis Finished. Start testing test dataset...\n", + "\n", + "Accuracy of highest score in prediction dataset\n", + " Test Accuracy: 77.00 %\n" ] } ], @@ -383,7 +390,7 @@ " # Run the optimization to update W and b values.\n", " run_optimization(batch_x, batch_y)\n", " \n", - " if step % display_step == 0:\n", + " if step % display_step == 0 or step==training_steps:\n", " pred = neural_net(batch_x, is_training=True)\n", " loss = cross_entropy_loss(pred, batch_y)\n", " acc = accuracy(pred, batch_y)\n", @@ -405,7 +412,7 @@ " print(\" step: %i of %i\" % (step,training_steps))\n", " print(\" loss: %f\" % loss)\n", " print(\"\")\n", - " print(\" accuracy: %.2f %%\" % (acc*100))\n", + " print(\" step accuracy: %.2f %%\" % (acc*100))\n", " print(\" AVG: %.2f %%\" % (avg/avgCounter))\n", " print(\" Best: %.2f %%\" % (np.max(accuracyValue)))\n", " print(\"\")\n", @@ -427,12 +434,12 @@ "\n", " print(\"1st layer n. of neurons: \"+ str(n_hidden_1 ))\n", " print(\"2st layer n. of neurons: \"+ str(n_hidden_2))\n", - " print(\" Normalized data: \" + (\"True\" if normalizeDataValues else \"False\") +\", type: \" + normalizationType +\", \" +(\"Discrete Binary 0/1\" if normalizationType else \"Continuous range [0,1]\"))\n", + " print(\" Normalized data: \" + (\"True\" if normalizeDataValues else \"False\") +\", type: \" + normalizationType +\", \" +(\"Discrete Binary 0/1\" if normalizationTypeBinary else \"Continuous range [0,1]\"))\n", "\n", " start_time = datetime.now()\n", "print(\"\")\n", - "print(\"Trainning Analysis Finished.\") \n", - "print(\"Start testing test dataset...\")\n", + "print(\"Trainning Analysis Finished. Start testing test dataset...\")\n", + "print(\"\")\n", "run_test = neural_net(x_test, is_training=False)\n", "print(\"Accuracy of highest score in prediction dataset\")\n", "print(\" Test Accuracy: %.2f %%\" % (tf.math.round(100*accuracy(run_test, y_test))))\n" @@ -440,16 +447,75 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distribution of values:\n", + " equal to 1: 0.0%\n", + " equal to 0: 100.0%\n", + "\n", + "checking answers:\n", + "none of the answers matches the output\n", + "Answer starts with '0 0 1', matches [80]: 79.21% of values\n", + "Answer starts with '1 0 1', matches [55]: 54.46% of values\n", + "Answer starts with '1 1 0', matches [21]: 20.79% of values\n", + "Answer starts with '2 1 0', matches [15]: 14.85% of values\n" + ] + } + ], "source": [ - "print(data_predict_x.shape)\n", + "def calStats(output, answer):\n", + " num_matches= np.sum(output[:min(len(output), len(answer))] == answer[:min(len(output), len(answer))])\n", + " percentage =round((num_matches / min(len(output), answer.shape[1]))*100,2)\n", + " return num_matches, percentage\n", "\n", "run_prediction = neural_net(data_predict_x, is_training=False)\n", - "print(run_prediction.shape)\n", + "output_pre=np.round(run_prediction.numpy(),0)\n", + "\n", + "#assessing output value with its probability \n", + "ouput = np.empty(shape=(output_pre.shape[0],1))\n", + "for i in range(output_pre.shape[0]):\n", + " if ((output_pre[i][0]==1 and output_pre[i][1]==0) or (output_pre[i][0]==0 and output_pre[i][1]==1)):\n", + " res[i][0]=0\n", + " elif((output_pre[i][0]==1 and output_pre[i][1]==1) or (output_pre[i][0]==0 and output_pre[i][1]==0)):\n", + " res[i][0]=1\n", + "\n", + "print(\"distribution of values:\")\n", + "print(\" equal to 1: \" + str( round(np.sum(output==1)/output.shape[0]*100,1) )+\"%\")\n", + "print(\" equal to 0: \" + str( round(np.sum(output==0)/output.shape[0]*100,1) )+\"%\")\n", + "\n", + "#checking answers\n", + "answer1=np.array([[0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1]])\n", + "answer2=np.array([[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,1,1]])\n", + "answer3=np.array([[1,1,0,1,0,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,1,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0]])\n", + "answer4=np.array([[2,1,0,2,0,1,0,2,1,2,1,2,1,1,2,1,1,1,1,2,0,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,3,1,1,1,1,1,2,1,0,1,1,1,0,1,1,2,1,3,1,1,1,0,0,1,1,2,1,1,1,1,1,1,1,2,1,2,0,1,1,2,1,0,0,2,1,1,1,2,0,1,1,1,1,1,2,1,1,0,1,1,0,3,1,0]])\n", "\n", - "print(np.round(run_prediction.numpy(),0))\n" + "print(\"\")\n", + "print(\"checking answers:\")\n", + "\n", + "if (output==answer1).all():\n", + " print(\"answwer starts with '0 0 1'\")\n", + "elif (output==answer2).all():\n", + " print(\"answwer starts with '1 0 1'\")\n", + "elif (output==answer3).all():\n", + " print(\"answwer starts with '1 1 0'\")\n", + "elif (output==answer4).all():\n", + " print(\"answwer starts with '2 1 0'\")\n", + "else:\n", + " print(\"none of the answers matches the output\")\n", + " num_matches, percentage= calStats(output, answer1)\n", + " print (\"Answer starts with '0 0 1', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer2)\n", + " print (\"Answer starts with '1 0 1', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer3)\n", + " print (\"Answer starts with '1 1 0', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer4)\n", + " print (\"Answer starts with '2 1 0', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " " ] }, { From bbb6d1e24795b66882b3f0a3774ffabdb2e3aec2 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 17:37:45 +0200 Subject: [PATCH 08/13] Add files via upload --- .../Multilayer_Perceptron_With_Keras.ipynb | 273 ++++++++++++++++++ 1 file changed, 273 insertions(+) create mode 100644 tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb new file mode 100644 index 00000000..0b3a1462 --- /dev/null +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb @@ -0,0 +1,273 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# example of summarizing a model\n", + "from tensorflow.keras import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "import pandas as pd\n", + "import numpy as np\n", + "from tensorflow.keras.optimizers import SGD\n", + "from matplotlib import pyplot\n", + "from tensorflow.keras.layers import Dropout\n", + "from tensorflow.keras.layers import BatchNormalization\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from tensorflow.keras.utils import plot_model\n", + "\n", + "# parameters initialization.\n", + "num_classes = 1 # total classes : number of output results wanted\n", + "num_features = 0 # data features : number of input variables on the dataset. a value of 0 loads from the dataset bellow\n", + "\n", + "# Training parameters.\n", + "learning_rate = 0.0000001\n", + "training_steps = 5000\n", + "batch_size = 24\n", + "display_step = 100\n", + "\n", + "# Network parameters.\n", + "n_hidden_1 = 256 # 1st layer number of neurons.\n", + "n_hidden_2 = 256 # 2nd layer number of neurons.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# predictions Data.\n", + "df_predict_ds=pd.read_csv('./week3_exam_dataset_test.csv')\n", + "\n", + "data_predict_x = np.float32(df_predict_ds.values)\n", + "\n", + "# Training Data.\n", + "df_tr=pd.read_csv('./week3_exam_dataset_train.csv')\n", + "\n", + "#y Values dataset\n", + "df_tr_raw_y= df_tr['y']\n", + "df_tr_raw_values_y = df_tr_raw_y.values\n", + "y = np.float32(df_tr_raw_values_y)\n", + "#X values dataset\n", + "df_tr_raw_x= df_tr.drop('y',1)\n", + "df_tr_raw_values_x = df_tr_raw_x.values\n", + "X = np.float32(df_tr_raw_values_x)\n", + "if num_features==0:\n", + " num_features= df_tr_raw_x.shape[1]\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_5\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_9 (Dense) (None, 256) 3840 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 256) 0 \n", + "_________________________________________________________________\n", + "batch_normalization_2 (Batch (None, 256) 1024 \n", + "_________________________________________________________________\n", + "dense_10 (Dense) (None, 1) 257 \n", + "=================================================================\n", + "Total params: 5,121\n", + "Trainable params: 4,609\n", + "Non-trainable params: 512\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "# define model\n", + "model = Sequential()\n", + "model.add(Dense(n_hidden_1, activation='relu', kernel_initializer='he_normal', input_shape=(num_features,)))\n", + "\n", + "# example of using dropout\n", + "model.add(Dropout(0.5))\n", + "\n", + "# example of using batch normalization\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Dense(1, activation='sigmoid'))\n", + "# compile the model\n", + "sgd = SGD(learning_rate=learning_rate, momentum=0.8)\n", + "model.compile(optimizer=sgd, loss='binary_crossentropy')\n", + "\n", + "# configure early stopping\n", + "es = EarlyStopping(monitor='val_loss', patience=5)\n", + "\n", + "# summarize the model\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAIECAYAAAAXTCf5AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdf2jb950/8OdnadpbwiZf7rC9+eZuuywmsE1lPRJ3XWtih++ot4/ag9h17Lkeh2wklpaNiHHxSRgjk3YgsdAUYizBXRG2RVK4xh+6/JMIYjrihOudPnDlqNm6ymNh/nCj0gqDNus+3z9y708+H/2yJEv6SP48HyASffTR+/P6fCTr9fm8P+8fkq7rOoiIiMgpznzG7giIiIiouZj8iYiIHIbJn4iIyGGY/ImIiBzmIbsDaAWKoiCRSNgdBhERNdC+ffvw85//HN3d3XaHYjte+QNIJpO4cuWK3WEQOcbW1hb/5ip0+/Zt3L592+4w9oRkMolUKmV3GC2BV/7/Z3x8HMvLy3aHQeQIKysrmJiYwOXLl+0OpeVNTEwAAH+f6kCSJLtDaBm88iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyJqa6FQCKFQyO4wWookSZZHMZqmIRqNNjmynUWjUeRyuaKvVbJfVBkmfyKiXcjlci2biHRdR7GJWzVNw9zcHGRZNpYlk0l4PB5IkgS/3w9N06reXi6Xw8bGBmKxGDweT0XvicViluN38uRJTE5OFt1+qf2h6jH5E1FbC4fDCIfDtm1/fX3dtm3XIpfLwev1YmpqCkeOHAFwPwF3dnZibW0Nuq5jYGAAXq8XqqpWVXYkEsFbb72FmZkZKIqy4/qqqmJmZsayzO12Y3Z2Fl6vt2QNAO0ekz8RUY1yuRxisZjdYVQlHo/D7Xajv7/fWDYzM2O50h4bG4OiKFXfTqnmRCyXy+GNN94o+lp/fz96enoQj8er2j5VjsmfiNqWpmlGdXWx54qiQJIkeDwebG1tGesoimKsI6qd/X4/Njc3jbKL3VvOXxaJRIwrXPPyVm2HoGkaAoEATpw4YVm+tLSElZWVgvV7enoaFks8HseLL75Y8vWRkREEAoGabj/Qzpj8iahteb1enD592kjA5ucbGxuQZRmZTAaKouDll18GAHR1dcHj8RjrTE9PI5vNAgD6+vqME4Dt7e2C7WUyGctz81VuO9yPFnMEHD582LJ8enoaa2trxnNxDHw+X0PiSKVSePLJJ9HZ2VlyHREj5zVoDCZ/Impb5oSV/1xUa/f29gIAFhcXAcCSoMU6LpfLSHTiRKJYYhJl7cTudgil3LlzB8DO+5FIJJBOp+F2u+seg6Zp+PWvf2257VCMy+UCAEttDNUPkz8REWAkukAgYHMkjbOwsLDjOqlUCqdOnWpI4geAq1evYnp6esf1RPLfy5+HnZj8iYjIcODAgYYlfkVR8N3vfrchZVN1OKUvEZFJo+5zt4NkMomxsbGGlV+u778kSS3fZmIv4ZU/EREe3FseHh62OZLGiUQiAFCy/3wjEz/woFGk+WF+rZhgMNjQmJyKyZ+I2pa5G5imaZbnIsGZE11+t7FkMmmsk0gkIMuyZdQ7UQsgTgw2NjaM1/x+PwAY65uHy23Vrn5iUJ9Syb9U3NFoFJIkVTToj7ns3QzSI7pmHjt2rOYyqDQmfyJqW11dXZb/m593dHRY/s1fHwCOHj0Kj8eDjo4O9Pb2IpFIWF4/d+4cZFlGX18fFEVBf38/ZFnG6uoq5ufnATzo7nfx4kVMTk7Wdwfr7Pjx4wCAu3fvVvW+bDYLn8+34wmNJEmW493R0VHz0MciRhEz1Rfv+RNR26rkHnG5ddxud0F3QbPe3t6y3QlFGfnbaMVufsD97ouRSAS//OUvi3a1KxW3WL7TeP213LMv9Z633noLkUik7FgAVDte+RMROYjX68XNmzcttzAqsbGxgdnZ2QZFZaWqKlRVhdfrbcr2nIjJn4gcJb+dgNO4XC7E43GcP3++4ol7UqkUDh06tOPAPPWwubmJxcVFxONxo68/1R+Tfx3ljyvuZK3a4Ikov53AXlZq3vvOzk4kEglcv369onIGBweNxoKNpigK5ufni1b3l9ofqh6Tfx3Nzc1ZxhlvN5qmGZOcSJJktIRuR7XMsW6etKXYpC7NlB9/K8XW7kp1NdtLKtlHl8uFs2fPNjmynZ09e7bkfX4nfHbNwuRfR5cuXbI7hJqJOb6B+39g29vbWFlZqfnq3e6xzWuZY13XdWOCF+B+C2e7fmDy4xefiWBnbETU/tjanwAA165dg6IoRlenzs5OhMNhPPbYYzhx4gQGBwdtjrByu5lj3XyP0a77jaXiN18N8V4oEe0Gr/x3IZfLIZlMGvOFl5p9Sgz+IdZLpVLG8p3mHhfE+2OxGDRNK6jyLbWNSom5vM1J5ctf/jIA4MqVK1WVtdfmWG+V+KshTiDE+0OhkOU7Ih5iUBoAltfM+1Xquyv2N5fLwe/3s40HUTvRSR8fH9fHx8erfp8sy7rP59Oz2ayu67q+urqqA9DNh3V7e1uXZVlfXV3VdV3Xb9y4oQPQ0+m0Lsuysf6tW7d0Xdf1TCajA9B9Pp9RRiQS0TOZjK7rup7NZvVgMFjxNiqVH/dOy8sx71f+81L7KV43r5PNZnWfz6cD0N977z1jX/NjEmWZlxWLOxgM6sFgcMf489/bKvGXW55PbHd7e7sg1lu3bhV8x8z7ur29bcRa6Xc3nU4XLa+U5eXlqr9XTlXr7xMVAqAvLy/bHUYr+BH/+vTa/rjW1tYsP+q6fv/HPv/HWZwQmAEwklCxH/NiiUD8IOv6gwRS6TYqkZ+kSsVSqUqSWSXrpNNpHYAeiUR2XVatsbdS/JXuVzAYtCTj/PdFIhEdgHFSKWIViV7XK//uipPfajD5V47Jv36Y/A1M/rpe2x+XSJb5yl015j+KrV9smdjW6upq0R/anbZRCfPVoNhGscRVqXol/3qXVUvsrRR/tfuVyWSMRG9+n/hsl5aWjGXmGiZdr+27WymR/Pngo9kPJn9d13X9R2zwV6PFxcWK1hP3bvVdtMz+yU9+gt/97nc4ffo0gPv3hM1ddOqxjf7+fty4cQMXLlxAR0cHlpaW8Pd///cAgJMnT9ZcLtknFotBURREIhEEAgHLa263Gz6fDzMzMxgdHQUA/OpXv0Jvb6+xTj2+Vzu5fPlyw8reK1599VUAwEsvvWRzJO1PfNeJrf2bZnNzs+ZBMo4cOYK1tTWoqorFxUXjhzy/j+5utgHcH8jD3Ko/Go0iGAzC7XbXXGa9tPsc682K3+/349KlS0gmk5iZmUEmk7Ek9PyYFhcXce3aNRw8eBBTU1NF19vt96qckZGRhpS7l7z55psAeKyovtjav0ZLS0sAsOPwmGK9RCJhTG9pnvqzEpIkIZfLwe1249KlS0in05YruXpsI18ymcTNmzcLrhibrd3nWG9m/BsbGxgYGAAAo5aoVOIHHlz9nz59GrFYrGDo1kZ8r4ioNTD51+i73/0ugPvdx0S3KHP3OjHX97PPPgsAWFhYMKa37OrqwsjISFVzj0ciEWM7f/3Xf41IJGK8Vm4b1cjlclBVFX6/H7/73e+wtrZWU3/ydp5jvdhc5K0Sf7lx6Dc2NvDEE0/g6NGjlvdvbW1ZuhrmlyGu9s3xCZV+d4moDdnc6KAl1NqaNpPJGI3xfD6fpWuUuXV+JpMxuuf5fD6jURXyGqKUW7a9vW003CrWAK/UNioltre0tFRVF8FyZZV67LTv5q5kS0tLBY0cM5mM8fra2pqu63rBcRcN2oLBoLFsp65+O8VtZ/yVxpbfWFO8X7T+L/a9kGW5oJeHOdadvruyLJc8pqWwtX/l2Nq/fsAGf8KPJF3nGKETExMAgOXlZZsjcTYxmE27fiXbMf5cLod//ud/bvrQ1CsrK5iYmGirY2UX/j7VjyRJWF5exvj4uN2h2O0Mq/2JHOzy5ctsSEbkQEz+1BLafY71doo/FApZhvFtp3kbqDKVzP7Yqo03o9GopU2NGWe1rB8m/z2u1FSwtfwR1bOsfO0+x3o7xS96ACwtLdk686KdapnyuZXKr5ReYupbTdMwNzdnaegp5q8Qc1LUchKby+WwsbGBWCxmzHOxEzEHhXDy5ElMTk4W3X6p/aHqMfnvceKPZadHs8vaqex2007xT09PQ9d1TE9P2x2KbWqZ8rmVyt8NMX331NSUMX5DLBZDZ2cn1tbWoOs6BgYG4PV6d+zKnC8SieCtt97CzMyMMUhUOaqqYmZmxrLM7XZjdnYWXq+3ZA0A7R6TPxE5ym6mfG6F8ncrHo/D7XZbxnWYmZmxXGmPjY1BUZSqZ2oMh8MV1yblcjm88cYbRV/r7+9HT08P4vF4VdunyjH5E1HbME+jbZ7iWqh1yuRWnlK6njRNQyAQwIkTJyzLl5aWjGm9zXp6ehoWSzwex4svvljy9ZGREQQCgZZvQ9OumPyJqG1MTk7io48+gq7r2N7ehqIolurh7e3tgvdkMhnLc/OVqbhN09XVBY/HA0VRsLGxgenpaWSzWQBAX1+fcQJQa/mt4vbt2wCAw4cPW5ZPT09jbW3NeC72t1HDUqdSKTz55JPo7OwsuY6IUcRM9cXkT0RtIZVKQVEUY+TBzs5OzM7OQlEUXLt2zViWr9wQx4I5QYvqcJfLZSQ/cSVfa/lAdVXijXLnzh0AO8ecSCSQTqcbMq+Hpmn49a9/XTCcdD4xuqi55oXqh8mfiNrClStXAFgTsBjOuFiVdT2I5Gf3HBf1srCwsOM6qVQKp06datiEXlevXq2osalI/nvl2LcaJn8iagvFptEWCaKSluVUmQMHDjQs8SuKYsyLQvZi8ieitmCe7Chfo6dMbvcppSuVTCZ3rI7fDY/Hg0cffbRkw0lqHiZ/ImoLYjz2999/31gmGvo1aojidp9SOp+YDbRU//mxsbGGbr/cuCClGkYGg8GGxuRUTP5E1BaeeeYZyLKM8+fPG1f/165dg8/nswxRXOuUyYKdU0o3mhjUp1TyLxVjNBqFJEkVDfpTbFrsWogpzI8dO1ZzGVQakz8RtQWXy4V4PA5ZltHV1WVUE7/yyiuW9c6dOwdZltHX1wdFUdDf3w9ZlrG6uor5+XkAD7rjXbx4EZOTk5b3Hz16FB6PBx0dHejt7UUikahr+XY6fvw4AODu3btVvS+bzcLn8+148iJJEjo6OoznHR0dNVfnixhFzFRfnNIXnDKTqNlacUrfVp2SuZbfp3L7Imoizp49W3UsHo/HMh5AI4VCIXR0dBSNs9bPilP6GjilLxGRk3i9Xty8edNyu6ISGxsbmJ2dbVBUVqqqQlVVeL3epmzPiZj8icjx2mlK5t0St0/Onz9f8cQ9qVQKhw4damhPAGFzcxOLi4uIx+NGV06qPyZ/InK8dpqSuRqlptnu7OxEIpHA9evXKypncHDQaCzYaIqiYH5+vuhoiruZNpysHrI7ACIiu7Xaff7dqmR/XC5XTff9G61cTHvtc7ITr/yJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGHY4O//XLlyBc8995zdYRA5wu3btwE8mKaXShPD3PJYUT0x+QP4yle+gnv37mF0dNTuUIgchX9zlXv77bftDmFPOHz4sN0htAQO70vkQK04vC4RNQ2H9yUiInIaJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJymIfsDoCIGu/y5cv4zW9+YzxPp9MAgJ/97GeW9b73ve/h61//elNjI6Lmk3Rd1+0OgogaS5IkAMAjjzxScp2PP/4YP/3pTwtOCIhozznDan8iBzhz5gwefvhhfPzxxyUfADA8PGxzpETUDEz+RA4wNjaGTz75pOw63d3deOqpp5oUERHZicmfyAG+/e1v44tf/GLJ1x9++GFMTEzgM5/hTwKRE/AvncgBJEnCCy+8gP379xd9/ZNPPsHp06ebHBUR2YXJn8ghxsfHce/evaKvfeUrX8Hjjz/e5IiIyC5M/kQO8Y1vfANf+9rXCpbv378fP/zhD5sfEBHZhsmfyEGmpqYKqv7v3bvHKn8ih2HyJ3KQ06dP489//rPxXJIkfPOb3yxaI0BEexeTP5GDfPWrX8W3vvUtY9Cfffv2YWpqyuaoiKjZmPyJHGZychL79u0DAHz66acYGxuzOSIiajYmfyKHef755/GXv/wFAPDUU0+V7f9PRHsTkz+Rw3R3dxvd+iYmJmyOhojswIl92sydO3dw/Phxu8MgIgIAY84IaitnOKVvm/nVr34F4P4UrUTlvPrqqwCAl156qeA1Xdfxxz/+ES6Xq9lhtaTR0VG89NJL+M53vmN3KG1lZWUFb775pt1hUA2Y/NvUyMiI3SFQixM/yvyuVOb48eM8VlW6d+8ek3+b4j1/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInoh2FQiGEQiG7w2gLmqYhGo3aHUaBaDSKXC5ndxjUIpj8iajl5XI5YzKiVqZpGubm5iDLsrEsmUzC4/FAkiT4/X5omlZ1ublcDhsbG4jFYvB4PBW9JxaLWY7ZyZMnMTk5WdP2ae9h8ieiHYXDYYTDYdu2v76+btu2K5XL5eD1ejE1NYUjR44AuJ+AOzs7sba2Bl3XMTAwAK/XC1VVqyo7EongrbfewszMDBRF2XF9VVUxMzNjWeZ2uzE7Owuv18saAGLyJ6LWlsvlEIvF7A5jR/F4HG63G/39/caymZkZy5X22NgYFEWp+hZKNSdfuVwOb7zxRtHX+vv70dPTg3g8XtX2ae9h8ieisjRNM6quiz1XFAWSJMHj8WBra8tYR1EUYx1RBe33+7G5uWmULUmS8Si1LBKJGFe75uWt1A5B0zQEAgGcOHHCsnxpaQkrKysF6/f09DQslng8jhdffLHk6yMjIwgEAqz+dzgmfyIqy+v14vTp00YCNj/f2NiALMvIZDJQFAUvv/wyAKCrqwsej8dYZ3p6GtlsFgDQ19dnnABsb28XbC+TyViem694dV1HK85Fdvv2bQDA4cOHLcunp6extrZmPBf77fP5GhJHKpXCk08+ic7OzpLriBhFzORMTP5EVJY5eeU/F1Xcvb29AIDFxUUAsCRosY7L5TKSnjiRKJakRFk7sbsdgtmdO3cA7Bx7IpFAOp2G2+2uewyapuHXv/615bZDMWIyJ3MNDDkPkz8RNY1IeoFAwOZI6mthYWHHdVKpFE6dOtWQxA8AV69exfT09I7rieS/1z4Dqg6TPxFRExw4cKBhiV9RFHz3u99tSNm0N3FKXyJqukbd825VyWQSY2NjDSu/XN9/SZJasp0E2YtX/kTUNOI+8/DwsM2R1FckEgGAkv3nG5n4gQcNIc0P82vFBIPBhsZErY3Jn4jKMncJ0zTN8lwkO3PSy+9ClkwmjXUSiQRkWbaMgCdqAcSJwcbGhvGa3+8HAGN989C5rdTVTwzqUyr5l4o1Go1CkqSKBv0xl72bQXpEd8xjx47VXAa1PyZ/Iiqrq6vL8n/z846ODsu/+esDwNGjR+HxeNDR0YHe3l4kEgnL6+fOnYMsy+jr64OiKOjv74csy1hdXcX8/DyAB939Ll68iMnJyfruYB0cP34cAHD37t2q3pfNZuHz+XY8iZEkyXKMOzo6ah7uWMQoYiZn4j1/IiqrkvvF5dZxu90F3QXNent7y3YnFGXkb6NVuvkB97ssRiIR/PKXvyza1a5UrGL5TuP113LPvtR73nrrLUQikbJjAdDexyt/IqI68Hq9uHnzpuW2RSU2NjYwOzvboKisVFWFqqrwer1N2R61LiZ/h8ofopWonvLbCTiBy+VCPB7H+fPnK564J5VK4dChQzsOzFMPm5ubWFxcRDweN/r6k3Mx+TvU3NycZcjWdqNpmjFevCRJRqOyapjHkM9/RKNRKIrC2c9qlN9OwCk6OzuRSCRw/fr1itYfHBw0Ggs2mqIomJ+fZ3U/AWDyd6xLly7ZHULNxNSpwP37mtvb21hZWam65bd4r5DNZo1uUidPnkQsFuP85zUq1e3MCVwuF86ePWt3GAXOnj3LxE8GJn9qO9euXYOiKBgdHQVw/2orHA5jYWEBqVSqqrLMP4bmqlC3221Me8r5z4lor2Hyd4hcLodkMmlMvVpqUg/Rj1qsJ5JpJdO4CuL9sVgMmqYVdEkqtY1KiSlSzcn6y1/+MgDgypUrxrLd9gPv7OzEj3/8YyiKgvX1dctr7XCciIhK0qmtLC8v67V8bLIs6z6fT89ms7qu6/rq6qoOwFLW9va2Lsuyvrq6quu6rt+4cUMHoKfTaV2WZWP9W7du6bqu65lMRgeg+3w+o4xIJKJnMhld13U9m83qwWCw4m1UKj/uUsuDwaAeDAZrLk/sQ/4+tstxGh8f18fHxyte38kA6MvLy3aH0XZq/T0i2/2In1qbqeWPbW1tTQegv/fee8YykdTMZYkTAjMARgItliTzlwHQt7e3jefb29tVbaMSPp+vYH9KxVeJnd7XrseJyb9yTP61YfJvWz/iID8O8Itf/AIALK2Ki3X1EdXp+dXPCwsLFQ+o4vP50NXVhdXVVTzzzDPo7Oy0NPiqxzampqawuLiIn//853jllVfgcrmMrlVijPVGapfjBNwfytV8K4RKu337Nvbv3293GG3l9u3bdodAtbL79IOqU8uZNiqsJi+1XrnX85e99957lqrvSCRSUSzVunHjhrGdpaWlmqrFK4lJ1JCYr7jb5TiNj48b5fDBRyMf1HZ+xAZ/VKBUY8BKHDlyBGtra0in0/D5fAgEAsZELPXaBnC/f/Ta2hp0Xcf09DT+67/+C8FgsO7zpb/zzjsAgBMnThS81g7HaXx8vOiMb3wUdkVcXl62PY52eywvL+/q+0n2YfJ3gKWlJQDYcdQxsV4ikTC6tplnUauEJEnI5XJwu924dOkS0uk0AoFAXbeRL5lM4ubNm5bt1IOmabhw4QJkWcbg4KCxvF2PExGRQae2Uku1v2htLsuy0cJcVJMDD1qhi0Zn+Y9MJmN5TfQYMDcaFI3XgPtV5GI7mUzGUqVdbhvVyGazejqd1n0+X0GVuVBJa3/zPoj90nXdaLkvy7KlYV47HSc2+KscwAZ/tWCDv7bFan8n6O3tRSaTQU9PDx599FH4/X58/etfL5g2tbOzE5lMBsFgEMD9RmmZTAa9vb1VTeP64osv4sqVK5AkCVeuXLGMdlZuG5US05veuXMHPp+v5tHUSk2TKkkSrl+/jtnZWaytrRWMitYux4mIqBRJ1//vhhe1hZWVFUxMTIAfG+1kYmICAHhftgKSJGF5eRnj4+N2h9JW+HvUts7wyp+IiMhhmPyJiIgchsmfWka5KXbND6JW0s69MKLRKCetcigmf2oZehV9sqn15XK5hp6sNbr8Smiahrm5OciybCwTEztJkgS/31/TlNBbW1vw+/1GGaUmdVJV1XJi7Pf7S5apqipisZgRGwCcPHmS01Y7FJM/ETVE/kyI7Vb+TnK5HLxeL6ampoyhs2OxGDo7O40BqAYGBuD1enccYyO/XFVVcenSJWSzWQwMDGBoaAiKohSse+fOHcvz4eHhomVGo1GEQiF0d3fjtddeM06i3W43ZmdnOW21AzH5E1Hd5XI5xGKxti2/EvF4HG63G/39/caymZkZy1X02NgYFEWpamrp9fV1oybB5XJhbGwMAIxpos26u7sttWLmGgjB7/cjm80ikUhAluWC7qL9/f3o6elBPB6vOEZqf0z+RGSRy+WQTCaNquRYLGZJaMXaX+Qvi0QixpWqWK5pGhRFMZJYLBYzqqrNwxjXWj4AhEKhqhJtrTRNQyAQKBj2eWlpyZiUyaynp6fisoslcOD+WA9mW1tb8Hg8CIVC2NjYKPoecSzC4XDRybyEkZERBAIBVv87CJM/EVlMTk7io48+gq7r2N7ehqIolmrh7e3tgvdkMhnLc/PMg+KqtKurCx6PB4qiYGNjA9PT08hmswCAvr4+4wSg1vKbScxmd/jwYcvy6elprK2tGc/FPuUn7mqI455fpS9uJSwsLOCJJ56Ax+OxJG9VVbGwsIDh4WHjRMvj8RRtPyD2g7P0OQeTPxEZUqkUFEXBs88+C+D+SIOzs7NQFAXXrl0zluWrZORBc4IWVeUul8tIjOJKvtbygfsnBdVMeVwrca99p7gSiQTS6fSuJpx65513IMsynn76actyWZaRzWaRTqcRDAahKAquXr1qvH79+nUjRnGi1dPTg6GhoYKaAlErsNuJpKh9MPkTkeHKlSsArAn46NGjAFC0OrseRGKs98RMjbSwsLDjOqlUCqdOndr1TJMXLlzA7Oxs0Wp7l8sFt9uNcDiMpaUlS6NAcTzF9s0nWq+//npBOeb30N7H5E9EhsXFxYJlIjEUa21OpR04cGDXiT+ZTEKWZUujwlJGR0d3/IxEPMU+Z3IWJn8iMojGZsUafu3mvnUlGl1+MyWTyYoSdjmqquLdd9/F9PR0Reubr+yBB8ezWBe+Uo0KyTmY/InIICa2ef/9941lInmMjIw0ZJviPnOpPuqtKBKJACieWAEY3fNqpWkarl+/bmm/oKpq2UF8crmc5TMS///ggw8s6wAoOYGRmEWS9j4mfyIyPPPMM5BlGefPnzeu/q9duwafz4fBwUFjPXFVKRK3uQGZSFDmWoT84W+TySSA+8lI9D83X43WWn6zuvqJQX1KJf9ScUSjUUiSVHbQH03T4PV6EQgELF0cH3vsMeMEKZlMWlrtb21tYX193fIZDQ4OIhgMIhQKGZ/l5cuXIctywcnJ1tYWAODYsWOV7D7tAUz+RGRwuVyIx+OQZRldXV1G//lXXnnFst65c+cgyxF3vacAACAASURBVDL6+vqgKAr6+/shyzJWV1cxPz8P4EF3vIsXL2JyctLy/qNHj8Lj8aCjowO9vb1IJBJ1Lb/Rjh8/DgC4e/duVe/LZrPw+XxlT1Dm5uZK3rvv6+sDABw8eBBDQ0OQJAmhUAgffvhh0ar8cDhc8FnmH2vzfoj9or1P0jlYelvh/NlUqYmJCQDA8vKyzZE8IBJQq31/JUnC8vJyyerwYkRtw9mzZ6vensfjsYwHYLdQKISOjo6q94W/R23rDK/8iYhq4PV6cfPmzZKj65WysbGB2dnZBkVVPVVVoaoqvF6v3aFQEzH5E1FTmHsQ7IVhZMUtkvPnz1c8cU8qlcKhQ4d23ROgXjY3N7G4uIh4PF52+F/ae5j8iagpurq6iv6/nXV2diKRSBij6e1kcHDQaCzYChRFwfz8fNFRFWlve8juAIjIGfbqfWGXy1XTff9W0K5x0+7xyp+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIYN/trU6Oio3SFQi7t9+zYAflcq9eqrr+LNN9+0O4y2IqaApvbDEf7azO9//3v85Cc/waeffmp3KNTGfv/73+O///u/cfLkSbtDoTZ3+PBhnD9/3u4wqDpnmPyJHIjDshI5Gof3JSIichomfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInKYh+wOgIga7+TJk0in0/jCF74AAPjTn/4El8uFb3zjG8Y67733Hv7t3/4N4+PjdoVJRE3C5E/kAKlUCrqu4w9/+INleS6Xszz/4IMPmhgVEdmF1f5EDvDKK6/goYfKn+tLkoSxsbEmRUREdmLyJ3KA559/Hp9++mnJ1yVJwuOPP46vfvWrTYyKiOzC5E/kAI8++iiOHTuGz3ym+J/8vn378IMf/KDJURGRXZj8iRxiamoKkiQVfe0vf/kLnn/++SZHRER2YfIncoiRkZGiy/ft24eBgQF0d3c3OSIisguTP5FD/O3f/i1OnDiBffv2WZbruo4XXnjBpqiIyA5M/kQO8sILL0DXdcuyffv24R//8R9tioiI7MDkT+Qgzz33HPbv3288f+ihh/DMM8/A5XLZGBURNRuTP5GDfO5zn8P3v/99o8//p59+isnJSZujIqJmY/IncpiJiQmjz/9nP/tZfP/737c5IiJqNiZ/IocZHh7GwYMHAQCnTp3CX/3VX9kcERE1G8f2b6Lf/va32NjYsDsMIjz66KN499138Xd/93e4cuWK3eGQw+3btw8ej2fHIaipfiQ9v+kvNcw//dM/4V//9V/tDoOIqOX8+7//O5577jm7w3CKMzzNaqKPP/4Y4+PjWF5etjsUooqsrKxgYmKioHsgFZqYmAAA/n3XQJIk/OlPf7I7DEfhPX8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iaopQKIRQKGR3GC1L0zREo1G7w6hJNBpFLpezOwyqApM/ETlCLpeDJEl2h1GUpmmYm5uDLMvGsmQyCY/HA0mS4Pf7oWla1eVubW3B7/cbZaRSqaLrqaoKSZKMh9/vL1mmqqqIxWJGbABw8uRJTE5O1hQj2YPJn4iaIhwOIxwO27b99fV127ZdTi6Xg9frxdTUFI4cOQIAiMVi6OzsxNraGnRdx8DAALxeL1RVrapcVVVx6dIlZLNZDAwMYGhoCIqiFKx7584dy/Ph4eGiZUajUYRCIXR3d+O1114zBn9yu92YnZ2F1+tlDUCbYPInoj0vl8shFovZHUZR8Xgcbrcb/f39xrKZmRnLVfTY2BgURanqtsn6+rpRk+ByuTA2NgYA8Hg8Bet2d3dD13XjYa6BEPx+P7LZLBKJBGRZRm9vr+X1/v5+9PT0IB6PVxwj2YfJn4gaTtM0oxq72HNFUSBJEjweD7a2tox1FEUx1onFYkaV9ObmplG2ubq61LJIJGJc8ZqX290OQdM0BAIBnDhxwrJ8aWkJKysrBev39PRUXHaxBA4APp/P8nxrawsejwehUKjkxGPiGIXDYbhcrpLbHBkZQSAQYPV/G2DyJ6KG83q9OH36tJGAzc83NjYgyzIymQwURcHLL78MAOjq6oLH4zHWmZ6eRjabBQD09fUZJwDb29sF28tkMpbn5tsN4uq2Fdy+fRsAcPjwYcvy6elprK2tGc/FvuYn7mqI6vj8Kn1xK2FhYQFPPPEEPB6PJXmrqoqFhQUMDw8bJ2Aej6do+wGxH2K/qHUx+RNRw5kTWf5zUd0tqpEXFxcBwJKgxToul8tIgOJEorOzs2B7+VXSpdjdDkHca98p3kQigXQ6DbfbXfO23nnnHciyjKefftqyXJZlZLNZpNNpBINBKIqCq1evGq9fv37diFGcgPX09GBoaKigpkDUCphrZqg1MfkTUVsRCTAQCNgcye4tLCzsuE4qlcKpU6d2lfgB4MKFC5idnS1abe9yueB2uxEOh7G0tGRpFCiOs9i++QTs9ddfLyjH/B5qXUz+REQt7MCBA7tO/MlkErIsWxoVljI6Olq0R4CZiEfU0lD7YfInora0m/vf7SKZTFaUsMtRVRXvvvsupqenK1rffGUPPDjOxbrwlWpUSK2PyZ+I2oq4n1yqL3o7iUQiAIonVgBG97xaaZqG69evW9o1qKpadhCfXC6HkZER47n4/wcffGBZBwDGx8eLlhEMBncTNjUBkz8RNZy59bimaZbnIpGYE2B+V7FkMmmsI/qZm686xdWpODEwN0QTiU6sbx5G1+6ufmJQn1LJv1R80WgUkiSVHfRH0zR4vV4EAgFL18fHHnvMOHFKJpOWVvtbW1tYX1/H4OCgsWxwcBDBYBChUMj4XC5fvgxZlgtOTkQ3zWPHjlWy+2QjJn8iariuri7L/83POzo6LP/mrw8AR48ehcfjQUdHB3p7e5FIJCyvnzt3DrIso6+vD4qioL+/H7IsY3V1FfPz8wAedPe7ePEiJicn67uDNTp+/DgA4O7du1W9L5vNwufzlT1xmZubK3nvvq+vDwBw8OBBDA0NQZIkhEIhfPjhh0Wr8sPhMGRZRldXlzFGQv5nYN4PsV/UuiS9VTq8OsDExAQAYHl52eZIiCqzsrKCiYkJ2/rFi0TTDj9Ttf59i1qIs2fPVr1Nj8dT0I3STqFQCB0dHVXviyRJWF5eLnkbgeruDK/8iYhs5PV6cfPmzZKj65WysbGB2dnZBkVVPVVVoaoqvF6v3aFQBZj821D+0KhEe1F+O4G9yuVyIR6P4/z58xVP3JNKpXDo0KFd9wSol83NTSwuLiIej5cd/pdaB5N/G5qbm7MMldqudjPFqqZpCIVCRiMm0SCsGuZGUPmPaDQKRVH2zAxlrTydbSn57QT2ss7OTiQSCWM0vZ0MDg4ajQVbgaIomJ+fLzraIrUmJv82dOnSJbtDqItap1jVNA3vv/8+wuEwdF3H6uoqTp8+bdw7rZSu65Zx4bPZrDHu+8mTJxGLxfbMHOWtOp1tOeZZ5trhnv9uuVyumu77t4KzZ88y8bcZJn+yxW6mWH3//fct1Z2iu1EtQ4qaf7DM1ZVut9uYmrTd5yhv5elsicgeTP5tIJfLIZlMGrNp5U+aYZ76NJfLwe/3W7oAmd8vSRJisVjB/dRKpk6ttLzdTLFaifz7nCIx5w8ssts+3J2dnfjxj38MRVGMK2enHWsi2puY/NvA5OQkbt68iWw2i7W1Nfznf/6n5XWv12tMffo///M/8Pl8+N///V/L+z/66COjmltRFMvVbKVTp1ZaXjOnWN3a2jJGSWtE3+3HH38cAPCLX/wCgLOPNRHtITo1zfj4uD4+Pl7Ve9bW1nQA+nvvvWcsy2azOgDd/PGJ59ls1vL+Gzdu6AD07e1tY9mtW7d0APrq6mrB+83S6bQOQI9EInUpr1TMtcpkMkYZ+XFWY6c4nHysl5eXd/UZOUktf990HwB9eXnZ7jCc5EcPNeqkgupDXHGaW/aW60qT/9qVK1cAWO9tHz16FMD9AVzKjR1unjpVNETaTXn11tvbC13Xoaoq3njjDQQCAXz+85+veAKT3XLSsR4dHW3attrV7du3AfBYUXvgCH9NVMsIYKVGOMtfXul6u33/btartKxabG5uGkOWVlteuThyuRw6OjoQDAaN6nMnHWsxwp95ohcqTiR/Dm1bvStXrnCEv+Y6wyv/PU6WZSiKAk3TCrriVDolqnm9epTXCI3q8/zOO+8AAE6cOLHjunv5WF++fLmp22tHHL67dmyE2nxs8NfilpaWAKDikb/yiTPp999/31gmGovtdDVXbOrU3ZTXSCKG1dXVupWpaRouXLgAWZYts5yV4pRjTUTtj8m/xX33u98FcL/bmpgu0zwFp9/vLzsIzTPPPANZlnH+/HljvWvXrsHn8xVNaDtNnVppebVOsVoJj8eDaDRqHI9cLodIJIJgMGi5D15JVz9z/33z/81jlIv+/iLWUvbisSaiPapJLQtJr701cCaT0X0+nw5A9/l8+vb2ti7Lsr66uqpvb29bWrzLslzw/u3tbX1paclYZ3V1taClungtnU7rsizrAPSlpaWC9SotL5PJGOWsra3puq5bYtb1By3cg8GgpUX7TkQPCPGIRCL6rVu3CtYLBoN6MBgsWY65jPxHqTKddqzZ2r9ybO1fO7C1f7P9iA3+mqiV7wm209Sp7a6djrXdU/q2k1b++251nNK36TilLxERkdMw+ZNjpk5tBTzWVEo7t8eIRqNtPf+FEzH5U8tMnVpuit1iY9i3o1Y51u2i0VMRt8pUx5qmYW5uztLgM5lMwuPxGHM/1HKyuLW1Bb/fb5Rhbixspqqq5W9MNBQttW4sFjNiA4CTJ0/umRkwnYLJn1pm6tT8OEo92tle2pdmaPRUxK0w1XEul4PX68XU1JQxXkUsFkNnZyfW1tag6zoGBgbg9Xqr6vKby+WgqiouXbqEbDaLgYEBDA0NGZM8md25c8fy3Nzl1CwajSIUCqG7uxuvvfaa8R12u92YnZ1t+xkwnYTJn4haUqOnIm6VqY7j8TjcbrdltsqZmRnLVfTY2BgURalqlsr19XWjJsHlchndYMWMkmbd3d2Wk1JzDYTg9/uRzWaNbqm9vb2W1/v7+9HT02PpGkuti8mfiOquUVMRVzol8m6mOt7tVNDV0DQNgUCgYATJpaUlrKysFKzf09NTcdnFEjhQODrk1tYWPB4PQqGQZYwIM3E8wuFw2blFRkZGEAgEWP3fBpj8iajuGjUVcaVTIrfLVMdiPoDDhw9blk9PT2Ntbc14LvZrN8M6i2OfX6UvbiUsLCzgiSeegMfjsSRvVVWxsLCA4eFh42TL4/EUbT8g9kPsF7UuJn8iqqtUKgVFUfDss88CuD8r4ezsLBRFwbVr14xl+fKrkYsxJ2hRTe5yuYykKK7kay0fuH9SYD4xaCRxr32n2BKJBNLptDH7Yy3eeecdyLKMp59+2rJclmVks1mk02kEg0EoioKrV68ar1+/ft2IUZxs9fT0YGhoqKCmQNQKmGthqDUx+RNRXe00FXEjmKdEbicLCws7rpNKpXDq1KldJX4AuHDhAmZnZ4tW27tcLrjdboTDYSwtLVkaBYpjKrZvPtl6/fXXC8oxv4daF5M/EdXV4uJiwTKRFIq1NKfyDhw4sOvEn0wmIcuypVFhKaOjozt+TiKeYp81tQcmfyKqK/MkQvkaPRWxndNKN0IymawoYZejqireffddTE9PV7S++coeeHBMi3XhK9WokFofkz8R1ZUdUxEXmxK5HUQiEQDFEysAyyyVtdA0DdevX7e0YVBVtewgPrlczvI5if9/8MEHlnUAlByLPxgM7iZsagImfyKqq2ZNRbzTlMi1lt/Mrn5iUJ9Syb9ULNFoFJIklR30R9M0eL1eBAIBSzfHxx57zDhJSiaTllb7W1tbWF9ft3xOg4ODCAaDCIVCxud5+fJlyLJccHIiptk+duxYJbtPNmLyJ6K6crlciMfjkGUZXV1dRv/5V155xbLeuXPnIMsy+vr6oCgK+vv7IcsyVldXMT8/D+BBd7yLFy9icnLS8v6jR4/C4/Ggo6MDvb29SCQSdS2/GY4fPw4AuHv3blXvy2az8Pl8ZU9S5ubmSt677+vrAwAcPHgQQ0NDkCQJoVAIH374YdGq/HA4XPB55h9v836I/aLWxSl9m4hTflK7acUpfVt1SuRa/75FjcPZs2er3qbH47GMB2C3UCiEjo6OqveFU/o2Haf0JSKyk9frxc2bN0uOrlfKxsYGZmdnGxRV9VRVhaqq8Hq9dodCFWDyJ6K2sRenRBa3Sc6fP1/xxD2pVAqHDh3adU+Aetnc3MTi4iLi8XjZ4X+pdTD5E1Hb2KtTInd2diKRSBij6e1kcHDQaCzYChRFwfz8fNGRFak1PWR3AERElWq1+/z15HK5arrv3wraNW4n45U/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDsLV/Ez3yyCP413/914bNaU7UKGJUPdoZ/75rc+DAAbtDcBQO79tEv/3tb6sexYuoEd5++228+uqruHz5st2hEGHfvn3weDx46CFejzbJGR7pJvrSl76EL33pS3aHQYR79+4BaNwUu0TU2njPn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiBzmIbsDIKLG+8Mf/oBcLmc81zQNAPD+++9b1vvCF76Az372s02NjYiaT9J1Xbc7CCJqLEmSKlovGAwiHA43OBoistkZVvsTOcC3v/3tik4Ajhw50oRoiMhuTP5EDvDiiy/uuM4jjzyC5557rgnREJHdmPyJHECWZTzyyCMlX3/ooYcgyzI+97nPNTEqIrILkz+RAxw8eBDPPfcc9u/fX/T1Tz/9FOPj402OiojswuRP5BA/+MEPcO/evaKvHTx4EMPDw02OiIjswuRP5BD/7//9P3z+858vWL5//36Mjo6WvS1ARHsLkz+RQ+zfvx/PP/98QdX/vXv3MDExYVNURGQHJn8iB5mYmCio+v+bv/kbDAwM2BQREdmByZ/IQZ566il0d3cbzx9++GH84Ac/wL59+2yMioiajcmfyEE+85nPYHx8HA8//DAA4JNPPmErfyIHYvIncpjx8XF88sknAIDe3l4cO3bM5oiIqNmY/Ikc5vHHH8eXv/xlAMDk5KS9wRCRLQpm9fv973+Pn/zkJ/j000/tiIeImkDM5/Uf//EfGB0dtTkaImqUw4cP4/z58wXLC678U6kUkslkU4IiInu43W78wz/8Q9F+/9Qct2/fxu3bt+0Ooy1cuXIFW1tbdofRdq5cuYKXX3656GsFV/7C5cuXGxYQEZHTibEVlpeXbY6k9UmShJdeeomNU6u0srJScgwP3vMnIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iojYXCoUQCoXsDqMlaZqGaDRqdxg1iUajyOVyDSmbyZ+IiHYll8tBkiS7wyigaRrm5uYgy7KxLJlMwuPxQJIk+P1+aJpWdblbW1vw+/1GGalUquh6qqpCkiTj4ff7S5apqipisZgRGwCcPHkSk5OTNcW4EyZ/IqI2Fw6HEQ6Hbdv++vq6bdsuJZfLwev1YmpqCkeOHAEAxGIxdHZ2Ym1tDbquY2BgAF6vF6qqVlWuqqq4dOkSstksBgYGMDQ0BEVRCta9c+eO5fnw8HDRMqPRKEKhELq7u/Haa68ZI3C63W7Mzs7C6/XWvQaAyZ+IiGqWy+UQi8XsDqNAPB6H2+1Gf3+/sWxmZsZyFT02NgZFUaq6ZbK+vm7UJLhcLoyNjQEAPB5Pwbrd3d3Qdd14mGsgBL/fj2w2i0QiAVmW0dvba3m9v78fPT09iMfjFcdYCSZ/IqI2pmmaUZVd7LmiKJAkCR6PxxgiV9M0KIpirBOLxYxq6c3NTaNsc5V1qWWRSMS46jUvt7MdgqZpCAQCOHHihGX50tISVlZWCtbv6empuOxiCRwAfD6f5fnW1hY8Hg9CoRA2NjaKvkccn3A4DJfLVXKbIyMjCAQCda3+Z/InImpjXq8Xp0+fNhKw+fnGxgZkWUYmk4GiKMY4711dXfB4PMY609PTyGazAIC+vj7jBGB7e7tge5lMxvLcfLtBXOHaTcyZcPjwYcvy6elprK2tGc/FfuYn7mqI6vj8Kn1xK2FhYQFPPPEEPB6PJXmrqoqFhQUMDw8bJ18ej6do+wGxH/WcC4LJn4iojZmTWf5zUeUtqpIXFxcBwJKgxToul8tIguJEorOzs2B7+dXSpdjZDkHca98p1kQigXQ6DbfbXfO23nnnHciyjKefftqyXJZlZLNZpNNpBINBKIqCq1evGq9fv37diFGcfPX09GBoaKigpkDUCphrZXaLyZ+IiADASIKBQMDmSHZnYWFhx3VSqRROnTq1q8QPABcuXMDs7GzRanuXywW3241wOIylpSVLo0BxjMX2zSdfr7/+ekE55vfUA5M/ERE5zoEDB3ad+JPJJGRZtjQqLGV0dLRojwAzEY+ooWkkJn8iIrLYzT3wdpBMJitK2OWoqop3330X09PTFa1vvrIHHhzjYl34SjUqrCcmfyIiAvDgnnKp/ujtIhKJACieWAEY3fNqpWkarl+/bmnToKpq2UF8crkcRkZGjOfi/x988IFlHQAYHx8vWkYwGNxN2BZM/kREbczcglzTNMtzkUzMSTC/u1gymTTWEX3NzVee4gpVnBiYG6OJZCfWNw+la2dXPzGoT6nkXyq2aDQKSZLKDvqjaRq8Xi8CgYCl2+Njjz1mnDQlk0lLq/2trS2sr69jcHDQWDY4OIhgMIhQKGR8JpcvX4YsywUnJ6KL5rFjxyrZ/Yow+RMRtbGuri7L/83POzo6LP/mrw8AR48ehcfjQUdHB3p7e5FIJCyvnzt3DrIso6+vD4qioL+/H7IsY3V1FfPz8wAedPe7ePEiJicn67uDNTh+/DgA4O7du1W9L5vNwufzlT1pmZubK3nvvq+vDwBw8OBBDA0NQZIkhEIhfPjhh0Wr8sPhMGRZRldXlzE+Qv7xN++H2K96kPS8TpkrKyuYmJhoib6aRER71cTEBABgeXnZlu2LZNMOv/WSJGF5eblkdXgxogbi7NmzVW/P4/EUdKG0UygUQkdHR9X7Uiafn+GVPxER7Tlerxc3b94sObpeKRsbG5idnW1QVNVTVRWqqsLr9da1XCZ/IiKHyW8nsBe5XC7E43GcP3++4ol7UqkUDh06tOueAPWyubmJxcVFxOPxssP/1mLXyT9/HOlms3v7raLYcWhGgxvOI15fTvs+83trj/x2AntVZ2cnEomEMZreTgYHB43Ggq1AURTMz88XHWlxt3ad/Ofm5izjSu9GLXNC13P77awZx6FV5+yudG7tcsytdvMf0Wi0plnLGvF9TqVSRlylklexfWhVTv7e2sk801w73PPfDZfLVdN9/1Zw9uzZhiR+AICeZ3l5WS+yuCwAVb+nmLW1tZrKqdf2212jj0Otn08jZbNZfW1tzfj/6uqqDsBYVo3t7e2ix/DGjRs6AH11dbWq8hr1fTbvZzAYLLqO2Jft7e2qt99sTvze6rquj4+P6+Pj43aH0RYA6MvLy3aH0XbK5PMftcw9/1adE5rua9XPp5q5tXdS6gxb9M0tNhVoKY08Xub9XFhYMPppm4l9adhVQ5to1e8tkd3qmvzFAA+i+lUMTCCIP0RztaVobFJqTmjxvmQyaSwv98cs5q72+/1VN2SpZB7scjHlN6IR82Xncjn4/X5jf4ttw3y8RLn5x7Dc8dtpX4DSVdtinWo/n1L3pys5NpUe551UOrd2Pe7x5ldNt8L3ORKJ4PTp00VPAIrh97Y1vrdEtquimqAk/F+13a1bt3Rdv1/lKMtyQbWjz+czlmUyGR2A7vP5CsrJJ8uypXrT5/NZnudv/7333isouxIiZnNZxeIU6y4tLVn2V5ZlPZvNFi0rnU7rPp/PsjydTuu6ruu3bt0ytlFuu9UcP/N2zK+bPw9RHZrJZKouv9Q2ajk25Y5ztbLZbNFq/2AwWLKK3KzUdxBFqv3t/j6LsoPBoOX7lP96/rb5vW2N7y2r/SsHVvvXpFy1f8Pu+YsfLPHHpOv3f6TK/VEWK0fc2zT/8d+6dUuXZbns+0r98NayL/nLxD3g/JjyE4R4n/jxqDbe/GXVHr9yx0B8Pjdu3Ki5/GLLqj02Ox2Dat24ccPyg10tEUP+IxgMFpRp9/dZPM9ms0Zieu+99wpeF/i9LR2jHd9bJv/KMfnXxpbkX255JpPRI5FIRX+k4ket2u03MvmLKw0zccW50494NfHu9viVer+4qolEIgWvVVN+sWW7OTb1SP6yLBtXZbUoFsP29rYeDAZ1WZaLNqCz6/tsfi4a+JljzF+f39vSMdrxvR0fHzfeywcfjXwU8aO6DO9bapjIYstjsRgURUEkEjHGQRavF1u/kiEoa31frWVVur/VHJdKl1Vz/EptPxQKQVXVosNX7vbz2c2xFBbCnQAAGkpJREFU2e1wo8lkEh999FHFU2wWUyoGTdPQ1dWFYDBomcnLzu+zJEmW56qq4rHHHoMsy0gkEujo6Kho2/ze2vO9nZiYwNbWFl566aWq3udEo6OjeOmll/Cd73zH7lDayttvv41XX3212HfzTMOv/M3VcaLKU9yry39fsXLElVL+/cydtl8qplr2JX9ZsfYMYr1K7vlWGm/+smqPX7Eyl5aWLGWY1fL51PPY1PqZ6bqup9Ppiu7p76RcDLv9PHS9vt/nYnGK++GiHUCxbfN72xrfW1b7Vw5gtX8tbKn2T6fTOlD+flk1f/Q+n8+4B5nJZBr2B1nNj5m5ellUEZrvRdb7R3S3z8U9THOMu9lesWW7OTa1fmbb29sFVcGioVq1SsVQSUOyZn+fSx0r8Rnkv87vben32PG9ZfKvHJN/bRqe/MVZs/gjKXVvTqyXyWSMhjvms23z2bd4r7nngHj4fD6jYZN5YBZRjvijLXYmX465LPHDXKws0cDKfH91dXXV8gNeasCYYtsotg/FlpU7fvnr5z8XySv/MxHr1fL5lDr21Rybcse50s8s//shHuYW/5W09i8Wl67fb2QmrqTNDers/D7vNIhPsSt/fm9b53ur60z+1WDyr03Dk7+uP2hlLX7Mip2li9qAYDBoNKLy+XxGdV3+64JYV7yW36LZ/Ci1rBLVlLW9vW1cxQH3azjMCcP8nmINhnbaRrFl5Y5fseSXH0O512v5fOpxbHb7mYmGWsUe5u/JTsl/p2O3tLRUUOVs1/e51OeXz/y9M2+b31v7v7e6zuRfDYDJvxblkn9dGvwRUevJ5XJ1nwmM6mdiYgIAsLy8bHMkrU+SJCwvL2N8fNzuUNpKmXx+pmWG9yWi+mLiJ6JSmPyJiGjPEsPOt6NoNIpcLteQsh2R/MtN19oO0546ET8zosZq9FTHrTCVsqZpmJubs8wBIuZnqHUOGKDyacRVVbX8Xvn9/pJlqqqKWCxmxAYAJ0+exOTkZE0x7sQRyV/X9Yoe1Dr4mRE11vr6eluXv5NcLgev14upqSkcOXIEwP3BoDo7O7G2tgZd1zEwMACv1wtVVasqV1VVXLp0CdlsFgMDAxgaGiqY+AsA7ty5Y3k+PDxctMxoNIpQKITu7m689tprxm+b2+3G7OwsvF5v3WsAHJH8iYjogUZPddwKUynH43G43W709/cby2ZmZixX0WNjY1AUpaoZP6uZRry7u9tysVJsFlK/349sNotEIgFZltHb22t5vb+/Hz09PYjH4xXHWAkmfyKiNrLT1MPFbovlLys11bGYzhmAMU2y3+/H5ubmrssH6jO1diU0TUMgEMCJEycsy5eWlrCyslKwfk9PT8VlVzqN+NbWFjweD0KhEDY2Noq+RxyLcDhctoHuyMgIAoFAXav/mfyJiNrI5OQkPvroI+i6ju3tbSiKYqkW3t7eLnhPJpOxPDfPTyGuSru6uuDxeKAoCjY2NjA9PY1sNgsA6OvrM04Aai2/mW7fvg0AOHz4sGX59PS0ZW4IsU/5ibsa4rjnV+mLWwkLCwt44okn4PF4LMlbVVUsLCxgeHjYONHyeDxF2w+I/RD7VQ9M/kREbSKVSkFRFDz77LMAgM7OTszOzkJRFFy7ds1Yli+/KrkYc4IWVeUul8tIjOJKvtbygfsnBeYTg0YR99p3iiuRSCCdTsPtdte8rXfeeQeyLOPpp5+2LJdlGdlsFul0GsFgEIqi4OrVq8br169fN2IUJ1o9PT0YGhoqqCkQtQLmGpjdYvInImoTV65cAWBNwEePHgWAotXZ9SASYyAQaEj5jbCwsLDjOqlUCqdOndpV4geACxcuYHZ2tmi1vcvlgtvtRjgcxtLSkqVRoDieYvvmE63XX3+9oBzze+qByZ+IqE0sLi4WLBOJoVhrcyrtwIEDu078yWQSsixbGhWWMjo6uuNnJOIp9jnXG5M/EVGbEI3NijX82s1960o0uvxmSiaTFSXsclRVxbvvvovp6emK1jdf2QMPjmexLnylGhXWE5M/EVGbEGPbv//++8YykTxGRkYask1xn7lUH/VWFIlEABRPrACM7nm10jQN169ft7RfUFW17CA+uVzO8hmJ/3/wwQeWdQCUnMMgGAzuJmwLJn8iojbxzDPPQJZlnD9/3rj6v3btGnw+HwYHB431xFWlSNzmBmQiQZlrEfKHv00mkwDuJyPR/9x8NVpr+c3q6icG9SmV/EvFEY1GIUlS2UF/NE2D1+tFIBCwdHF87LHHjBOkZDJpabW/tbWF9fV1y2c0ODiIYDCIUChkfJaXL1+GLMsFJydbW1sAgGPHjlWy+xVh8iciahMulwvxeByyLKOrq8voP//KK69Y1jt37hxkWUZfXx8URUF/fz9kWcbq6irm5+cBPOiOd/HiRUxOTlref/ToUXg8HnR0dKC3txeJRKKu5Tfa8ePHAQB3796t6n3ZbBY+n6/sCcrc3FzJe/d9fX0AgIMHD2JoaAiSJCEUCuHDDz8sWpUfDocLPsv8Y23eD7Ff9cApfYmIbNCKU/qKBNRqv/+1TOkrahvOnj1b9fY8Ho9lPAC7hUIhdHR0VL0vnNKXiIgcxev14ubNmyVH1ytlY2MDs7OzDYqqeqqqQlVVeL3eupbL5E9ERJYeBI2YRa7ZxC2S8+fPVzxxTyqVwqFDh3bdE6BeNjc3sbi4iHg8Xnb431ow+RMREbq6uor+v511dnYikUgYo+ntZHBw0Ggs2AoURcH8/HzRURV366G6l0hERG2n1e7z14vL5arpvn8raGTcvPInIiJyGCZ/IiIih2HyJyIichgmfyIiIocp2eBPTB1JRET1J4Zs5W9tZW7fvo39+/fbHUZbKffdKhjh786dO3UdQpCIiIjs8fDDD+Pjjz/OX3ymIPkT0d7HYbyJHI3D+xIRETkNkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5zEN2B0BEjXf58mX85je/MZ6n02kAwM9+9jPLet/73vfw9a9/vamxEVHzSbqu63YHQUSNJUkSAOCRRx4puc7HH3+Mn/70pwUnBES055xhtT+RA5w5cwYPP/wwPv7445IPABgeHrY5UiJqBiZ/IgcYGxvDJ598Unad7u5uPPXUU02KiIjsxORP5ADf/va38cUvfrHk6w8//DAmJibwmc/wJ4HICfiXTuQAkiThhRdewP79+4u+/sknn+D06dNNjoqI7MLkT+QQ4+PjuHfvXtHXvvKVr+Dxxx9vckREZBcmfyKH+MY3voGvfe1rBcv379+PH/7wh80PiIhsw+RP5CBTU1MFVf/37t1jlT+RwzD5EznI6dOn8ec//9l4LkkSvvnNbxatESCivYvJn8hBvvrVr+Jb3/qWMejPvn37MDU1ZXNURNRsTP5EDjM5OYl9+/YBAD799FOMjY3ZHBERNRuTP5HDPP/88/jLX/4CAHjqqafK9v8nor2JyZ/IYbq7u41ufRMTEzZHQ0R24MQ+Le6RRx7ZcVhWIqJW8i//8i9YWFiwOwwq7Qyn9G1xn3zyCZ577jmMj4/bHQrtAaOjo3jppZfw5JNP4o9//CNcLpfdIbWkt99+G6+++iouX75sdyhtZ2JiwjJ9NLUmJv82MDIygpGREbvDoD3i+PHjGB0dtTuMliZGQuTfXfXefPNNu0OgCvCePxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5E1HVQqEQQqGQ3WG0LE3TEI1G7Q6jJtFoFLlczu4wqMGY/Imo7eRyOWNyolajaRrm5uYgy7KxLJlMwuPxQJIk+P1+aJpWdblbW1vw+/1GGalUquh6qqpCkiTj4ff7S5apqipisZgRGwCcPHkSk5OTNcVI7YPJn4iqFg6HEQ6Hbdv++vq6bdsuJ5fLwev1YmpqCkeOHAEAxGIxdHZ2Ym1tDbquY2BgAF6vF6qqVlWuqqq4dOkSstksBgYGMDT0/9u7l9c2rjYM4M/A1026kMhCSitwN6HGUFBpIVE3LbEDJYaZbiLj2IhuJCPTFgLRJkLCGBu3CxlCXYiRtCmDbFFvWg1JNq7BXhQ5kCItuogpodIiYG06on/AfItwJjO62JIsWbfnByKai+YcjUXemTPnnHcGmqbV7fv8+XPb8uzsbMNjbm5uIh6P49q1a/jpp58gJnv1er2IRqMIBoNsARhhDP5ENFSq1SpSqVS/q9FQOp2G1+uFz+cz1y0tLdnuoufn56FpWluPTY6OjsyWBIfDYWZiVBSlbt9r167BMAzzZW2BEJaXl6HrOlRVhSzLmJiYsG33+XzweDxIp9Mt15GGC4M/EbWlUqmYzdiNljVNgyRJUBQF5XLZ3EfTNHOfVCplNkmfnJyYx7Y2Vzdbl0gkzDte6/p+90OoVCqIRCK4deuWbX0ymcTOzk7d/h6Pp+VjNwrgABAOh23L5XIZiqIgHo8jn883/Iw4R2tra2dO7+z3+xGJRNj8P6IY/ImoLcFgEPfu3TMDsHU5n89DlmWUSiVomobvv/8eAOB2u6EoirlPKBSCrusAgMnJSfMC4PT0tK68UqlkW7Y+bhB3t4Pg+PgYAHD9+nXb+lAohFwuZy6L71obuNshmuNrm/TFo4T19XV89tlnUBTFFryLxSLW19cxOztrXoApitKw/4D4HuJ70Whh8CeitlgDWe2yaO4Wzcjb29sAYAvQYh+Hw2EGQHEh4XK56sqrbZJupt/9EMSz9vPqq6oqCoUCvF5vx2W9ePECsizj888/t62XZRm6rqNQKCAWi0HTNPz222/m9v39fbOO4gLM4/FgZmamrqVAtApYW2ZodDD4E1HfiAAYiUT6XJOLayWF7cHBAe7evXuhwA8Ajx49QjQabdhs73A44PV6sba2hmQyaesUKM6zKN96Afbzzz/XHcf6GRotDP5ERJfkypUrFw782WwWsizbOhU2Mzc313BEgJWoj2ilofHA4E9EfXeR59/DIpvNthSwz1IsFvHXX38hFAq1tL/1zh54e54bDeFr1qmQRhODPxH1jXie3Gws+jBJJBIAGgdWAObwvE5VKhXs7+/b+jUUi8UzJ/GpVqvw+/3msnj/zz//2PYBgIWFhYbHiMViF6k2DSgGfyJqi7X3eKVSsS2LQGINgLVDxbLZrLmPGGduvesUd6fiwsDaEU0EOrG/dRrdfg/1E5P6NAv+zeq3ubkJSZLOnPSnUqkgGAwiEonYhj5+/PHH5oVTNpu19dovl8s4OjrC9PS0uW56ehqxWAzxeNz8u/zyyy+QZbnu4kQM07xx40YrX5+GDIM/EbXF7Xbb3luXnU6n7d/a/QFgamoKiqLA6XRiYmICqqratj98+BCyLGNychKapsHn80GWZezu7mJ1dRXA2+F+W1tbCAQC3f2CHbp58yYA4PXr1219Ttd1hMPhMy9cVlZWmj67n5ycBAC8++67mJmZgSRJiMfj+Pfffxs25a+trUGWZbjdbnOOhNq/gfV7iO9Fo0UyBmWQLDUkSRIymUzTJjmidvTz9yQCzTD8l7Ozs4PFxcW26ypaIR48eNB2mYqi1A2j7Kd4PA6n09n2d1lcXAQAZDKZXlSLuuNb3vkTEXVJMBjE4eFh09n1msnn84hGoz2qVfuKxSKKxSKCwWC/q0I9wuA/BmqnXyW6bLX9BEaVw+FAOp3GxsZGy4l7Dg4OcPXq1QuPBOiWk5MTbG9vI51Onzn9Lw03Bv8xsLKyYpuOddhUq1Xk83kz9WgzYu54MY1su6wdqWpfm5ub0DSNWc46VNtPYJS5XC6oqmrOpnee6elps7PgINA0Daurqw1nW6TRweA/Bh4/ftzvKlxIIpHAkydPsLS01DSoZ7NZpFIpqKoKVVXx9OnTtjO/GYZhm1te13Vz7vjbt28jlUoxz3mHrFnmhuGZ/0U5HI6OnvsPggcPHjDwjwEGfxp4583ZXi6Xce/ePXO6UzGxydLSUls50wH73PLWJk+v12umN2WecyIadgz+I6harSKbzZoZu5ol5hBjpGsze7WSolUQn0+lUqhUKrZUrGeV0U1//PEHAOD9998317333nsA3iZbAS4+DtzlcuH+/fvQNA1HR0e2baNyLoloPDD4j6BAIIDDw0Pouo5cLoc///yzbh8xaYjH44FhGLh//z5mZmbMHr7npWgF3gQrv98PwzAwNzeHra2tlsvopsPDQwD2bGriDr7b/Rw+/fRTAMDTp0/NdaN0LoloTBg00AAYmUym5f1zuZwBwHj58qW5Ttd1A4Bh/XPv7u4atX9+AEYsFjPfN9puXQfAOD09NZdPT0/bKqNdjerUyfpOy2m2fZjOZbu/p3GVyWQ6+u2QYSwsLBgLCwv9rgad7Zv/9fbSgi6buCO19h5uNFxnZ2cHAOqaltfX11vOiR4Oh+F2u7G7u4s7d+7A5XLZOnN1o4xhMGzn8vj4GO+8805bnxk3x8fHAIC9vb0+12T4lMtlWyscDah+X37Q2dDmnRpavAtutt9Z22vXvXz50pBl2VyfSCRaqkunmh1P1KHR/uFwuGvlGMbbVhTrHfcwnUtxHL746uWLd/4D7xs+8x9zzToDtuLDDz9ELpdDoVBAOBxGJBIxpzftVhmtsCZ5EURnuk8++aSrZb148QIAcOvWrbptw3IuM5lM3dA7vuwvMTVtv+sxjC9ORT4cGPxHTDKZBIBzO4KJ/VRVNYetWTOktUKSJFSrVXi9Xjx+/BiFQgGRSKSrZbTiyy+/BAC8evXKXCeSkoht3VCpVPDo0SPIsmzLlDZK55KIxoRBAw1or9m/VCoZAAxZlo1SqWQYhmH8/vvvZnOcaAYXHcpqX6VSybZN13XDMOydBkXHNOBN87cop1Qq2ZqrzyqjXdbyRZ2sksmkEQ6HDV3XDV3XjXA4bCSTSds+sVjs3A5yzcopFAqGLMuGLMu2jnnnfc9BO5ft/p7GFTv8dY4d/oYCm/1HzcTEBEqlEjweDz744AMsLy/jo48+qkuJ6nK5UCqVEIvFALzpcFYqlTAxMdFWitbvvvsOe3t7kCQJe3t7tlnNziqjHZIk2cp3Op11Hd9CoRBmZ2fhdDoRCATg9/sRCoW6Uo4kSdjf30c0GkUul6ub/WyYziUREcCUvgOPKX2pm/h7ak2nKX2JKX2HBFP6EhERjRsGfyIiojHD4E99cVb6XOuLaFT1Y7TG5uYmk1IRAAZ/6hOjxTHDNDqq1WpPL+h6ffxuqlQqWFlZMeeoAGAmgJIkCcvLyx2ljq5Wq8jn80ilUmYyKavbt28zLTUBYPAnoktSmwlx2I7fLdVqFcFgEF9//bU5DXcqlYLL5UIul4NhGPjiiy8QDAbbTtyUSCTw5MkTLC0tNUxq5fV6EY1GmZaaGPyJqPeq1SpSqdTQHr+b0uk0vF4vfD6fuW5pacl2Nz4/Pw9N09pOQb22tnZurgefzwePx4N0Ot1exWmkMPgT0Zmq1Sqy2azZDyOVStkCVaM+GrXrEomEeScq1lcqFWiaZjZPp1Ips8nbOo1xp8cHgHg83nYA7aVKpYJIJFI3PXQymTSTN1l5PJ6e1MPv9yMSibD5f4wx+BPRmQKBAP777z8YhoHT01NommZrNj49Pa37TKlUsi1b70ZFfw632w1FUaBpGvL5PEKhEHRdBwBMTk6aFwCdHn8QiWyB169ft60PhULI5XLmsvju4XC4J/UQ5Yv60Phh8Ceipg4ODqBpGr766isAb2YajEaj0DQNz549M9fVamXmQWuAFk3gDofDDHjiTr7T4wOtNYNfpufPnwM4v/6qqqJQKMDr9fakHiLNd6+TbtHgYvAnoqZEPntrAJ6amgKAhs3U3SACnjWx0ahYX18/d5+DgwPcvXu3Z4EfeBv8R/EcU2sY/Imoqe3t7bp1InA06k1OF3flypWeBn4igMGfiM4gxqE36hjWq+fRl3X8QZTNZm2jAIh6hcGfiJoSCYBevXplrhMd/fx+f0/KFM+hZ2dne3L8fkokEgDQdIz9/Pz8ZVbHzBJJ44fBn4iaunPnDmRZxsbGhnn3/+zZM4TDYUxPT5v7ibt0Ebjz+by5bXl5GYC9FaF2WttsNgvgTVBUVRWyLNtmv+v0+IM21E9M6tMs+Der7+bmJiRJamnSH+uxm5VTLpcBADdu3Dj3eDSaGPyJqCmHw4F0Og1ZluF2u83x8z/88INtv4cPH0KWZUxOTkLTNPh8PsiyjN3dXayurgJ4Oxxva2sLgUDA9vmpqSkoigKn04mJiQmoqtrV4w+KmzdvAgBev37d1ud0XUc4HD73QkaSJDidTnPZ6XQ2nPJYlC/qQ+NHMgZ1QCwBYP516q5B+z2JwDRo/w3t7OxgcXGxJ/USrRIPHjxo+7OKotjmA+hUPB6H0+nsqA7nWVxcBABkMpmuH5u65lve+RMRXaJgMIjDw0Pbo4tW5PN5RKPRC5dfLBZRLBYRDAYvfCwaXgz+RNQX1hEE4zTNrHiUsrGx0XLinoODA1y9evXCIwFOTk6wvb2NdDptDtmk8cTgT0R94Xa7G74fBy6XC6qqYn9/v6X9p6enzc6CF6FpGlZXVxvOmkjj5X/9rgARjadBe85/2RwOR0+euZ/lssujwcU7fyIiojHD4E9ERDRmGPyJiIjGDIM/ERHRmGGHvyGwuLiIX3/9td/VoBHx448/8vd0DjH97dzcXJ9rMnz29vYGZhIpao4z/A24aDSKv//+u9/VICJqWSAQsOVmoIHzLYM/ERHReOH0vkREROOGwZ+IiGjMMPgTERGNGQZ/IiKiMfN/q4gq1xlHeAYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# example of plotting a model\n", + "plot_model(model, 'model.png', show_shapes=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3gc5bn38e+t3iVbbrLlRjMBY4xtiOkmEGKaqYceCCEQQhLCSULgpJKTcAJpLxDaIUAooYSSxIQWysEGAgRssI0pphhjy1W2rN6l5/3jGdlrWSuvJc2upP19rmuunZ2Znbk1Xs+987Qx5xwiIpK8UhIdgIiIJJYSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQKRTszsUDNblug4ROJFiUD6FTNbYWZHJTIG59zLzrlJYe3fzL5kZi+ZWY2ZlZvZfDObE9bxRHZEiUCSjpmlJvDYpwGPAPcCpcBI4KfACT3Yl5mZ/g9Lr+lLJAOCmaWY2VVm9omZbTKzh81saMT6R8xsnZlVBb+2945Yd7eZ3WpmT5lZHXBEcOfxfTNbEnzmL2aWFWw/y8zKIj4fddtg/Q/MbK2ZrTGzr5mZM7PduvgbDPg98Avn3B3OuSrnXLtzbr5z7qJgm6vN7M8Rn5kQ7C8teD/PzK4xs38B9cAPzWxBp+P8p5k9HsxnmtlvzWylma03s9vMLDtYN8zMnjCzSjOrMLOXlViSk/7RZaC4DDgJOBwYDWwGbo5Y/zSwOzACeAu4v9PnzwauAfKBV4JlpwOzgYnAFOAr3Ry/y23NbDbwXeAoYLcgvmgmAWOBR7vZJhZfBi7G/y1/ACaZ2e4R688GHgjmrwP2AKYG8Y3B34EAfA8oA4bj70x+CGjMmSSkRCADxdeBHznnypxzTcDVwGkdv5Sdc3c552oi1u1rZoURn5/rnPtX8Au8MVh2o3NujXOuAvgH/mIZTbRtTwf+5Jx71zlXD/y8m30UB69rY/6ru3Z3cLxW51wVMBc4CyBICHsCjwd3IBcB/+mcq3DO1QD/A5wZ7KcFKAHGO+dagroRJYIkpEQgA8V44G9BMUYl8D7QBow0s1QzuzYoNqoGVgSfGRbx+VVd7HNdxHw9kNfN8aNtO7rTvrs6TodNwWtJN9vEovMxHiBIBPi7gb8HSWk4kAMsjDhvzwTLAX4DfAw8a2bLzeyqXsYlA5QSgQwUq4BjnHNFEVOWc241/uJ3Ir54phCYEHzGIj4f1i/dtfhK3w5ju9l2Gf7vOLWbberwF+8Oo7rYpvPf8iwwzMym4hNCR7HQRqAB2DvinBU65/IAgjuo7znndsFXVn/XzI7sJjYZpJQIpD9KN7OsiCkNuA24xszGA5jZcDM7Mdg+H2jC/+LOwRd/xMvDwAVm9jkzy2Fr+ft2gmKX7wI/MbMLzKwgqAQ/xMxuDzZbBBxmZuOCoq3/2lEAzrlWfL3Db4ChwHPB8nbgj8D/M7MRAGY2xsy+FMwfb2a7BUVI1fg7rLaenAQZ2JQIpD96Cv9LtmO6GrgBeBxfjFEDvA58Ptj+XuAzYDXwXrAuLpxzTwM3Ai/ii1leC1Y1Rdn+UeAM4KvAGmA98Et8OT/OueeAvwBLgIXAEzGG8gD+juiRIDF0uDKI6/Wg2Ox5fKU1+Mr154HaIO5bnHPzYjyeDCKmuiGRvmNmnwOWApmdLsgi/ZbuCER6ycxONrMMMxuCb675DyUBGUiUCER67+tAOfAJvoz9G4kNR2TnqGhIRCTJ6Y5ARCTJpSU6gJ01bNgwN2HChESHISIyoCxcuHCjc254V+sGXCKYMGECCxYs2PGGIiKyhZl9Fm2dioZERJKcEoGISJJTIhARSXIDro5ARKQnWlpaKCsro7GxcccbD2BZWVmUlpaSnp4e82eUCEQkKZSVlZGfn8+ECRPw4+wNPs45Nm3aRFlZGRMnToz5cyoaEpGk0NjYSHFx8aBNAgBmRnFx8U7f9SgRiEjSGMxJoENP/kYVDXWlvR0aKqCu3E+1G6BuI7Q1weTToHBMoiPsmbZWSNU/uYhsK3muCq3NULt+68U98gJfVw51wXztBqjfBC7K8zle+AVMPQsOvhyKd43v39BTlSvhxV/BkocgPRcKRvtkVjAGCkv9+8j5zPxERywy6FRWVvLAAw9w6aWX7tTnjj32WB544AGKiopCiiyZEsF7c+GvX9t+eXou5A2H3OFQNB7GTPfzeSMgdxjkjvDvc4dDUzW8dhO8dR+8/WfY+xQ49Lswcu/4/z2xqC2Hl38HC+4EDKZfAKnpUL0aqlbD+nd94uv85MPMwq2JomB0kCDGwJDxMO5ASElNxF8jMqBVVlZyyy23bJcI2traSE2N/n/qqaeeCju0JEoEY/eHE24MLvDBhT13GGTkxr6P3GI47ndw2A98QlhwFyx9FCYdC4d+D0pnhBf/zmishtdu9jG21MN+58LhV3VdpNXaDDVrtyaH6tUR82WwdpG/Y+pQvJv/W/c5XcVMIjvhqquu4pNPPmHq1Kmkp6eTl5dHSUkJixYt4r333uOkk05i1apVNDY28p3vfIeLL74Y2DqsTm1tLccccwyHHHIIr776KmPGjGHu3LlkZ2f3OrYBNwz1jBkzXL8Za6i+At74I/z7VmjYDBMP9xfJiYdBIiqlWpvgzTvh5d/64q29ToQjfgzD9+jdflsaoWYNrH4LXrke1r8DQybAId+Ffc+CtIw+CV8kTO+//z6f+9znAPj5P97lvTXVfbr/vUYX8LMTopcOrFixguOPP56lS5cyb948jjvuOJYuXbqlmWdFRQVDhw6loaGB/fffn/nz51NcXLxNIthtt91YsGABU6dO5fTTT2fOnDmce+653f6tHcxsoXOuy1+rajXUGzlDYdaVcPlSOPqXUP4B3DsH7jgKPnjKVzrHQ3sbLHoA/jAd/vlfMGofuOj/4PR7e58EANKzYOgusM9pcMnLcOaDkD0E/nEZ/GEavHmHT0IiErMDDjhgm7b+N954I/vuuy8zZ85k1apVfPTRR9t9ZuLEiUydOhWA6dOns2LFij6JRff2fSEzDw76Nux/ESy6H/51PTx0FozY29ch7H1yOOXqzsGyp+CF//ZJaPR+MOcPsOsRfX+sDmaw57Ew6Rj4+HmYfx08+T146Xdw8Hdg+vmQ3vtbVZEwdffLPV5yc7cWS8+bN4/nn3+e1157jZycHGbNmtVlX4DMzMwt86mpqTQ0NPRJLLoj6EvpWbD/hfDtt+Hk233Lo8cuhJtmwMJ7+vZX84pX4M4vwkNn+zuC0++Fi14MNwlEMoPdvwgXPgdf/jsMnQjPXAnXT4FX/wDNdfGJQ2SAyM/Pp6ampst1VVVVDBkyhJycHD744ANef/31uMamO4IwpKbBvmfAPv8By56El37ri1Fe+G/f5DRnmK94zhnmK6y7ep+e1fW+1y72+/n4ecgf7e8A9j07cRW3Zj757HqET07zfw3P/hhe+X/BXdLX1BxVBCguLubggw9m8uTJZGdnM3LkyC3rZs+ezW233caUKVOYNGkSM2fOjGtsqiyOB+dg+Yuw+CGoWecrcus2Qv1GaG/t+jMZeZBTHJEohkFjFXzwBGQV+UrpAy7qn8UwK/8NL/3aJ6vsITDzUjjgYsgOrx20yI50VYE6WO1sZbHuCOLBDHb9gp8iOecv7h2Joa7cJ4e6jdsmi5q1sH6pL1o69Pv+l3Z/vqiO+zyc+xisXgjzfwMvXgOv3gSf/zoceKlPDiLSbygRJJKZv6BnFw2cXso7Y8x0OPshX5z10m/8XcK//xcO/CbM/AZkFSQ6QhFBlcUSDyX7whl/hkv+BRMPhXn/AzdMgZd/r0plkX5AiUDiZ9RkOPN+uHgelO4PL/w8aGV0E7T0TTM4Edl5SgQSf6P3g3Me8U1PR02GZ38EN0yFf98+eDumOQer3vC9tEX6GSUCSZyxB8B5c+ErT/k6kqevgBunwYI/QVtLoqPrW6/e6Pt93DsH6jYlOhqRbSgRSOJNOBi+8qTvmFZQAk9c7ofLePt+/wyFge7dv8NzP/Ujt65d7BNCxfJERyX9XF5eXtyOpUQg/UNHx7QLn4OzH/FNTOdeCrd8HpY84ntPD0Sr3oS/fR3Gft4nuvMe9wMU3vFFKBtg/WFk0FIikP7FDPY42lcon3E/pGb650jcepD/ZT2QOkBWfAoPngn5JX6gvvQs38fiwuf8+FR3Hw8fPJnoKCVOrrzySm655ZYt76+++mp+/vOfc+SRRzJt2jT22Wcf5s6dm5DY1LNY+rf2dnjv7zDvWti4zPdNOPoaGH9goiPrXn0F3Hm07xB44fMwbLdt19eW+ySxeiEcc53vbCeh2qa37dNXwbp3+vYAo/aBY66Nuvrtt9/m8ssvZ/78+QDstddePPPMMxQVFVFQUMDGjRuZOXMmH330EWZGXl4etbW1PQpFw1DL4JKSApNPgUtfgxNvgeq18KfZ8JdzYdMniY6ua61N8JcvQ+VncOYD2ycB8E/FO/8f/qFGT/8A/vmj+A1bLgmx3377sWHDBtasWcPixYsZMmQIJSUl/PCHP2TKlCkcddRRrF69mvXr18c9NvUsloEhJRX2O8cP6f3azX5Qu2XP+EHtDv+BfzZEf+AcPH4ZfPYKnHonjD8o+rYZOXDGffDMf/mnyVWt8qPWRhtwsKfaWv1d1cK7obkWUtL9I0tT0oLXdD9o4Zblnd8H22XkwrTz/bhXA103v9zDdNppp/Hoo4+ybt06zjzzTO6//37Ky8tZuHAh6enpTJgwocvhp8OmRCADS0YOHH4FTDvP91B+439h8QNw2BV+YLu0zB3vI0zzroUlD8EXfuwf5LMjKam+aKhonO9PUbMeznqwbxJbS4N/tvarf/B3J8W7++HC25p9cmhthKYaaG/x79tbfLPd9tbgtdNy1wYfv+DvZPTc6h4588wzueiii9i4cSPz58/n4YcfZsSIEaSnp/Piiy/y2WefJSQuJQIZmPJHwgk3wAFf900zn/2xf1LaUVfDXicl5lGhix6E+df6Z0Qf+v3YP2cGB30LCkvhrxf7J9yd+6h/KlxPNGz25+L123wdRen+MPta2GO2L2rrqcUP+RZQL//O34XJTtt7772pqalhzJgxlJSUcM4553DCCScwY8YMpk6dyp577pmQuFRZLIPDJ/8Hz/7Ej9JaegB86RrfYS1ePn0Z7jvZFwWd+5gvSumJla/7SmRLhbP/AqVd1u11rXotvH6z75DXXAu7Hw0HX+5j6qvE+NhFsPRRuOBpGBffMfN7S8NQJ6Cy2MzuMrMNZrY0yvoTzWyJmS0yswVmdkhYsUgS2PUL8PWXYM5NULnSd9p6+HzfhDNs5cvgL+f43tGn39vzJAD+4nrh8zvXvHTjRzD3W34gv9du9o8RveQVP4zHhIP79u7ouN/5YqzHvgYNlX23X0moMFsN3Q3M7mb9C8C+zrmpwFeBO0KMRZJBSipM+zJ8eyHM+i/46Fm4+QDfIqdhczjHrC2H+//D93c455G+eU7EsN18Mhi5Fzx0jh+DqSurF/rWSTftD+884ityL3sbTr3DN2UMQ1YBnHqXf0bGP74zsPp1SFShJQLn3EtARTfra93WcqlcQN8o6RuZeTDrKvj2WzDlDP8r+Yap8NotvnK0rzTX+2Kc2g3+uQtF4/pu33nD4fwngualV2xtXuqcLwa75wT44xfg0/n+aXWXL4XjfgtDJvRdDNGUTocjfuRbIr19X/jH60MDrSi8J3ryN4ZaR2BmE4AnnHOTo6w/GfgVMAI4zjn3WpTtLgYuBhg3btz0RNWsywC1bqmvTF7+IqRlwR5fgsmn+jL0nj7qs70dHjkP3n/CD62953F9G/OW47TBM1fBG7f7eGvX+/GK8kv8I0CnfyUxD/hpb4f7ToKyN+Hi+TB8j/jHsJM+/fRT8vPzKS4uxhLRmCAOnHNs2rSJmpoaJk6cuM267uoIEpoIIrY7DPipc+6oHe1TlcXSY6ve8EUo7/7NPxY0I89fwCefCrscAWkZse/rnz/ybf+/9Cv/+M0wOefvap79ERTvBgd/x9/pJLqpbPVaP/RH4Rj42gvhxtPSCP+6AZprIHe4nzqe5Z073L/uIKm3tLRQVlaWkHb68ZSVlUVpaSnp6dvWVfX7RBBs+ymwv3NuY3fbKRFIr7W1+g5fS/8K782FxkrIKoK95vikMOHQ7tvJv3kHPPk932/hmF/Hr6lq9RrIG9m/2vAvewYePMPfncz+VTjHqK/wdSUrX/V1MW1RnlmRkReRGIZDTvHW+Y7l4w7s+w578fLhs75BQg8fa9svH15vZrsBnzjnnJlNAzIADdQu4UtNg11m+enY38LyebD0MZ8Y3roXckfA3if5pFB6wLZt7z98Fp66wrfJn31tfPsrFIyO37FiNWm278vx+i3+rmqPo/t2/5Wr4M+nwuZP4bS7YO9TfNPYunKo2xhM5Vvf1wfvK1f6yvS6jb4jXIfhe4ZbmR6G8g/hnz+Ej5+DGRfC8b/v80OEdkdgZg8Cs4BhwHrgZ0A6gHPuNjO7EjgPaAEagCucc6/saL+6I5DQtDTAR8/5pPDhM77nbUHp1qSQkgZ/OsZ39LrgaV8pLb7Y5o4joWYdfONfkD+qb/a77h3fIqu53tfDTDx05/fR3u7v+Oo2+j4mz1zlW5AddTV8/hu962AXtobNMO86ePOPkJ4Dh18Z9J7fiSLMCAkrGgqDEoHERVONL/ZY+hh8/LwfZsFSfSXt1573D9CRrTZ8ALfP8v0gzv1r7y+wy+fBQ+dCZr7voDdyr76I0ieEx78Ny57yfU9OurXvEldfaWuFt+6B//ulTwbTz4cjfuxbkvWCEoFIbzRs9q2Dls/zTTX76qI02Cz4k3+63Bf/21do99SSR+Dv34Bhu8M5j/rK6L7kHCz8EzzzQ1/BfOJN4bX62lnL5/tBCDe8C+MP8fUuJVP6ZNdKBCISPufg4S/Dsqfhwmf9syN29vOv3ujHjhp/iC8O6osOetGUfwiPXQjrlsD0C/ywJBm54R2vOxWf+ibOHzzh+6Mc/Uv43Jw+rYPS8whEJHxmcMKNkDcKHr1w5zrvtbfB01f6JLD3KfDlv4abBMD3ffjaC/7uZeHd8L+Hw5pF4R6zs6YaeP5q3wP+kxfhCz+Bb74Je50Y14YISgQi0ndyhsKpf/TDXj91RWyfaWmER77ihxQ/8Fv+OQ7x6iORluGLss6bC811fuTXV64P/yFB7e3w9v3wh+n+2RqTT/VDoxz2/YQ0b1UiEJG+Nf4gOOwHsPhBWPJw99vWV/geyu//w3fO+9I1iWnJs8vhvsXTpGPg+Z/BfSdC1epwjrXydbjjCzD3Ul8M9LUX4OTbEtoAQYlARPreYVfA2JnwxHejjwBbuRLumu3b+592V/g9tHckZ6gfPXbOTVC20Peafq+PHibvHGxe4YvM7vqSb2p7yh/hq8/u3FDjIVFlsYiEo3Il3HqIH031q//cdnjude/An0/zfTfOegAm9LNR6Dd94ofaXvOWf9DQ7Ot23G/EOd+ZrWK5nzZ9snW+4lNoqvJjXR10GRxyedwrpvtlz2IRGeSKxsGcG3z5/4vX+E5csLWPQFYBfPWZ/tkct3hX3/Jp3q/g5d/DZ6/6Hsmjp/lf8xXLoSLyQh9c7Jtrt+7DUv05GLqLf0rc0F3gc8f37Si1fUSJQETCs/fJftjsV673Q3rUboC/XxpeH4G+lJoOR/4Udj0yeIToF30ldkv91m1S0vzQ30N3gfEH+9eOqWhc7x5SFEcqGhKRcDXX+V7HNeugqdoP6nfGn8NvHtqXGir9s5rb22DoRH+hL97VD0GSOjB+T6toSEQSJyPXNwm9K3gOxEm3Jn4I7Z2VXQRH/yLRUYRGiUBEwlcyBa74OHE9d6Vbaj4qIvGhJNBvKRGIiCQ5JQIRkSSnRCAikuSUCEREkpwSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSSnRCAikuSUCEREkpwSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSQXWiIws7vMbIOZLY2y/hwzWxJMr5rZvmHFIiIi0YV5R3A3MLub9Z8ChzvnpgC/AG4PMRYREYlih4nAzL5lZkN2dsfOuZeAim7Wv+qc2xy8fR0o3dljiIhI78VyRzAKeNPMHjaz2WZmIcRxIfB0tJVmdrGZLTCzBeXl5SEcXkQkee0wETjnfgzsDtwJfAX4yMz+x8x27YsAzOwIfCK4spsYbnfOzXDOzRg+fHhfHFZERAIx1RE45xywLphagSHAo2b2694c3MymAHcAJzrnNvVmXyIi0jNpO9rAzC4Dzgc24i/aVzjnWswsBfgI+EFPDmxm44C/Al92zn3Yk32IiEjv7TARAMOAU5xzn0UudM61m9nx0T5kZg8Cs4BhZlYG/AxIDz57G/BToBi4Jah2aHXOzejJHyEiIj1nvtRnBxuZTQMOARzwL+fcW2EHFs2MGTPcggULEnV4EZEBycwWRvuxHUvz0Z8A9+B/vQ8D/mRmP+7bEEVEJFFiKRo6G9jPOdcIYGbXAm8BvwwzMBERiY9YWg2tALIi3mcCn4QSjYiIxF0sdwRNwLtm9hy+juCLwCtmdiOAc+6yEOMTEZGQxZII/hZMHeaFE4qIiCTCDhOBc+4eM8sA9ggWLXPOtYQbloiIxEssHcpm4VsNrQAMGGtm5weDyomIyAAXS9HQ74CjnXPLAMxsD+BBYHqYgYmISHzE0moovSMJAATDQaSHF5KIiMRTLHcEC83sTuC+4P05wMLwQhIRkXiKJRFcAnwTuAxfR/AScEuYQYmISPx0mwiCEUYXOucmA7+PT0giIhJP3dYROOfagcXBkNEiIjIIxVI0VILvWfwGUNex0Dk3J7SoREQkbmJJBD8PPQoREUmYWBLBsc65bZ4nbGbXAfPDCUlEROIpln4EX+xi2TF9HYiIiCRG1DsCM/sGcCmwi5ktiViVD7wadmAiIhIf3RUNPQA8DfwKuCpieY1zriLUqEREJG6iJgLnXBVQBZxlZqnAyGD7PDPLc86tjFOMIiISolhGH/0WcDWwHmgPFjtgSnhhiYhIvMTSauhyYJJzblPYwYiISPzF0mpoFb6ISEREBqFY7giWA/PM7En884sBcM5p7CERkUEglkSwMpgygklERAaRWJ5ZvN0QE2YWSwIREZEBIGodgZm9EjF/X6fVb4QWkYiIxFV3lcW5EfOTO62zEGIREZEE6C4RuCjzXb0XEZEBqruy/iIzOxmfLIrM7JRguQGFoUcmIiJx0d0dwXxgDnB8MH9CMB2Pf25xt8zsLjPbYGZLo6zf08xeM7MmM/v+zocuIiJ9obuxhi7o5b7vBm4C7o2yvgK4DDipl8cREZFeiKVncY84517CX+yjrd/gnHsTaAkrBhER2bHQEoGIiAwMAyIRmNnFZrbAzBaUl5cnOhwRkUFlh4nAzP7DzPKD+R+b2V/NbFr4oW3lnLvdOTfDOTdj+PDh8Ty0iMigF8sdwU+cczVmdgjwJeAe4NZwwxIRkXiJZcygtuD1OOBW59xcM7t6Rx8ysweBWcAwMysDfgakAzjnbjOzUcACoABoN7PLgb2cc9U7/VeIiEiPxZIIVpvZ/wJHAdeZWSYx3Ek4587awfp1QGlMUYqISGhiKRo6HfgnMNs5VwkMBa4INSoREYmbWO4ISoAnnXNNZjYL/6ziaJ3ERERkgInljuAxoM3MdgPuBCYCD4QalYiIxE0siaDdOdcKnAJc75z7T/xdgoiIDAKxJIIWMzsLOA94IliWHl5IIiIST7EkgguAA4FrnHOfmtlE4M/hhiUiIvESSzPQ94DvA++Y2WSgzDl3beiRiYhIXOyw1VDQUugeYAX+oTRjzez8YHRREREZ4GJpPvo74Gjn3DIAM9sDeBCYHmZgIiISH7HUEaR3JAEA59yHqLJYRGTQiOWOYKGZ3QncF7w/B1gYXkgiIhJPsSSCS4Bv4h8rafjnFd8SZlAiIhI/3SYCM0sBFjrnJgO/j09IIiIST93WETjn2oHFZjYuTvGIiEicxTro3Ltm9gZQ17HQOTcntKhERCRuYkkEPw89ChERSZioiSAYbXSkc25+p+WHAavDDkxEROKjuzqC64GaLpbXB+tERGQQ6C4RTHDOLem80Dm3AJgQWkQiIhJX3SWCrG7WZfd1ICIikhjdJYI3zeyizgvN7ELUs1hEZNDortXQ5cDfzCxySIkZQAZwctiBiYhIfERNBM659cBBZnYEMDlY/KRz7v/iEpmIiMTFDvsROOdeBF6MQywiIpIAsQxDLSIig5gSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSQXWiIws7vMbIOZLY2y3szsRjP72MyWmNm0sGIREZHowrwjuBuY3c36Y4Ddg+li4NYQYxERkShCSwTOuZeAim42ORG413mvA0VmVhJWPCIi0rVE1hGMAVZFvC8Llm3HzC42swVmtqC8vDwuwYmIJItEJgLrYpnrakPn3O3OuRnOuRnDhw8POSwRkeSSyERQBoyNeF8KrElQLCIiSSuRieBx4Lyg9dBMoMo5tzaB8YiIJKUdDkPdU2b2IDALGGZmZcDPgHQA59xtwFPAscDHQD1wQVixiIhIdKElAufcWTtY74BvhnV8ERGJjXoWi4gkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSS7URGBms81smZl9bGZXdbF+iJn9zcyWmNkbZjY5zHhERGR7oSUCM0sFbgaOAfYCzjKzvTpt9kNgkXNuCnAecENY8YiISNfSQtz3AcDHzrnlAGb2EHAi8F7ENnsBvwJwzn1gZhPMbKRzbn2IccVVW7tjZUU9y9bVULa5nuH5mZQOyaZ0SA7D8zJJSbFEhygiSS7MRDAGWBXxvhpIsusAAA7OSURBVAz4fKdtFgOnAK+Y2QHAeKAU2CYRmNnFwMUA48aN61EwTa1ttLU7cjLC+ZOdc6yrbmTZuho+XF/DB8HrR+traWpt7/IzGakpjC7KonRIDmOKsn2CGJrNmKIcSodkM7Igi9RBlCha29pJS1W1lEh/E2Yi6OoK5jq9vxa4wcwWAe8AbwOt233IuduB2wFmzJjReR8xefGDDVzy57fISk+hODeT4rwMhuZmbJkvzg3e5/llQ3MzGJaXSXZG6nb72lzXzLL1NSxbV8Oy9TV8GLzWNG4NfWRBJnuMzOfLM8ezx6h8Jo3MZ+zQHDbVNlG2uYGyygbKNtdTtrmB1ZsbeOGDDWysbdrmOGkpRklRFqVBYhgzJJvRRdmMKfKvJYVZZKVvH18iVTW08NmmOlZsquezjf51ZYV/La9pYtzQHPYZU8jeYwrYZ0wh+4wppCgnI9FhiyS1MBNBGTA24n0psCZyA+dcNXABgJkZ8Gkw9bndRuRz5ew9qahrYlNtM5vqmtlY28SH62rYWNdMc5Rf7dnpqUFSyCArPZXlG+sor9l6wS7MTmfSyHxOnDqaSaMKmDQynz1G5kW9uA3NzWD3kfldrmtsaWN1ZcOW5LAlUVQ28NJH5WyoacJ1SoPD8jIoKcxmdFHWdkliTFE2w/q4+Mk5R0Vds7/Qb6rjs+C14/3m+pZtth9ZkMn44lyOmDScEflZLN9Yy5LVlTz5ztot25QOyWafMYVMDqZ9xhQyNFfJQSRezHW+svTVjs3SgA+BI4HVwJvA2c65dyO2KQLqnXPNZnYRcKhz7rzu9jtjxgy3YMGCPo3VOUddcxsVtc1srGuioraZirqt85vq/FTf1MrEYblMGpXPHiPzmTQqnxH5mfgcFr6m1jbWVzWxurKBNZUNrK1qYHVlI2uC92sqG6hrbtvmM+mptiVRjCzIIsWMtnZHm3O0tzvanaOtHdpdx7x/bW9nyzZtztHuoKmljdWbG6hp2nrnYwajC7OZMCyH8cW5TCjueM1l3NCcLu+oACrrm1m6upqla6p4Z3UVS1dX8dmm+i3rxxRlM3lMAZNHFzK51CeHYXmZ4ZxYkSRgZgudczO6XBdWIggOfCxwPZAK3OWcu8bMLgFwzt1mZgcC9wJt+ErkC51zm7vbZxiJYLBwzlHd0Mqaqq2JITJRbAjuZFJTDDNINQvmjdQU/96CZX7eb9uxTUaqMaYo21/ogwt/6ZBsMtP6pniqqqGFd9f4pPDO6mqWrq7i0411W9aPKsjaktBG5GcyIuJ1ZEEmI/KzGJKTHrfELDKQJCwRhEGJILnUNLbw7hqfFN5bW826qkY21DSxvrpxmzqZDhmpKQzPz2R4fuaW5DAiP9Mnj4JMxg7NYeyQHDLSVGktyaW7RBBmHYFIr+VnpTNzl2Jm7lK83bqG5jbKa5pYX9PIhuomNtQ0sj543VDdxKcb6/j3pxVUdqq3SDEYXZTti6+Kc2IuzoqFc47aplYfR3Uj64OY1lU1Ul7bRFNLO23t7bS2O1rbfFFcS3s7bcH71mBd5Pu2dkdLmy+yG5qbwciCLEoKsxhVkMWoyNfCLIbnZaplVhcaW9qorG8hPyuN3Exd9jrTGZEBKzsjlXHFOYwrzul2u8aWIGFUN7Kyon5LxfaKTfU8/c7aqBXcHQlifHEOE4pzGVOUTU1ja3Bxb9zm7mR9tU8+66obqe9UTwOQl5nG8PxMstJTSUsx0lLNv6akkJmeRmowH7kuNSWF9FRfNJceXNw31TWzvqqRt1ZuZn1VE81t2zZySDEYnp/JqMJsRhVkUlKYvTVxFGax56j8QdFKq7m1nYq6ZjYFjT8qgsYfFXXNQWOQJl+3F6yrjajXKspJZ3RhRwu8oJFFRIu8ZOzfo6IhSXpV9S18FjRxXRnRAqqjyWt3MtJSGFmQyaiCLF9Xke/rK0YWZAWTr8PIC+FXaEcLrnVBUtry2mk+snIfYOKwXPYtLWTfsUXsO7aIvUoK4tYMubWtnbqmNmqbW6lraqW2yb/6+bYty+qbW/12Tdtut7m+hY21TV0WC4Jvcu2bgWdSHNEcvDgvg6KcdKobWlldWc+aoO5sdWXDdvuKbGDRkRzGFGVTUpRNeorR0u5oaW2npa29y/nW9nZa2hzNnebb2h1DctIpCVr2jS7MoqQoO5TvRldURyDSQ3VNrays8ImhbHMDBdnpjCzwxTEjCzIpzO7/ldN1Ta2sq25k9eYGlq6pYvGqShatqmR9tU9y6anG50oK2LfUJ4apYwvZZVhej34VN7a0Uba5gVUV9ayMmFYFU+dWbdGkphi5GankZfqinNzMNPIy0yjKSWdYXuY2fX46+gEV52ZSkJ220/8e1Y0t2zSuWL25YZuWeOuqG2nv4WXS380Z6SkppKYa1Q0t2+2rICvNJ4Yin3xKCoPEU+gT0ajCrC13hL2hRCAi21lX1ciiVZUsLqtk8apKlpRVbSlCyc9MY8rYwi3JYb+xRYwoyMI5x6a6Zj7bVN/lxX5ddeM2fV2y01MZNzTHV9IPzWZITkZwUU/1F/iMjgv91ot+XmYamWkp/SbBtra1s666kbVVjbS1O9JTU8hITSEt1RfZpQevaalGRmrKlvn0lJTtkmlrWzvra5oiEk0ja6u2zq+patiuTssMRuT7Yr7TZ4zl7M/3bHQFVRaLyHZGFWYxu3AUsyePAvy4WMvLayOSQxW3v7Sc1uAn7PD8TOqaWrerAxlZkMn4obkctOswxg3NYVxx9paL//C8+PWzCUtaagqlQ3IoHdJ9XVSs++ooaoqmvrl1+wRR2cDaqsZeHz8a3RGISFSNLW28u6aaxasqeW9tNQVZ6Ywbmu0r6Yf6i2N/G+ZEuqY7AhHpkaz0VKaPH8L08UMSHYqESA2ORUSSnBKBiEiSUyIQEUlySgQiIklOiUBEJMkpEYiIJDklAhGRJKdEICKS5AZcz2IzKwc+6+HHhwEb+zCcvtbf44P+H6Pi6x3F1zv9Ob7xzrnhXa0YcImgN8xsQbQu1v1Bf48P+n+Miq93FF/v9Pf4olHRkIhIklMiEBFJcsmWCG5PdAA70N/jg/4fo+LrHcXXO/09vi4lVR2BiIhsL9nuCEREpBMlAhGRJDcoE4GZzTazZWb2sZld1cV6M7Mbg/VLzGxaHGMba2Yvmtn7ZvaumX2ni21mmVmVmS0Kpp/GK77g+CvM7J3g2Ns9Di7B529SxHlZZGbVZnZ5p23ifv7M7C4z22BmSyOWDTWz58zso+C1y6e77Oj7GmJ8vzGzD4J/w7+ZWVGUz3b7fQgxvqvNbHXEv+OxUT6bqPP3l4jYVpjZoiifDf389ZpzblBNQCrwCbALkAEsBvbqtM2xwNOAATOBf8cxvhJgWjCfD3zYRXyzgCcSeA5XAMO6WZ+w89fFv/U6fEeZhJ4/4DBgGrA0YtmvgauC+auA66L8Dd1+X0OM72ggLZi/rqv4Yvk+hBjf1cD3Y/gOJOT8dVr/O+CniTp/vZ0G4x3BAcDHzrnlzrlm4CHgxE7bnAjc67zXgSIzK4lHcM65tc65t4L5GuB9YEw8jt2HEnb+OjkS+MQ519Oe5n3GOfcSUNFp8YnAPcH8PcBJXXw0lu9rKPE55551zrUGb18HSvv6uLGKcv5ikbDz18HMDDgdeLCvjxsvgzERjAFWRbwvY/sLbSzbhM7MJgD7Af/uYvWBZrbYzJ42s73jGhg44FkzW2hmF3exvl+cP+BMov/nS+T56zDSObcW/A8AYEQX2/SXc/lV/F1eV3b0fQjTt4Kiq7uiFK31h/N3KLDeOfdRlPWJPH8xGYyJwLpY1rmNbCzbhMrM8oDHgMudc9WdVr+FL+7YF/gD8Pd4xgYc7JybBhwDfNPMDuu0vj+cvwxgDvBIF6sTff52Rn84lz8CWoH7o2yyo+9DWG4FdgWmAmvxxS+dJfz8AWfR/d1Aos5fzAZjIigDxka8LwXW9GCb0JhZOj4J3O+c+2vn9c65audcbTD/FJBuZsPiFZ9zbk3wugH4G/72O1JCz1/gGOAt59z6zisSff4irO8oMgteN3SxTaK/i+cDxwPnuKBAu7MYvg+hcM6td861OefagT9GOW6iz18acArwl2jbJOr87YzBmAjeBHY3s4nBr8Yzgcc7bfM4cF7Q+mUmUNVxCx+2oDzxTuB959zvo2wzKtgOMzsA/++0KU7x5ZpZfsc8vkJxaafNEnb+IkT9FZbI89fJ48D5wfz5wNwutonl+xoKM5sNXAnMcc7VR9kmlu9DWPFF1judHOW4CTt/gaOAD5xzZV2tTOT52ymJrq0OY8K3avkQ35rgR8GyS4BLgnkDbg7WvwPMiGNsh+BvXZcAi4Lp2E7xfQt4F98C4nXgoDjGt0tw3MVBDP3q/AXHz8Ff2AsjliX0/OGT0lqgBf8r9UKgGHgB+Ch4HRpsOxp4qrvva5zi+xhfvt7xPbytc3zRvg9xiu++4Pu1BH9xL+lP5y9YfnfH9y5i27ifv95OGmJCRCTJDcaiIRER2QlKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0Qg0omZtdm2I5z22YiWZjYhcgRLkf4gLdEBiPRDDc65qYkOQiRedEcgEqNgXPnrzOyNYNotWD7ezF4IBkd7wczGBctHBuP8Lw6mg4JdpZrZH80/j+JZM8tO2B8lghKBSFeyOxUNnRGxrto5dwBwE3B9sOwm/LDcU/ADt90YLL8RmO/84HfT8D1LAXYHbnbO7Q1UAqeG/PeIdEs9i0U6MbNa51xeF8tXAF9wzi0PBg5c55wrNrON+OEPWoLla51zw8ysHCh1zjVF7GMC8Jxzbvfg/ZVAunPul+H/ZSJd0x2ByM5xUeajbdOVpoj5NlRXJwmmRCCyc86IeH0tmH8VP+olwDnAK8H8C8A3AMws1cwK4hWkyM7QLxGR7WV3ehD5M865jiakmWb2b/yPqLOCZZcBd5nZFUA5cEGw/DvA7WZ2If6X/zfwI1iK9CuqIxCJUVBHMMM5tzHRsYj0JRUNiYgkOd0RiIgkOd0RiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJL7/wI2FTuZRO7hAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# fit the model\n", + "history = model.fit(X, y, epochs=training_steps, batch_size=batch_size, verbose=0, validation_split=0.3, callbacks=[es])\n", + "\n", + "# plot learning curves\n", + "pyplot.title('Learning Curves')\n", + "pyplot.xlabel('Epoch')\n", + "pyplot.ylabel('Cross Entropy')\n", + "pyplot.plot(history.history['loss'], label='train')\n", + "pyplot.plot(history.history['val_loss'], label='val')\n", + "pyplot.legend()\n", + "pyplot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distribution of values:\n", + " equal to 1: 79.2%\n", + " equal to 0: 20.8%\n", + "\n", + "checking answers:\n", + "none of the answers matches the output. Answer starts with: \n", + " '0 0 1 ...' -> matches [21]: 20.79% of values\n", + " '1 0 1 ...' -> matches [47]: 46.53% of values\n", + " '1 1 0 ...' -> matches [80]: 79.21% of values\n", + " '2 1 0 ...' -> matches [66]: 65.35% of values\n" + ] + } + ], + "source": [ + "# make a prediction\n", + "output_pre = model.predict(data_predict_x)\n", + "\n", + "output_pre=np.round(output_pre,0)\n", + "\n", + "def calStats(output, answer):\n", + " num_matches= np.sum(output[:min(len(output), len(answer))] == answer[:min(len(output), len(answer))])\n", + " percentage =round((num_matches / min(len(output), answer.shape[1]))*100,2)\n", + " return num_matches, percentage\n", + "\n", + "output=output_pre\n", + "\n", + "print(\"distribution of values:\")\n", + "print(\" equal to 1: \" + str( round(np.sum(output==1)/output.shape[0]*100,1) )+\"%\")\n", + "print(\" equal to 0: \" + str( round(np.sum(output==0)/output.shape[0]*100,1) )+\"%\")\n", + "\n", + "#checking answers\n", + "answer1=np.array([[0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1]])\n", + "answer2=np.array([[1,0,1,1,1,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,1,1]])\n", + "answer3=np.array([[1,1,0,1,0,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,0,1,0,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,1,1,0]])\n", + "answer4=np.array([[2,1,0,2,0,1,0,2,1,2,1,2,1,1,2,1,1,1,1,2,0,1,3,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,3,1,1,1,1,1,2,1,0,1,1,1,0,1,1,2,1,3,1,1,1,0,0,1,1,2,1,1,1,1,1,1,1,2,1,2,0,1,1,2,1,0,0,2,1,1,1,2,0,1,1,1,1,1,2,1,1,0,1,1,0,3,1,0]])\n", + "\n", + "print(\"\")\n", + "print(\"checking answers:\")\n", + "\n", + "if (output==answer1).all():\n", + " print(\"answwer starts with '0 0 1'\")\n", + "elif (output==answer2).all():\n", + " print(\"answwer starts with '1 0 1'\")\n", + "elif (output==answer3).all():\n", + " print(\"answwer starts with '1 1 0'\")\n", + "elif (output==answer4).all():\n", + " print(\"answwer starts with '2 1 0'\")\n", + "else:\n", + " print(\"none of the answers matches the output. Answer starts with: \")\n", + " num_matches, percentage= calStats(output, answer1)\n", + " print (\" '0 0 1 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer2)\n", + " print (\" '1 0 1 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer3)\n", + " print (\" '1 1 0 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " num_matches, percentage= calStats(output, answer4)\n", + " print (\" '2 1 0 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 1114377ed6a7203bed112cc9dd70013c21803eb9 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Tue, 4 Aug 2020 18:29:31 +0200 Subject: [PATCH 09/13] Add files via upload --- .../Multilayer_Perceptron.ipynb | 74 +++++++------- .../Multilayer_Perceptron_With_Keras.ipynb | 99 +++++++++++-------- 2 files changed, 93 insertions(+), 80 deletions(-) diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb index ad247b53..ce644370 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron.ipynb @@ -56,24 +56,24 @@ "# task type to perform\n", "taskRunning=\"classification\" # can be: classification / regression\n", "\n", + "#normalization of data\n", + "normalizeDataValues=True\n", + "normalizationType= \"max\" # accepts: max, mean\n", + "normalizationTypeBinary=True\n", + "\n", "# parameters initialization.\n", "num_classes = 1 # total classes : number of output results wanted\n", "num_features = 0 # data features : number of input variables on the dataset. a value of 0 loads from the dataset bellow\n", "\n", "# Training parameters.\n", - "learning_rate = 1\n", - "training_steps = 10000\n", + "learning_rate = 0.0000001\n", + "training_steps = 5000\n", "batch_size = 100\n", "display_step = 100\n", "\n", - "#normalization of data\n", - "normalizeDataValues=True\n", - "normalizationType= \"max\" # accepts: max, mean\n", - "normalizationTypeBinary=True\n", - "\n", "# Network parameters.\n", - "n_hidden_1 = 512 # 1st layer number of neurons.\n", - "n_hidden_2 = 512 # 2nd layer number of neurons." + "n_hidden_1 = 256 # 1st layer number of neurons.\n", + "n_hidden_2 = 256 # 2nd layer number of neurons." ] }, { @@ -104,7 +104,7 @@ "df_tr_raw_values_x = df_tr_raw_x.values\n", "data_tr_x = np.float32(df_tr_raw_values_x)\n", "\n", - "x_train, x_test, y_train, y_test = train_test_split(df_tr_raw_x, df_tr_raw_y, test_size=0.33, random_state=42)\n", + "x_train, x_test, y_train, y_test = train_test_split(df_tr_raw_x, df_tr_raw_y, test_size=0.33, random_state=1)\n", "\n", "# Convert to float32.\n", "x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)\n", @@ -322,7 +322,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc0AAAFBCAYAAAAVN/S+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5wcdZnv8e/Tk0ySSbibcCIwM/haGAXvIAqc9UzAOyAuyoE4SlzZHWVdjquiiyevBT3unCMuK4LsLsYbSEYwEC/IoisbEy+7rkgUFQxDRDIhGAh3CIFcZp7zR9dMeiZ9+XV1VVd15/N+veY1XdXVVU893V3Pr351aXN3AQCA2gpZBwAAQKugaAIAEIiiCQBAIIomAACBKJoAAASiaAIAECi1omlmXzGzLWZ2Z8m4A83sVjNbH/0/oOS5j5vZ781sxMzemFZcAADEleae5tWS3jRt3IWSVrn7EZJWRcMys6MknS3p6Og1/2xmHSnGBgBA3VIrmu7+Y0mPTRt9uqRrosfXSHpbyfjr3X27u98n6feSjksrNgAA4mj2Mc2D3X2zJEX/F0TjD5F0f8l0m6JxAADkxoysA4hYmXFl7+9nZoOSBiVp9uzZx3R3d6cZV1saHx9XocA5YHGQu3jIWzzkLZ577rnnEXefn8a8m100HzKzhe6+2cwWStoSjd8k6bCS6Q6V9MdyM3D3ZZKWSVJfX5+PjIykGW9bWrNmjfr7+7MOoyWRu3jIWzzkLR4zG01r3s1uwtwkaUn0eImk75SMP9vMZpnZ4ZKOkHRbk2MDAKCq1PY0zew6Sf2SnmdmmyRdLOnTklaY2bmSNko6U5Lc/S4zWyHpd5J2SfqAu4+lFRsAAHGkVjTdfXGFp06uMP2QpKG04gEAoFEcYQYAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIBBFEwCAQBRNAAACUTSBhA0PD6u3t1eFQkG9vb0aHh7OOiQACZmRdQBAOxkeHtbg4KC2bdsmSRodHdXg4KAkaWBgIMvQACSAPU0gQUuXLp0smBO2bdumpUuXZhQRgCRRNIEEbdy4sa7xAFoLRRNIUHd3d13jAbQWiiaQoKGhIXV1dU0Z19XVpaGhoYwiApAkiiaQoIGBAS1btkw9PT0yM/X09GjZsmWcBAS0Cc6eBRI2MDBAkQTaFHuaAAAEomgCABCIogkAQCCKJoBg3CIQeztOBAIQhFsEAuxpAgjELQIBimbi6L5Cu+IWga2JbVKy6J5NEN1XaGfd3d0aHR0tOx75xDYpeexpJihO9xWtQLQKbhHYeuhSTx5FM0H1dl9NtAJHR0fl7pOtQAon8ohbBLYeutSTR9FMUL2/cEErEK1mYGBAGzZs0Pj4uDZs2EDBzDl+dSd5FM0E1dt9RSswPXR7o5mfgbx+3vLQpZ7X3MTm7i37d+SRR3reLF++3Ht6etzMvKenx5cvX15x2p6eHpe0x19PT0+qMa5evTrV+Wdt+fLl3tXVNSWnXV1dVd+LUO2eu7Q0O29pfgaauawk8lbPNilpzXwfSkm63VOqO5kXvkb+8lg065HVB6rdN/xpNkbaPXdpaXbemtkg5fNWWVY7BmkWTbpnM5T1iRVt120SCen2bqd1T3NdWjVPzTz0wWGWytoyN2lV42b8tfqeZlZWr16d2V5uM9Rq3Tay7nlr+af5PiY5b/Y048nb561e7binmXnha+SPohnP6tWrM/swN0OtjX0j6563jVia72OS8+aYZjx5+7zVi2OaOfurVDSzPPCdtZB1X716tZtZ2Q2imWUQdfKq5aGRdY+zEUvz85jm+xgy79B1a8bGf3os5513XkN5r+d9S+s9bvWi6Z7N9piiWUfRbOdux1pC173d9zRraeaeZtqfxyz3NOtZt7Q3/knnOS/bkXYomllou6Ip6UOS7pJ0p6TrJM2WdKCkWyWtj/4fUGs+5YpmEhuRVtpTLY21o6MjaN1Dj2nWm4da0+clr808ppl24yTLY5r1rFvaG/+k85yXRuVE3vLy3WkVbVU0JR0i6T5Jc6LhFZLeI+kzki6Mxl0o6ZJa8ypXNBvtrspLCzNEuVhD1j3ki1hvHmpNn7e8xt0I1bvxb0Y3eJob1KS6udMumknnOS+HL9r9pL20tGPRvD/as5wh6WZJb5A0ImlhNM1CSSO15pXGnmZeWpghKsUasqcZd96V8lBr+lbKazV529PMEnua6dvbD6XElWbRtOL8m8vMPihpSNKzkn7g7gNm9oS7718yzePufkCZ1w5KGpSk+fPnH7NixYopzz/22GMaHR3V+Pj45LhCoaCenh4deOCBk9M88MAD2rFjhzo7O7XffvvpySef1I4dO6rGfcwxx8Rd5VSsXbu25jTT112Stm7dqnnz5sWed7k81Jo+ZH6l78uMGcVfrdu1a9ce71FnZ6cOOeSQKevULOVyN/3zVBpbyOcxadXymGTeyq2bmamjo2OP923BggXasmVLau9b0nnO4n0rZ+vWrRoZGan4fN62SXmxaNGite5+bCozT6saV/qTdICkH0qaL2mmpG9LepekJ6ZN93itecU5eza0S3P6Xx5bdZVaoB0dHTXPno0777T2NOt9X7LqnpqeuzSODTeiVh6Tzlvpuh100EHe2dlZdrmXXnpp6u9b0nnOw3FE9jTjUZt1z54p6cslw+dI+mcl1D1bS2iXZh420LXEPdYRUjSbfUwzzvuSxUZjeu7ytkELyWNasVVb9kTRZGNfH45pxtNuRfPVKp452yXJJF0j6XxJ/6CpJwJ9pta84hTNSgf4y/1leX1WqDhnrIYeX6r3urdGzp6t530pfX+SEhr7pZdeOuX5JE4YSfL6wtA8JnUtY+iyS4tmpdw0+7uU9Xc3JJY0zp5N+iz3RmJL6z1oq6JZXB99UtLdKl5ycq2kWZIOkrRKxUtOVkk6sNZ80tzTDGkN570FWCm+lStXJjavtK83bMYeUz17ydO7GRvd0wzplq4nz3HymNR72sieZrO/S3n67laLJekTqJI+y72RPKb5HqRZNDM5ESgpfX19PnGQ/Ef3PKz/+sOjKphUMJOZTT4umKJh06/v+JVuvPEG7dj+nFRsNch9PHpcPOjfOXOGlpyzRCeccHzJ/CbmtXt+73/foLY89JDk41PmcfCCBbruuuuKry1MXX61+RVKxplJHYUqzxdUdn6m3cOHH364RkdH98jbFVdcofPPP7+uXPf29padV09PjzZs2FD3ezfd8PCwBgcH9/hR7kq6uroSu7l9rXUrff7SSy/VBRdcMPn80NDQHnHXE1ulZVeKpZZ689jIsupZ9kTeKuUm7c/XdM1eXtxYrr76avX39zdlWdM/6+Wer3d+jcTSCDNL7USgtiiaw8PDWnrdf8pf+HpZoSArFOSyrMPL3JTGwETjYHxcs2fP0uxZs6KCXrlolxblkZG7S+bnUUOh+PjVx72q/GsL1Rowe04/OrpBv77jDm19+mnN6pwpybX9uWc1b+5cdXd3a+OGDXr66ae0z7y5OvGEE3TUUS+q2kCaaLSYSb+54w59/3vf0+OPP6YD9t9Pp55yio477lUyM33gvPOidZtYp2g95RpevlwD71wsHy+OW7LkHF391a9O5mDBgvl61bHH6he33aaHHnpQBy+Yr78491y94Q1vqJ7XKDcvPvroKe/TxHKk8SkNOpP0yMNbar5PZtLXv/51LV26VBs3bpxyFm/od93Mppw1Wo/h4eHJZXd3d+stb3mLbrnlFp1//vn6/Oc/r6GhocmCWTptpdgaiaWaQqFQdpmVlldpvSaGS9crRMi6S8XGxvS8NaLWetebl0rTT7xmem5C17vca+tB0aygr6/PL7roooot/cWL3ymXNO5e/Buf+tjlGvdo3LhPTusujY0X81KcfmJ49/Rj465T3nKKNj/4oFTokKwgM0kq6L8tXKivX3+95No9vbtW/3C1Pn/lldq+Y4dkHZJJs2bN1vve934df+KJu5c3Lo1FXQETy3YVu9LHx11jPtGtvnveE13tE8tzly6//HI9+dRT0bJMMpNZQf2LTtJLX/ay3fOf8nrXWJQbL1nXm2++Wc9se3ZyHsX5FdTVNVev7e8vee3EvMrHNmVdJqbX7ukn35uKsU2dfur8dr9ve7PphXTi8TNbt2psfGx3o6C0p0W7GwszOjrU09NdoSibOupsDBWsWLTnP+95k89vun+jbl97u8Z27ixpHExtKMhd+8ybq3POeXfZWFQmttJ4ShuF05+/+KK/06OPPlqyzOL6P++gA3XZZZ+dMv1//PSnuuqqf9H2555T8cM5LtfuxqPcNauzUxd85MNBjaVb/vVf9YmLL9azz27bs1E7rVH6yU9crIsvukhz5szW5Z+7TGeddVbV3qpamrWnWWpieyyp7l6QuD1KFM0K+vr6fPv27al3s0xvZU60fsp1R1V7k5vdJVQpvmuvvVZnnHFG2enLrWe1eTXz9z9DY53eoOjre6E23n+/ZAVJxY2hrKDDurv1i9vX6saVK/Wxj31Mzz63QzLJrKDZc7r090NDOvW003TTTd/VxZ/4hJ7bvkMf/shHdNlln5tsNEiSrKCFCxfqGytu2KPhtXs4aoxExd2j2H7yk5/qi1/8knbs3FmcXzRfK+yed+esWVq8+J065thjd7+2TCNvYp0n5l3agBobd61bt07/vuqH2jU2trvho6gxVSjmZsbMmXrN8Seop7e3ZH4T61Jch4lljJc0dHY3ejSlATox/NTTT2vu3HmT099zz3rt3LWruPxCIWp0WrT+HZKkQqFD++y7r2bOmlU2ll27xrRr15jcTDYxn71cwSSTa2zXruKeo6RZszrV2TlTBTPt3LFdW59+Wj4+XtJYchVMGh8bU8FM4+Nj8vGxyZ6kgkmHHVq8vnZ6A+nRRx7R+vX3aHxsbM+empKGQNec2ZK7ntn2zO7nx0sOa2lq46W04bDvvHl673vfO6XnqFpjycz01ycdkVrRnJHGTJsp7R85nV4sRkdHNTg4KEmTG+lKG+9mxzpdpfjKXZxdaz3rXdc01YrVJlrhMs2QtPG+e6d0BU082rj+d5q/zyyd9553at+ZPm3dPqWBgcWSpA+du1gLZo9r6dKlmj9ju3Y8dO8eMW3cPKJXv+Cgutfl1Jf+T710/50BXX9n1j3vPRd2lIaf/1zAsv6s8WVNs2bNGvX3/+nkcKGwKLBb77Sy01RqxH3hC8t09uLFQQX9xhtX6tOXXKIHHvijDjn0UF3w0Y/ptLe+der07nrJS14iV2FK42KycTPZ0Ck+d+utq7Rq1Spddvnl2r5jR/H50ulLGkNTGwrFxsLkcNQIOOOMM/Stb3178rWXXvqPU2Kb0ngZd/3mt3fqlu99r9ggiWKbObNTr3vd63XEkUfKJd09co9uu+02bX1mm2bNnq2dO3dp3H1y+kJHh2bO7NSunbvUNXeuXnT00TrkkOcX65h29/BI0pznH6wOc/3hvg16bvv2yQbp1PU27SgUG0IzZx9QzEHJ82ZW7K2bzItNyeu4FbTi9vurNtSaKq0zjJrxd+SRRzZ89mItSc4/7VhDlTsjLy+xhag31iTX7YorrmiZPOVJ0te3NvPzWu8Z93HPYC73+nqvb83yu1FrfrWW1UgsY2Pjvmts3HfsGvNnd+xytdslJ0n9HXnkkamfOp7kjZuTiDWJ65rKFc0469loLHFfX2+sSX5GVq5cmfmlCnm6vjBUnDspVZPGDdUr5bXey4LiXHMceolT0nlJOo/V3tckLncJvaaZolmlaJZLZJIbkaRbYo1eCJzEBjuJPc1GY2nk9XHek6Q+IxN3aMmqaOXp+sJ6lPvMNZLHNL6XtTboIRvrarFN/6t2u8tKN9NIOi9p7LFXe18bubFCPY0XimaNopmmPG2kkvqAV9qA1bOejcbSyOuzfE+y/lHgNDZyzdDsi/TrlWRek7xhRdo/ep6n7VstoY2RaDqKZrm/ZhRN9/x0hyXVlVLpi1jPejYaS6OvT/LWc/XIumjm5Xce65VG3pL8XqbRTZnE5zPOdzXt2+BltT2s5xaRFM2Mi2ZepLmn2exY0m7Zp9VazrposqeZjrzmNYleoSRluWz2NPeSoplkKy6J44hxjpNUmlcjP4mV5JevmRu8JDb+eTiunUZs1cTJW9KxNOvzmKS8neme5bI5prkXFM00ji/E3ZA0ckZetXk2shFKaqPYzC7LRotmEhvntApbmoUj7WNzScwvL4dhSiV1pntSsj48wNmzbV40622VpdmKK513M37bsJkt0lba08xrN2DasdWbt6RjyXPeq2FPM540iyb3nUpRvXcASvOOQc2+G1Ezlzc0NKSurq4p47q6ujQ0NJT4shoVJy/Dw8Pq7e1VoVBQb2+vhoeHcxNbvULXpdIyR0dHY+Wh2Z//NGX5eW/2spv12a9LWtW4GX/sacaLpd32NN2b17XW7D3NZh5rS3tPs551qRRL3Dy0yh7SdEmc6Z60Zi27kc++6J5tzaKZp2um0jimGbq8tDf2zdTsY5rN3NinfUyznnUJOemjnjy06ucx72cdp6mRzz5Fs8Gi2cyz8BpddpqtuCTPnq1neXk6saJRzT57ttknXqR59myc2x9OxFKpaNaTh1b8POahaObtusyQ95yi2UDRzOIsvLzLwxexVTU7d63arThdvXua07VLHuqV9Xc1j9dlsqeZctFM+svWDl/erL+IrazZuWuHRpp7/cc0p2uXPNQr6+9qlts7jmlmVDST7t7K+jqlJGT9RWxlWeSuFbsVp5vIW6M3dmj1PNQr6+9q1tu7uIe3JLlTNOMVTfY095T1F7GVkbt4yFs8WeetlbZ30/dMPaW60/bXaSZ9XVErXROI+HJ5fRjQZK20vVu6dKm2bduW/oLSqsbN+GuFs2fzKOvWa95VO5ZC7uIhb/HkIW+tsr2b3pXsKdUdc/f0K3NK+vr6fGRkJOswWs6aNWvU39+fdRi51dvbq9HR0T3G9/T06OqrryZ3MfCZi4e8hZv+vXV3S2M5bd89C9SrnW65BuwtynUlp4GiCUzT3d1d13gA2RsYGNCyZcvU09OT6nIomsA0rXTyA4DdBgYGtGHDBklam9YyKJrANKUtVjNTT0+Pli1bpoGBgaxDA5CxGVkHAOTRwMAARRLAHtjTBIAWx3XFzcOeJgC0sOHhYQ0ODk5e2D86OqrBwUFJorckBexpAkALK3cnnG3btmnp0qUZRdTeKJo5R7cLgGq4rri5KJo5NtHtMjo6Knef7HahcAKYwHXFzUXRzDG6XQDUwnXFzUXRzDG6XQDUwnXFzcXZsznW3d1d9sbhdLsAKMV1xc3DnmaO0e0CAPlC0cwxul0AIF/ons05ul0AID/Y0wQAIBBFEwCAQBRNAAACUTQBAAhE0QQAIFAmRdPM9jezG83sbjNbZ2bHm9mBZnarma2P/h+QRWwAAFSS1Z7m5ZK+7+4vlPQySeskXShplbsfIWlVNAwAQG40vWia2b6SXivpy5Lk7jvc/QlJp0u6JprsGklva3ZsAABUE1w0zexPzGy5ma00s+MbWOYLJD0s6atm9isz+5KZzZV0sLtvlqTo/4IGlgEAQOLM3cs/YTbb3Z8rGb5O0sWSXNIN7v7yWAs0O1bSf0k60d1/bmaXS3pK0vnuvn/JdI+7+x7HNc1sUNKgJM2fP/+YFStWxAljr7Z161bNmzcv6zBaErmLh7zFQ97iWbRo0Vp3PzaNeVe7jd53zexr7n5tNLxTUq+KRXOsgWVukrTJ3X8eDd+o4vHLh8xsobtvNrOFkraUe7G7L5O0TJL6+vq8v7+/gVD2TmvWrBF5i4fcxUPe4iFv+VOte/ZNkvYzs++b2Z9KukDFY5FvlhT7Zqju/qCk+82sLxp1sqTfSbpJ0pJo3BJJ34m7DAAA0lBxT9PdxyRdaWbXSrpI0kJJf+fu9yaw3PMlDZtZp6Q/SPpzFQv4CjM7V9JGSWcmsBwAABJTsWia2aslfVTSDkn/V9KzkobMbJOkT7n7k3EX6u53SCrX33xy3HkCAJC2asc0r5L0DknzJH3B3U+UdLaZ/Q9JKyS9sQnxAQCQG9WK5piKJ/50qbi3KUly9x9J+lG6YQEAkD/ViuY7Jb1PxYJ5TnPCAQAgv6qdCHSPpI80MRYAAHKNXzkBACAQRRMAgEA1i6aZnWpmFFcAwF4vpBieLWm9mX3GzF6UdkAAAORVzaLp7u+S9ApJ96r4yyQ/M7NBM9sn9egAAMiRoG5Xd39K0kpJ16t4O70/k/RLMzs/xdgAAMiVkGOap5nZtyT9UNJMSce5+5slvUzFm7gDALBXqHZzgwlnSrrM3X9cOtLdt5nZe9MJCwCA/AkpmhdL2jwxYGZzJB3s7hvcfVVqkQEAkDMhxzRvkDReMjwWjQMAYK8SUjRnuHvpDdt3SOpMLyQAAPIppGg+bGZvnRgws9MlPZJeSAAA5FPIMc33Sxo2syslmaT7xa+eAAD2QjWLprvfK+k1ZjZPkrn70+mHBQBA/oTsacrMTpF0tKTZZiZJcvf/k2JcAADkTsjNDa6SdJak81Xsnj1TUk/KcQEAkDshJwKd4O7nSHrc3T8p6XhJh6UbFgAA+RNSNJ+L/m8zs+dL2inp8PRCAgAgn0KOaX7XzPaX9A+SfinJJX0x1agAAMihqkUz+vHpVe7+hKSVZnazpNnu/mRTogMAIEeqds+6+7ikfywZ3k7BBADsrUKOaf7AzN5uE9eaAACwlwo5pvlhSXMl7TKz51S87MTdfd9UIwMAIGdC7gi0TzMCAQAg72oWTTN7bbnx03+UGgCAdhfSPfvRksezJR0naa2kk1KJCACAnArpnj2tdNjMDpP0mdQiAgAgp0LOnp1uk6QXJx0IAAB5F3JM8/Mq3gVIKhbZl0v6dZpBAQCQRyHHNG8vebxL0nXu/h8pxQMAQG6FFM0bJT3n7mOSZGYdZtbl7tvSDQ0AgHwJOaa5StKckuE5kv49nXAAAMivkKI52923TgxEj7vSCwkAgHwKKZrPmNkrJwbM7BhJz6YXEgAA+RRyTPNvJN1gZn+MhhdKOiu9kAAAyKeQmxv8wsxeKKlPxZu13+3uO1OPDACAnKnZPWtmH5A0193vdPffSppnZn+VfmgAAORLyDHNv3T3JyYG3P1xSX+ZXkgAAORTSNEslP4AtZl1SOpMLyQAAPIp5ESgf5O0wsyuUvF2eu+X9P1UowIAIIdCiubfShqUdJ6KJwL9QNIX0wwKAIA8qtk96+7j7n6Vu7/D3d8u6S5Jn290wdHt+H5lZjdHwwea2a1mtj76f0CjywAAIElBPw1mZi83s0vMbIOkT0m6O4Flf1DSupLhCyWtcvcjVLx134UJLAMAgMRULJpmdqSZXWRm6yRdqeLvaJq7L3L3hvY0zexQSadI+lLJ6NMlXRM9vkbS2xpZBgAASat2TPNuST+RdJq7/16SzOxDCS33c5I+JmmfknEHu/tmSXL3zWa2IKFlAQCQiGpF8+2Szpa02sy+L+l6FU8EaoiZnSppi7uvNbP+GK8fVPHEJM2fP19r1qxpNKS9ztatW8lbTOQuHvIWD3nLH3P36hOYzVWxq3SxpJNU7Dr9lrv/INYCzf6fpHer+IPWsyXtK+mbkl4lqT/ay1woaY2791WbV19fn4+MjMQJY6+2Zs0a9ff3Zx1GSyJ38ZC3eMhbPGa21t2PTWPeIWfPPuPuw+5+qqRDJd2hBk7ScfePu/uh7t6r4p7sD939XZJukrQkmmyJpO/EXQYAAGkIOnt2grs/5u5fcPeTUojl05Jeb2brJb0+GgYAIDdCbm6QGndfI2lN9PhRSSdnGQ8AANXUtacJAMDejKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAEAgiiYAAIEomgAABKJoAgAQiKIJAECgphdNMzvMzFab2Tozu8vMPhiNP9DMbjWz9dH/A5odGwAA1WSxp7lL0kfc/UWSXiPpA2Z2lKQLJa1y9yMkrYqGAQDIjaYXTXff7O6/jB4/LWmdpEMknS7pmmiyayS9rdmxAQBQjbl7dgs365X0Y0kvlrTR3fcvee5xd9+ji9bMBiUNStL8+fOPWbFiRXOCbSNbt27VvHnzsg6jJZG7eMhbPOQtnkWLFq1192PTmHdmRdPM5kn6kaQhd/+mmT0RUjRL9fX1+cjISNqhtp01a9aov78/6zBaErmLh7zFQ97iMbPUimYmZ8+a2UxJKyUNu/s3o9EPmdnC6PmFkrZkERsAAJVkcfasSfqypHXu/tmSp26StCR6vETSd5odGwAA1czIYJknSnq3pN+a2R3RuP8t6dOSVpjZuZI2Sjozg9gAAKio6UXT3X8qySo8fXIzYwEAoB7cEQgAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEAUTQAAAlE0AQAIRNEEACAQRRMAgEC5K5pm9iYzGzGz35vZhVnHAwDAhFwVTTPrkPRPkt4s6ShJi83sqGyjAgCgKFdFU9Jxkn7v7n9w9x2Srpd0esYxAQAgKX9F8xBJ95cMb4rGAVzPMjMAAAYcSURBVACQuRlZBzCNlRnnUyYwG5Q0GA1uN7M7U4+q/TxP0iNZB9GiyF085C0e8hZPX1ozzlvR3CTpsJLhQyX9sXQCd18maZkkmdnt7n5s88JrD+QtPnIXD3mLh7zFY2a3pzXvvHXP/kLSEWZ2uJl1Sjpb0k0ZxwQAgKSc7Wm6+y4z+2tJ/yapQ9JX3P2ujMMCAEBSzoqmJLn7LZJuCZx8WZqxtDHyFh+5i4e8xUPe4kktb+butacCAAC5O6YJAEButWzR5HZ7u5nZYWa22szWmdldZvbBaPyBZnarma2P/h9Q8pqPR7kbMbM3low/xsx+Gz13hZmVuwyorZhZh5n9ysxujobJWwAz29/MbjSzu6PP3vHkrjYz+1D0Pb3TzK4zs9nkbU9m9hUz21J6WWGSeTKzWWb2jWj8z82sNygwd2+5PxVPErpX0gskdUr6taSjso4rw3wslPTK6PE+ku5R8TaEn5F0YTT+QkmXRI+PinI2S9LhUS47ouduk3S8itfMfk/Sm7Nevybk78OSvi7p5miYvIXl7RpJfxE97pS0P7mrmbNDJN0naU40vELSe8hb2Vy9VtIrJd1ZMi6xPEn6K0lXRY/PlvSNkLhadU+T2+2VcPfN7v7L6PHTktap+OU8XcUNm6L/b4seny7penff7u73Sfq9pOPMbKGkfd39Z178JH2t5DVtycwOlXSKpC+VjCZvNZjZvipu1L4sSe6+w92fELkLMUPSHDObIalLxWvRyds07v5jSY9NG51knkrndaOkk0P21lu1aHK7vQqiLoZXSPq5pIPdfbNULKySFkSTVcrfIdHj6ePb2eckfUzSeMk48lbbCyQ9LOmrUdf2l8xsrshdVe7+gKRLJW2UtFnSk+7+A5G3UEnmafI17r5L0pOSDqoVQKsWzZq329sbmdk8SSsl/Y27P1Vt0jLjvMr4tmRmp0ra4u5rQ19SZtxel7fIDBW7zv7F3V8h6RkVu8sqIXeSomNwp6vYhfh8SXPN7F3VXlJm3F6XtwBx8hQrh61aNGvebm9vY2YzVSyYw+7+zWj0Q1H3hKL/W6LxlfK3KXo8fXy7OlHSW81sg4pd/CeZ2XKRtxCbJG1y959HwzeqWETJXXWvk3Sfuz/s7jslfVPSCSJvoZLM0+Rroq7y/bRnd/AeWrVocru9ElE//JclrXP3z5Y8dZOkJdHjJZK+UzL+7OjsscMlHSHptqi742kze000z3NKXtN23P3j7n6ou/eq+Bn6obu/S+StJnd/UNL9ZjZxY+yTJf1O5K6WjZJeY2Zd0fqerOI5COQtTJJ5Kp3XO1T8/tfeW8/6DKm4f5LeouJZovdKWpp1PBnn4r+r2K3wG0l3RH9vUbF/fpWk9dH/A0teszTK3YhKzrqTdKykO6PnrlR0A4x2/5PUr91nz5K3sJy9XNLt0efu25IOIHdBefukpLujdb5WxTM+ydueebpOxeO+O1XcKzw3yTxJmi3pBhVPGrpN0gtC4uKOQAAABGrV7lkAAJqOogkAQCCKJgAAgSiaAAAEomgCABCIognkiJmNmdkdJX+J/YKPmfWW/mIEgPrNyDoAAFM86+4vzzoIAOWxpwm0ADPbYGaXmNlt0d+fRON7zGyVmf0m+t8djT/YzL5lZr+O/k6IZtVhZl+04u85/sDM5mS2UkALomgC+TJnWvfsWSXPPeXux6l4V5PPReOulPQ1d3+ppGFJV0Tjr5D0I3d/mYr3hL0rGn+EpH9y96MlPSHp7SmvD9BWuCMQkCNmttXd55UZv0HSSe7+h+jm/A+6+0Fm9oikhe6+Mxq/2d2fZ2YPSzrU3beXzKNX0q3ufkQ0/LeSZrr736e/ZkB7YE8TaB1e4XGlacrZXvJ4TJzXANSFogm0jrNK/v8sevyfKv5CiyQNSPpp9HiVpPMkycw6zGzfZgUJtDNamUC+zDGzO0qGv+/uE5edzDKzn6vY2F0cjftfkr5iZh+V9LCkP4/Gf1DSMjM7V8U9yvNU/MUIAA3gmCbQAqJjmse6+yNZxwLszeieBQAgEHuaAAAEYk8TAIBAFE0AAAJRNAEACETRBAAgEEUTAIBAFE0AAAL9fxpEJPIQoK9kAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAFBCAYAAAAc3FTEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df7xcdX3n8dfnBpJwDQjBBFIgN/goplVbtSBKsTbI1qrYQhd5CF4r26XN1u26trptYbO1j7abbbW2ta1t9fpjG0xWH2mFijyshY1c3e6qaBQrFAKISUQiAUKAkEAg97N/zLnJ3Jt77p07d2bOzNzX8/GYx8w5M/ec73zumXmf8z1nzonMRJIkHW2g6gZIktStDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqUTbQjIiPh4RuyPi9rpxSyPi5oi4p7g/qe65ayLi3ojYFhE/2652SZLUqHZuSf4t8LpJ464GtmTmWcCWYpiIeCFwOfCi4m/+OiIWtLFtkiTNqG0hmZlfAvZMGn0xsKF4vAG4pG78pzLz6cz8LnAvcG672iZJUiM6vU/ylMzcBVDcLy/GnwZ8r+519xfjJEmqzDFVN6AQU4yb8nx5EbEWWAuwePHis1euXNnOdvWlsbExBgY8ZqsZ1q451q051q05d99998OZuawV0+p0SD4YESsyc1dErAB2F+PvB86oe93pwANTTSAzR4ARgNWrV+e2bdva2d6+NDo6ypo1a6puRk+yds2xbs2xbs2JiB2tmlanV1FuAK4sHl8JfKZu/OURsSgizgTOAm7tcNskSZqgbVuSEfFJYA3wvIi4H/hd4I+AzRFxFbATuAwgM++IiM3AvwLPAr+WmYfa1TZJkhrRtpDMzCtKnrqw5PXrgfXtao8kSbPlHmFJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSCUNSkqQShqQkSSUMSUmSShiSkiSVMCQlSSphSEqSVMKQlCSphCEpSVIJQ1KSpBKGpCRJJQxJSZJKGJKSJJUwJCVJKmFISpJUwpCUJKmEISlJUglDUpKkEoakJEklDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSCUNSUk/atGkTq1atYmBggFWrVrFp06aqm6Q+dEzVDZCk2dq0aRNr165l//79AOzYsYO1a9cCMDw8XGXT1GfckpTUc9atW3c4IMft37+fdevWVdQi9StDssfYxSTBzp07ZzVeapYh2UPGu5h27NhBZh7uYjIoNd+sXLlyVuOlZhmSPcQuJqlm/fr1DA4OThg3ODjI+vXrK2pRa433GG3dutUeo4oZkj3ELiapZnh4mJGREYaGhogIhoaGGBkZ6YuDdup7jAB7jCpmSPYQu5ikI4aHh9m+fTtjY2Ns3769LwIS7DHqNoZkD+n3LiapX8zlADt7jLqLIdlD+rmLSeoXcz3Azh6j7mJI9ph+7WKS+sVcu0vtMeouhuQU/C2ipGbNtbu0vscIsMeoYp6WbhJPdyVpLlauXHn4yNTJ4xs1PDzM8PAwo6OjbN++vYWt02y5JTmJR5ZJmgu7S/uLITmJR5a1j93Ymg88wK6/2N06SSu6SnQ0u7E1n4x3l6r3VbIlGRG/ERF3RMTtEfHJiFgcEUsj4uaIuKe4P6ld859ui8aukvaYaze2W6GaLZcZtURmdvQGnAZ8FziuGN4M/DvgfcDVxbirgffONK0XvOAFOVsbN27MwcHBBA7fBgcHc+PGjRNeMzQ0lBGRQ0NDE57rB7fcckvH5xkRE2o+fouIGf+2kf9Zp1RRu37Q6bp10zIzFy5vzQG+nq3KrFZNqOEZ1kLye8BSat29NwKvBbYBK4rXrAC2zTStZkJyaGhoyi/roaGhWU+rV1XxwZtL3bvpf+aXVnM6XbduWmbmwuWtOa0MyahNr7Mi4p3AeuAAcFNmDkfE3sw8se41j2bmUV2uEbEWWAuwbNmyszdv3jyreW/durX0ubPPPruhaezZs4fvf//7HDx4kIULF3LaaaexdOnSWbWjSvv27WPJkiUdneeePXvYsWMHY2Njh8cNDAwwNDR0uHZldW3F/2yuxtu2fPlydu/e3XP/83Zp9LPQ6WWukWVmprZP93ynvgOq+Kz2gwsuuGBrZp7Tkom1Km0bvQEnAV8AlgHHAv8AvBXYO+l1j840rSq2JPuhG6eqtdPpurGnq2vVWwX1bXv/+9/fk//zdpjNZ6HbtiRnavt0z3fyO8AtyebQ492tlwEfqxt+G/DXdKi7da4LeNVf2K3QjR+86epa9YpJfdvGQ7LX/uftMJvPQrftk5yp7dM938nvgG78rPaCXg/JVwB3AINAABuAdwB/zMQDd94307TKQnKmA2/mcmDOXA5A6Rbd+MGbqa5VHkxV37b6kOyW//lMW+jtqttsPgtTLXPt/p9ON/2Z2j7d8538DujGz2o7tWqZ6OmQrLWf3wPuAm4HPgEsAk4GtgD3FPdLZ5rOVCHZ7q0OtyTbo5vr2s1bklV2C85lS7KbegfckuwOrVwmej4kW3WbKiTbvQBX/eFuhW784HVzXbt5n2SVX+Zz2SdZ9UqR+yS7TyuXCUNympDsRFdIr/+Osl0fvLnWZS5/384u9vq/f//7399V//OquwUbrevkZa6RtlXZHTvT8536Dmjms1p13ZrVyuXVkJwmJKteQ+0F7QjJKrcE57JVMFvdtmbfLd2CM5ntlmQ39yx00myXt3bXrZ3T79YtyUp+J9kqq1evzm3btk0YN36O0PyhF7Nw+fMhk2OPPYZfuOQSXvaylzEQEAEDEQBERG0cMDAQRG1kMS4Ov772uiheV3tufHxQm15tugBxeB71fz/xdePzom66wc033cTIhz/MD37wA049ZTlvf/vbecPrX19Mo2jTwMS2cfjxkXZH3fscv7/uuut47x/+IVf98lV87CMfYd26dVx22ZtqbatvR8TE+dVPu6jbZKtWrZrynLdDQ0Ntv9TPTPNuZdtGR0dZs2ZNky1tvcnnxIXaaRRHRkYASp/r9HlFJ9dtunYPDw9Xujx1k9kub+2uWzunP9MyMRsR0bLfSfZdSEKt2Os+cyc8/7wKWtX/YnylYjxMCZ566gCQkMWteJyZnHzy0sMBfCSQJwYwMCn846j5jK/YTFjRCPja174GOVbMcuxIO4A1P/1qRm+5peg2KU5kUNfGN1500aQVjfqVhLoVo2J494MPcuqpp058DwO1vx8fd/R7PbISdNSKUd37nOr14/U+egXmSLu2bv06n73hBvbs2cPSk07i4ksu5rxXvIII+MpXvsr1132aRx5+mJNPXsplb3oTr3rV+TOu3NWvDE5u70BMeg8D4+936pVBgG9s/Tovf/nLJ8zvxs/eyAc+8Gc88MD3+aEVK3j3u9/NJRdfTAScuepMMg8V2xJjZPE/DeCh3buPzGuK2hy1jNS1rdfMNiQHBgaY6js9IiacyKNZ7Z7+pk2bWLduHTt37mTlypWsX7++qRU6Q7JQFpIAY2NJAmOZZB65T5KxumHqxmUW9+Th79H65+qnM5a16efh6R49L4px9dNmfP5j439/ZH7Dw8M8uPuh8U80tS+tYPny5Yx85KOH5zc2RduYMP/6dtVec8011/DInkcB+LeXXsr11/8DRLB06VL+2++8B4q2jB1Vg7ppTqrFkWH40If+hscef4KIAQ5/U8UAJ5xwAm+78soJ04bJtaT4EjxS16PmMzZxfnn4dcnoLaMcePrpw/Mc/7JffNxxnPuKV3Lrrbfy1NMHi7ZBEUksWryIF//YjxXTnup9Tfxfj2Vy4MBTLFq0eML8x99D/fua2P7xcUeGmTTdHv4Y9pRpe1yYtHI2ULZiMmmlbfLKHfW9TxN7nSauiB15bX3QU7dyuHfvo5y8dOlRK0ZHVggmTvMfP/c5ntz/5JEVwUySZMngIJdeeum0K3dHrbTWrdCMt+vDf/M3PPbYY8WKC4fnceJzn8u73vUbE1bu6v/+qBrU1bes525yraceX/8ejqzcXfijp7YsJPv2Ulnj/6gFdNfa43RrSju/dvOUa2k77wte+6JT5zTf4Vs+eXjaP/7WC7n2GzcCsC+CX77pb+c0bYAz9pw7ZVfJ+pERhi9+8ZynP51NC++Zct5/MjLC8PB5bFpy3zTdOD81q3lNtWbfqrXfshUuYELAHn6ck0L58IrGFCs0U60M1oX0+EpI/cpd6crg2MQVqcltO7ziOQajXxxl48ZNvOGii/jc5/6RK97yFs5/1aumfG/1bfryl7/Ctddey8FnnilWfGDhokVcccVbOOecc4r5j7+Xo2vDFO2casUm695f/cpn1tdp8srZpBWcKVfuxqc5Vl8noO5/cKhuBXeqFfBnx8Z4dgwOPHNo4v8cePjhR3hg1y4OHnyGhQsXcsqpK3juic9l2Vkv4dldu2rTLVYYBxYMcNLzlvGV+x4hM3ly/34ee+xxDo2NsWDBMTzn+CUsXrT4yHuoX4GfVIMFL3otJzx76PCKfMSRC0n96c13z3qZ7wmt2rlZxa2ZM+5Uaa5nAZmLTvzWr8qjftt9dOu4bvu9Xzeb609nev0o8lYoOwnDTAeqTXdU7lyX18nT/8QnNuahQ2P57KGx3PCJjTm45PhkwbEZxyzMOHZRDj73pPzoho352IGDuffJg/nok0/nI/uezoefeCp3P/5UPvj4gXzwsQO5a++BfGDv/rz/0f2585Enc+cjT+aOh5/M7z60L+97aF/eu/uJvOfBJ/LuHzyed+16PO/c9Vj+6wOP5e3f35vfvr92+9b3Hs3bdj6aeHRrb4ZklUf0dfNv/XpJt/3er5t1YsWs300VknNZ5tq9vHbL56GVIVnJRZfnq507d047fnh4mJGREYaGhogIhoaGWnYkYv20gaam7UVsjzbT/7QR/VrXVtRGR5tLXRv527ksj335P29V2lZx67ctyU5p9gfKdiu2fkuyn+vqluTcdXpLsl8uAIHdrb0Zkt3yhdhMSHbLwl+1Vu+TbKSu7dw31+5p28U/N83sk5xOu4+LmMv+0lYyJHs0JDO742CEZkKyH65+0gqtvppFI1c/6cR+6nattHXr6fx6RdlntV2ncGzF57xs+p3cSDAkezgku4Fbks1r9WnpZqprO+veyf9pt53Or1d028Wqu3Xak7UyJD1wRw1Zv349g4ODE8YNDg6yfv36ilrUWu08eGa6ac9U13YeCNGXB1loTtr5Oe/E8jb+WQPObtlEW5W2VdzckmxOs2un3dBV3A5zueRTK6Y9XV37Zc3eLcnmVFG3dn3O2728Tf6sZYtypvKgm8vNkGyOX1gTzebDO9vadfPRr14Xsfv1U93avbxN/qxli3LG7lbNe93cpdmp3862etrSZO1e3tq1m6Bvz90qNWrlypVTXv5n5cqVXTHt4eHhtgVXO6ctTdbO5a3sszZXbklq3mvnwQr9fsCT1C2m+qy1giGpw/r19GgzsUtT6g3TfUdNPvVmy7Rq52YVNw/caU6rz+Ixn/TTgRSdZN2aY92OmM13FP5Osnv16tbYunXrJlxvEWD//v2sW7euohapG/Tq8qz+U9V3lAfutNCmTZsmXNx3x44drF27FqDru9f8Ybkm6+XlWf2nqu8otyRbqJe3xsqOtmzFEZ7qTb28PKv/VPUdZUi2UC9vjXkUpibr5eW529mNPXtVfUcZki3Uy1tjHoWpyXp5ee5m493YO3bsIDMPd2MblNOr6jvKkGyhXt8aGx4eZvv27YyNjbF9+3YDcp7r9eW5W9mN3bwqvqMMyRZya0z9xOW5PezG7i0e3dpinuZL/cTlufXaeRpEtZ5bkpLUQXZj9xZDUpI6yG7s3mJ3qyR1mN3YvcMtyT7j768kqXXckuwjnkZMklrLLck+4u+vJKm1DMk+4u+vJKm1DMk+4mnEJKm1DMk+4u+vJKm1DMk+4u+vJKm1PLq1z/j7K0lqHbckJUkqYUhKklTCkJQkqYQhKUlSCUNSkqQSlYRkRJwYEX8fEXdFxJ0RcV5ELI2ImyPinuL+pCraJknSuKq2JP8c+Hxm/gjwEuBO4GpgS2aeBWwphiVJqkzHQzIiTgBeDXwMIDMPZuZe4GJgQ/GyDcAlnW6bJEn1Gg7JiPjhiNgYEZ+OiPPmMM/nAw8B/zMivhkRH42I5wCnZOYugOJ++RzmIUnSnEVmTv1ExOLMfKpu+JPA7wIJ/F1mvrSpGUacA3wFOD8zvxoRfw48DrwjM0+se92jmXnUfsmIWAusBVi2bNnZmzdvbqYZ89q+fftYsmRJ1c3oSdauOdatOdatORdccMHWzDynFdOa7rR0n42IazPzE8XwM8AqaiF5aA7zvB+4PzO/Wgz/PbX9jw9GxIrM3BURK4DdU/1xZo4AIwCrV6/ONWvWzKEp89Po6CjWrTnWrjnWrTnWrXrTdbe+DnhuRHw+In4K+C/U9iW+Hmj65KCZ+QPgexGxuhh1IfCvwA3AlcW4K4HPNDsPSZJaoXRLMjMPAR+MiE8A7wFWAL+Tmd9pwXzfAWyKiIXAfcAvUQvszRFxFbATuKwF85EkqWmlIRkRrwB+EzgI/A/gALA+Iu4H/iAzH2t2ppl5GzBVf/GFzU5TkqRWm26f5IeANwFLgA9n5vnA5RHx08Bm4Gc70D5JkiozXUgeonagziC1rUkAMvOLwBfb2yxJkqo3XUi+BfgP1ALybZ1pjiRJ3WO6A3fuBt7dwbZIktRVvAqIJEklDElJkkrMGJIR8caIMEwlSfNOI+F3OXBPRLwvIn603Q2SJKlbzBiSmflW4GXAd6hduePLEbE2Io5ve+skSapQQ92omfk48GngU9ROT/cLwDci4h1tbJskSZVqZJ/kz0XE9cAXgGOBczPz9cBLqJ30XJKkvjTdyQTGXQb8WWZ+qX5kZu6PiH/fnmZJklS9RkLyd4Fd4wMRcRxwSmZuz8wtbWuZJEkVa2Sf5N8BY3XDh4pxkiT1tUZC8pjMrD/B+UFgYfuaJElSd2gkJB+KiJ8fH4iIi4GH29ckSZK6QyP7JH8V2BQRHwQC+B5eFUSSNA/MGJKZ+R3glRGxBIjMfKL9zZIkqXqNbEkSERcBLwIWRwQAmfn7bWyXJEmVa+RkAh8C3gy8g1p362XAUJvbJUlS5Ro5cOcnM/NtwKOZ+XvAecAZ7W2WJEnVayQknyru90fEDwHPAGe2r0mSJHWHRvZJfjYiTgT+GPgGkMBH2toqSZK6wLQhWVxseUtm7gU+HRE3Aosz87GOtE6SpApN292amWPAn9QNP21ASpLmi0b2Sd4UEZfG+G8/JEmaJxrZJ/ku4DnAsxHxFLWfgWRmntDWlkmSVLFGzrhzfCcaIklSt5kxJCPi1VONn3wRZkmS+k0j3a2/Wfd4MXAusBV4TVtaJElSl2iku/Xn6ocj4gzgfW1rkSRJXaKRo1snux94casbIklSt2lkn+RfUjvLDtRC9aXAt9rZKEmSukEj+yS/Xvf4WeCTmfl/29QeSZK6RiMh+ffAU5l5CCAiFkTEYGbub2/TJEmqViP7JLcAx9UNHwf87/Y0R5Kk7tFISC7OzH3jA8XjwfY1SZKk7tBISD4ZET8xPhARZwMH2tckSZK6QyP7JH8d+LuIeKAYXgG8uX1NkiSpOzRyMoGvRcSPAKupndz8rsx8pu0tkySpYjN2t0bErwHPyczbM/PbwJKI+I/tb5okSdVqZJ/kr2Tm3vGBzHwU+JX2NUmSpO7QSEgO1F9wOSIWAAvb1yRJkrpDIwfu/BOwOSI+RO30dL8KfL6trZIkqQs0EpK/DawF3k7twJ2bgI+0s1GSJHWDGbtbM3MsMz+UmW/KzEuBO4C/nOuMi9PbfTMibiyGl0bEzRFxT3F/0lznIUnSXDR0qayIeGlEvDcitgN/ANzVgnm/E7izbvhqYEtmnkXtVHhXt2AekiQ1rTQkI+IFEfGeiLgT+CC160hGZl6QmXPakoyI04GLgI/Wjb4Y2FA83gBcMpd5SJI0V9Ptk7wL+D/Az2XmvQAR8Rstmu8HgN8Cjq8bd0pm7gLIzF0RsbxF85IkqSnTheSlwOXALRHxeeBT1A7cmZOIeCOwOzO3RsSaJv5+LbUDiVi2bBmjo6NzbdK8s2/fPuvWJGvXHOvWHOtWvcjM6V8Q8RxqXZ9XAK+h1hV6fWbe1NQMI/4Q+EVqF3BeDJwAXAe8HFhTbEWuAEYzc/V001q9enVu27atmWbMa6Ojo6xZs6bqZvQka9cc69Yc69aciNiamee0YlqNHN36ZGZuysw3AqcDtzGHg2oy85rMPD0zV1HbUv1CZr4VuAG4snjZlcBnmp2HJEmt0NDRreMyc09mfjgzX9OGtvwR8DMRcQ/wM8WwJEmVaeRkAm2TmaPAaPH4EeDCKtsjSVK9WW1JSpI0nxiSkiSVMCQlSSphSEqSVMKQlCSphCEpSVIJQ1KSpBKGpCRJJQxJSZJKGJKSJJUwJCVJKmFISpJUwpCUJKmEISlJUglDUpKkEoakJEklDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSCUNSkqQShqQkSSUMSUmSShiSkiSVMCQlSSphSEqSVMKQlCSphCEpSVIJQ1KSpBKGpCRJJQxJSZJKGJKSJJUwJCVJKmFISpJUwpCUJKmEISlJUglDUpKkEoakJEklDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSiY6HZEScERG3RMSdEXFHRLyzGL80Im6OiHuK+5M63TZJkupVsSX5LPDuzPxR4JXAr0XEC4GrgS2ZeRawpRiWJKkyHQ/JzNyVmd8oHj8B3AmcBlwMbChetgG4pNNtkySpXmRmdTOPWAV8CXgxsDMzT6x77tHMPKrLNSLWAmsBli1bdvbmzZs709g+sm/fPpYsWVJ1M3qStWuOdWuOdWvOBRdcsDUzz2nFtCoLyYhYAnwRWJ+Z10XE3kZCst7q1atz27Zt7W5q3xkdHWXNmjVVN6MnWbvmWLfmWLfmRETLQrKSo1sj4ljg08CmzLyuGP1gRKwonl8B7K6ibZIkjavi6NYAPgbcmZl/WvfUDcCVxeMrgc90um2SJNU7poJ5ng/8IvDtiLitGPdfgT8CNkfEVcBO4LIK2iZJ0mEdD8nM/GcgSp6+sJNtkSRpOp5xR5KkEoakJEklDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSCUNSkqQShqQkSSUMSUmSShiSkiSVMCQlSSphSEqSVMKQlCSphCEpSVIJQ1KSpBKGpCRJJQxJSZJKGJKSJJUwJCVJKmFISpJUwpCUJKmEISlJUglDUpKkEoakJEklDElJkkoYkpIklTAkJUkqYUhKklTCkJQkqYQhKUlSCUNSkqQShqQkSSUMSUmSShiSkiSVMCQlSSphSEqSVMKQlCSphCEpSVIJQ1KSpBKGpCRJJQxJSZJKGJKSJJUwJCVJKtF1IRkRr4uIbRFxb0RcXXV7JEnzV1eFZEQsAP4KeD3wQuCKiHhhta2SJM1XXRWSwLnAvZl5X2YeBD4FXFxxmyRJ81S3heRpwPfqhu8vxkmS1HHHVN2ASWKKcTnhBRFrgbXF4NMRcXvbW9V/ngc8XHUjepS1a451a451a87qVk2o20LyfuCMuuHTgQfqX5CZI8AIQER8PTPP6Vzz+oN1a561a451a451a05EfL1V0+q27tavAWdFxJkRsRC4HLih4jZJkuaprtqSzMxnI+I/Af8ELAA+npl3VNwsSdI81VUhCZCZnwM+1+DLR9rZlj5m3Zpn7Zpj3Zpj3ZrTsrpFZs78KkmS5qFu2ycpSVLX6NmQ9PR1E0XExyNid/1PYiJiaUTcHBH3FPcn1T13TVG7bRHxs3Xjz46IbxfP/UVETPWznL4REWdExC0RcWdE3BER7yzGW7tpRMTiiLg1Ir5V1O33ivHWbQYRsSAivhkRNxbD1qwBEbG9eM+3jR+92pHaZWbP3agd1PMd4PnAQuBbwAurblfFNXk18BPA7XXj3gdcXTy+Gnhv8fiFRc0WAWcWtVxQPHcrcB6136z+I/D6qt9bm+u2AviJ4vHxwN1Ffazd9HULYEnx+Fjgq8ArrVtDtXsX8L+AG4tha9ZY3bYDz5s0ru2169UtSU9fN0lmfgnYM2n0xcCG4vEG4JK68Z/KzKcz87vAvcC5EbECOCEzv5y1penaur/pS5m5KzO/UTx+AriT2lmerN00smZfMXhscUus27Qi4nTgIuCjdaOtWfPaXrteDUlPX9eYUzJzF9TCAFhejC+r32nF48nj54WIWAW8jNpWkbWbQdFteBuwG7g5M63bzD4A/BYwVjfOmjUmgZsiYmtx5jXoQO267icgDZrx9HWaVln95m1dI2IJ8Gng1zPz8Wl2U1i7QmYeAl4aEScC10fEi6d5+byvW0S8EdidmVsjYk0jfzLFuHlVs0nOz8wHImI5cHNE3DXNa1tWu17dkpzx9HUC4MGie4Hifncxvqx+9xePJ4/vaxFxLLWA3JSZ1xWjrV2DMnMvMAq8Dus2nfOBn4+I7dR2Eb0mIjZizRqSmQ8U97uB66ntdmt77Xo1JD19XWNuAK4sHl8JfKZu/OURsSgizgTOAm4tuiueiIhXFkd8va3ub/pS8T4/BtyZmX9a95S1m0ZELCu2IImI44B/A9yFdSuVmddk5umZuYrad9YXMvOtWLMZRcRzIuL48cfAa4Hb6UTtqj5iaQ5HOr2B2pGI3wHWVd2eqm/AJ4FdwDPU1pauAk4GtgD3FPdL616/rqjdNuqO7gLOKRa+7wAfpDjhRL/egFdR6275F+C24vYGazdj3X4c+GZRt9uB9xTjrVtj9VvDkaNbrdnM9Xo+taNVvwXcMf6d34naecYdSZJK9Gp3qyRJbWdISpJUwpCUJKmEISlJUglDUpKkEoak1EUi4lBxlYPxW8uucBMRq6LuKjGSZtarp6WT+tWBzHxp1Y2QVOOWpNQDimvpvTdq13C8NSJ+uBg/FBFbIuJfivuVxfhTIuL6qF3v8VsR8ZPFpBZExEeidg3Im4qz5UgqYUhK3eW4Sd2tb6577vHMPJfaWUI+UIz7IHBtZv44sAn4i2L8XwBfzMyXULvO6B3F+LOAv66Kc+oAAAEDSURBVMrMFwF7gUvb/H6knuYZd6QuEhH7MnPJFOO3A6/JzPuKE7L/IDNPjoiHgRWZ+UwxfldmPi8iHgJOz8yn66axitolrc4qhn8bODYz/3v735nUm9ySlHpHljwue81Unq57fAiPS5CmZUhKvePNdfdfLh7/P2pXlAAYBv65eLwFeDscvjjyCZ1qpNRPXIuUustxEXFb3fDnM3P8ZyCLIuKr1FZuryjG/Wfg4xHxm8BDwC8V498JjETEVdS2GN9O7SoxkmbBfZJSDyj2SZ6TmQ9X3RZpPrG7VZKkEm5JSpJUwi1JSZJKGJKSJJUwJCVJKmFISpJUwpCUJKmEISlJUon/Dy0+XFdVprLFAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -339,35 +339,35 @@ "[##############################] 100%\n", "\n", "================= Iteration Stats ================\n", - " step: 10000 of 10000\n", - " loss: 0.522784\n", + " step: 5000 of 5000\n", + " loss: 0.655206\n", "\n", - " step accuracy: 70.00 %\n", - " AVG: 77.28 %\n", - " Best: 90.00 %\n", + " step accuracy: 72.00 %\n", + " AVG: 76.32 %\n", + " Best: 86.00 %\n", "\n", " Trend slope: -0.000\n", " MAD Dispersion: nan\n", - " Skewness: Approximately symmetric distribution ( -0.12 )\n", + " Skewness: Approximately symmetric distribution ( -0.21 )\n", "\n", "================= Time ================\n", - " Elapsed: 0h, 2 min and 12 sec\n", + " Elapsed: 0h, 0 min and 47 sec\n", " ETC: 0h, 0 min and 0 sec\n", "\n", "================= Network Setup ================\n", " number of classes: 1\n", " number of features: 14\n", - " learning rate: 1\n", - " training steps: 10000\n", + " learning rate: 1e-07\n", + " training steps: 5000\n", " batch size: 100\n", - "1st layer n. of neurons: 512\n", - "2st layer n. of neurons: 512\n", + "1st layer n. of neurons: 256\n", + "2st layer n. of neurons: 256\n", " Normalized data: True, type: max, Discrete Binary 0/1\n", "\n", "Trainning Analysis Finished. Start testing test dataset...\n", "\n", "Accuracy of highest score in prediction dataset\n", - " Test Accuracy: 77.00 %\n" + " Test Accuracy: 76.00 %\n" ] } ], @@ -447,7 +447,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -459,11 +459,11 @@ " equal to 0: 100.0%\n", "\n", "checking answers:\n", - "none of the answers matches the output\n", - "Answer starts with '0 0 1', matches [80]: 79.21% of values\n", - "Answer starts with '1 0 1', matches [55]: 54.46% of values\n", - "Answer starts with '1 1 0', matches [21]: 20.79% of values\n", - "Answer starts with '2 1 0', matches [15]: 14.85% of values\n" + "none of the answers matches the output. Answer starts with: \n", + " '0 0 1 ...' -> matches [80]: 79.21% of values\n", + " '1 0 1 ...' -> matches [55]: 54.46% of values\n", + " '1 1 0 ...' -> matches [21]: 20.79% of values\n", + " '2 1 0 ...' -> matches [15]: 14.85% of values\n" ] } ], @@ -477,12 +477,12 @@ "output_pre=np.round(run_prediction.numpy(),0)\n", "\n", "#assessing output value with its probability \n", - "ouput = np.empty(shape=(output_pre.shape[0],1))\n", + "output = np.empty(shape=(output_pre.shape[0],1))\n", "for i in range(output_pre.shape[0]):\n", " if ((output_pre[i][0]==1 and output_pre[i][1]==0) or (output_pre[i][0]==0 and output_pre[i][1]==1)):\n", - " res[i][0]=0\n", + " output[i][0]=0\n", " elif((output_pre[i][0]==1 and output_pre[i][1]==1) or (output_pre[i][0]==0 and output_pre[i][1]==0)):\n", - " res[i][0]=1\n", + " output[i][0]=1\n", "\n", "print(\"distribution of values:\")\n", "print(\" equal to 1: \" + str( round(np.sum(output==1)/output.shape[0]*100,1) )+\"%\")\n", @@ -506,15 +506,15 @@ "elif (output==answer4).all():\n", " print(\"answwer starts with '2 1 0'\")\n", "else:\n", - " print(\"none of the answers matches the output\")\n", + " print(\"none of the answers matches the output. Answer starts with: \")\n", " num_matches, percentage= calStats(output, answer1)\n", - " print (\"Answer starts with '0 0 1', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " print (\" '0 0 1 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", " num_matches, percentage= calStats(output, answer2)\n", - " print (\"Answer starts with '1 0 1', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " print (\" '1 0 1 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", " num_matches, percentage= calStats(output, answer3)\n", - " print (\"Answer starts with '1 1 0', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " print (\" '1 1 0 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", " num_matches, percentage= calStats(output, answer4)\n", - " print (\"Answer starts with '2 1 0', matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", + " print (\" '2 1 0 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", " " ] }, diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb index 0b3a1462..e4c17b53 100644 --- a/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Multilayer_Perceptron_With_Keras.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 16, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,17 +25,16 @@ "# Training parameters.\n", "learning_rate = 0.0000001\n", "training_steps = 5000\n", - "batch_size = 24\n", - "display_step = 100\n", + "batch_size = 100\n", "\n", "# Network parameters.\n", - "n_hidden_1 = 256 # 1st layer number of neurons.\n", + "n_hidden_1 = 128 # 1st layer number of neurons.\n", "n_hidden_2 = 256 # 2nd layer number of neurons.\n" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -62,27 +61,29 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Model: \"sequential_5\"\n", + "Model: \"sequential\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", - "dense_9 (Dense) (None, 256) 3840 \n", + "dense (Dense) (None, 128) 1920 \n", "_________________________________________________________________\n", - "dropout_3 (Dropout) (None, 256) 0 \n", + "dense_1 (Dense) (None, 256) 33024 \n", "_________________________________________________________________\n", - "batch_normalization_2 (Batch (None, 256) 1024 \n", + "dropout (Dropout) (None, 256) 0 \n", "_________________________________________________________________\n", - "dense_10 (Dense) (None, 1) 257 \n", + "batch_normalization (BatchNo (None, 256) 1024 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 1) 257 \n", "=================================================================\n", - "Total params: 5,121\n", - "Trainable params: 4,609\n", + "Total params: 36,225\n", + "Trainable params: 35,713\n", "Non-trainable params: 512\n", "_________________________________________________________________\n" ] @@ -92,6 +93,7 @@ "# define model\n", "model = Sequential()\n", "model.add(Dense(n_hidden_1, activation='relu', kernel_initializer='he_normal', input_shape=(num_features,)))\n", + "model.add(Dense(n_hidden_2, activation='relu', kernel_initializer='he_normal', input_shape=(num_features,)))\n", "\n", "# example of using dropout\n", "model.add(Dropout(0.5))\n", @@ -102,7 +104,7 @@ "model.add(Dense(1, activation='sigmoid'))\n", "# compile the model\n", "sgd = SGD(learning_rate=learning_rate, momentum=0.8)\n", - "model.compile(optimizer=sgd, loss='binary_crossentropy')\n", + "model.compile( loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n", "\n", "# configure early stopping\n", "es = EarlyStopping(monitor='val_loss', patience=5)\n", @@ -113,17 +115,17 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAIECAYAAAAXTCf5AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdf2jb950/8OdnadpbwiZf7rC9+eZuuywmsE1lPRJ3XWtih++ot4/ag9h17Lkeh2wklpaNiHHxSRgjk3YgsdAUYizBXRG2RVK4xh+6/JMIYjrihOudPnDlqNm6ymNh/nCj0gqDNus+3z9y708+H/2yJEv6SP48HyASffTR+/P6fCTr9fm8P+8fkq7rOoiIiMgpznzG7giIiIiouZj8iYiIHIbJn4iIyGGY/ImIiBzmIbsDaAWKoiCRSNgdBhERNdC+ffvw85//HN3d3XaHYjte+QNIJpO4cuWK3WEQOcbW1hb/5ip0+/Zt3L592+4w9oRkMolUKmV3GC2BV/7/Z3x8HMvLy3aHQeQIKysrmJiYwOXLl+0OpeVNTEwAAH+f6kCSJLtDaBm88iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyJqa6FQCKFQyO4wWookSZZHMZqmIRqNNjmynUWjUeRyuaKvVbJfVBkmfyKiXcjlci2biHRdR7GJWzVNw9zcHGRZNpYlk0l4PB5IkgS/3w9N06reXi6Xw8bGBmKxGDweT0XvicViluN38uRJTE5OFt1+qf2h6jH5E1FbC4fDCIfDtm1/fX3dtm3XIpfLwev1YmpqCkeOHAFwPwF3dnZibW0Nuq5jYGAAXq8XqqpWVXYkEsFbb72FmZkZKIqy4/qqqmJmZsayzO12Y3Z2Fl6vt2QNAO0ekz8RUY1yuRxisZjdYVQlHo/D7Xajv7/fWDYzM2O50h4bG4OiKFXfTqnmRCyXy+GNN94o+lp/fz96enoQj8er2j5VjsmfiNqWpmlGdXWx54qiQJIkeDwebG1tGesoimKsI6qd/X4/Njc3jbKL3VvOXxaJRIwrXPPyVm2HoGkaAoEATpw4YVm+tLSElZWVgvV7enoaFks8HseLL75Y8vWRkREEAoGabj/Qzpj8iahteb1enD592kjA5ucbGxuQZRmZTAaKouDll18GAHR1dcHj8RjrTE9PI5vNAgD6+vqME4Dt7e2C7WUyGctz81VuO9yPFnMEHD582LJ8enoaa2trxnNxDHw+X0PiSKVSePLJJ9HZ2VlyHREj5zVoDCZ/Impb5oSV/1xUa/f29gIAFhcXAcCSoMU6LpfLSHTiRKJYYhJl7cTudgil3LlzB8DO+5FIJJBOp+F2u+seg6Zp+PWvf2257VCMy+UCAEttDNUPkz8REWAkukAgYHMkjbOwsLDjOqlUCqdOnWpI4geAq1evYnp6esf1RPLfy5+HnZj8iYjIcODAgYYlfkVR8N3vfrchZVN1OKUvEZFJo+5zt4NkMomxsbGGlV+u778kSS3fZmIv4ZU/EREe3FseHh62OZLGiUQiAFCy/3wjEz/woFGk+WF+rZhgMNjQmJyKyZ+I2pa5G5imaZbnIsGZE11+t7FkMmmsk0gkIMuyZdQ7UQsgTgw2NjaM1/x+PwAY65uHy23Vrn5iUJ9Syb9U3NFoFJIkVTToj7ns3QzSI7pmHjt2rOYyqDQmfyJqW11dXZb/m593dHRY/s1fHwCOHj0Kj8eDjo4O9Pb2IpFIWF4/d+4cZFlGX18fFEVBf38/ZFnG6uoq5ufnATzo7nfx4kVMTk7Wdwfr7Pjx4wCAu3fvVvW+bDYLn8+34wmNJEmW493R0VHz0MciRhEz1Rfv+RNR26rkHnG5ddxud0F3QbPe3t6y3QlFGfnbaMVufsD97ouRSAS//OUvi3a1KxW3WL7TeP213LMv9Z633noLkUik7FgAVDte+RMROYjX68XNmzcttzAqsbGxgdnZ2QZFZaWqKlRVhdfrbcr2nIjJn4gcJb+dgNO4XC7E43GcP3++4ol7UqkUDh06tOPAPPWwubmJxcVFxONxo68/1R+Tfx3ljyvuZK3a4Ikov53AXlZq3vvOzk4kEglcv369onIGBweNxoKNpigK5ufni1b3l9ofqh6Tfx3Nzc1ZxhlvN5qmGZOcSJJktIRuR7XMsW6etKXYpC7NlB9/K8XW7kp1NdtLKtlHl8uFs2fPNjmynZ09e7bkfX4nfHbNwuRfR5cuXbI7hJqJOb6B+39g29vbWFlZqfnq3e6xzWuZY13XdWOCF+B+C2e7fmDy4xefiWBnbETU/tjanwAA165dg6IoRlenzs5OhMNhPPbYYzhx4gQGBwdtjrByu5lj3XyP0a77jaXiN18N8V4oEe0Gr/x3IZfLIZlMGvOFl5p9Sgz+IdZLpVLG8p3mHhfE+2OxGDRNK6jyLbWNSom5vM1J5ctf/jIA4MqVK1WVtdfmWG+V+KshTiDE+0OhkOU7Ih5iUBoAltfM+1Xquyv2N5fLwe/3s40HUTvRSR8fH9fHx8erfp8sy7rP59Oz2ayu67q+urqqA9DNh3V7e1uXZVlfXV3VdV3Xb9y4oQPQ0+m0Lsuysf6tW7d0Xdf1TCajA9B9Pp9RRiQS0TOZjK7rup7NZvVgMFjxNiqVH/dOy8sx71f+81L7KV43r5PNZnWfz6cD0N977z1jX/NjEmWZlxWLOxgM6sFgcMf489/bKvGXW55PbHd7e7sg1lu3bhV8x8z7ur29bcRa6Xc3nU4XLa+U5eXlqr9XTlXr7xMVAqAvLy/bHUYr+BH/+vTa/rjW1tYsP+q6fv/HPv/HWZwQmAEwklCxH/NiiUD8IOv6gwRS6TYqkZ+kSsVSqUqSWSXrpNNpHYAeiUR2XVatsbdS/JXuVzAYtCTj/PdFIhEdgHFSKWIViV7XK//uipPfajD5V47Jv36Y/A1M/rpe2x+XSJb5yl015j+KrV9smdjW6upq0R/anbZRCfPVoNhGscRVqXol/3qXVUvsrRR/tfuVyWSMRG9+n/hsl5aWjGXmGiZdr+27WymR/Pngo9kPJn9d13X9R2zwV6PFxcWK1hP3bvVdtMz+yU9+gt/97nc4ffo0gPv3hM1ddOqxjf7+fty4cQMXLlxAR0cHlpaW8Pd///cAgJMnT9ZcLtknFotBURREIhEEAgHLa263Gz6fDzMzMxgdHQUA/OpXv0Jvb6+xTj2+Vzu5fPlyw8reK1599VUAwEsvvWRzJO1PfNeJrf2bZnNzs+ZBMo4cOYK1tTWoqorFxUXjhzy/j+5utgHcH8jD3Ko/Go0iGAzC7XbXXGa9tPsc682K3+/349KlS0gmk5iZmUEmk7Ek9PyYFhcXce3aNRw8eBBTU1NF19vt96qckZGRhpS7l7z55psAeKyovtjav0ZLS0sAsOPwmGK9RCJhTG9pnvqzEpIkIZfLwe1249KlS0in05YruXpsI18ymcTNmzcLrhibrd3nWG9m/BsbGxgYGAAAo5aoVOIHHlz9nz59GrFYrGDo1kZ8r4ioNTD51+i73/0ugPvdx0S3KHP3OjHX97PPPgsAWFhYMKa37OrqwsjISFVzj0ciEWM7f/3Xf41IJGK8Vm4b1cjlclBVFX6/H7/73e+wtrZWU3/ydp5jvdhc5K0Sf7lx6Dc2NvDEE0/g6NGjlvdvbW1ZuhrmlyGu9s3xCZV+d4moDdnc6KAl1NqaNpPJGI3xfD6fpWuUuXV+JpMxuuf5fD6jURXyGqKUW7a9vW003CrWAK/UNioltre0tFRVF8FyZZV67LTv5q5kS0tLBY0cM5mM8fra2pqu63rBcRcN2oLBoLFsp65+O8VtZ/yVxpbfWFO8X7T+L/a9kGW5oJeHOdadvruyLJc8pqWwtX/l2Nq/fsAGf8KPJF3nGKETExMAgOXlZZsjcTYxmE27fiXbMf5cLod//ud/bvrQ1CsrK5iYmGirY2UX/j7VjyRJWF5exvj4uN2h2O0Mq/2JHOzy5ctsSEbkQEz+1BLafY71doo/FApZhvFtp3kbqDKVzP7Yqo03o9GopU2NGWe1rB8m/z2u1FSwtfwR1bOsfO0+x3o7xS96ACwtLdk686KdapnyuZXKr5ReYupbTdMwNzdnaegp5q8Qc1LUchKby+WwsbGBWCxmzHOxEzEHhXDy5ElMTk4W3X6p/aHqMfnvceKPZadHs8vaqex2007xT09PQ9d1TE9P2x2KbWqZ8rmVyt8NMX331NSUMX5DLBZDZ2cn1tbWoOs6BgYG4PV6d+zKnC8SieCtt97CzMyMMUhUOaqqYmZmxrLM7XZjdnYWXq+3ZA0A7R6TPxE5ym6mfG6F8ncrHo/D7XZbxnWYmZmxXGmPjY1BUZSqZ2oMh8MV1yblcjm88cYbRV/r7+9HT08P4vF4VdunyjH5E1HbME+jbZ7iWqh1yuRWnlK6njRNQyAQwIkTJyzLl5aWjGm9zXp6ehoWSzwex4svvljy9ZGREQQCgZZvQ9OumPyJqG1MTk7io48+gq7r2N7ehqIolurh7e3tgvdkMhnLc/OVqbhN09XVBY/HA0VRsLGxgenpaWSzWQBAX1+fcQJQa/mt4vbt2wCAw4cPW5ZPT09jbW3NeC72t1HDUqdSKTz55JPo7OwsuY6IUcRM9cXkT0RtIZVKQVEUY+TBzs5OzM7OQlEUXLt2zViWr9wQx4I5QYvqcJfLZSQ/cSVfa/lAdVXijXLnzh0AO8ecSCSQTqcbMq+Hpmn49a9/XTCcdD4xuqi55oXqh8mfiNrClStXAFgTsBjOuFiVdT2I5Gf3HBf1srCwsOM6qVQKp06datiEXlevXq2osalI/nvl2LcaJn8iagvFptEWCaKSluVUmQMHDjQs8SuKYsyLQvZi8ieitmCe7Chfo6dMbvcppSuVTCZ3rI7fDY/Hg0cffbRkw0lqHiZ/ImoLYjz2999/31gmGvo1aojidp9SOp+YDbRU//mxsbGGbr/cuCClGkYGg8GGxuRUTP5E1BaeeeYZyLKM8+fPG1f/165dg8/nswxRXOuUyYKdU0o3mhjUp1TyLxVjNBqFJEkVDfpTbFrsWogpzI8dO1ZzGVQakz8RtQWXy4V4PA5ZltHV1WVUE7/yyiuW9c6dOwdZltHX1wdFUdDf3w9ZlrG6uor5+XkAD7rjXbx4EZOTk5b3Hz16FB6PBx0dHejt7UUikahr+XY6fvw4AODu3btVvS+bzcLn8+148iJJEjo6OoznHR0dNVfnixhFzFRfnNIXnDKTqNlacUrfVp2SuZbfp3L7Imoizp49W3UsHo/HMh5AI4VCIXR0dBSNs9bPilP6GjilLxGRk3i9Xty8edNyu6ISGxsbmJ2dbVBUVqqqQlVVeL3epmzPiZj8icjx2mlK5t0St0/Onz9f8cQ9qVQKhw4damhPAGFzcxOLi4uIx+NGV06qPyZ/InK8dpqSuRqlptnu7OxEIpHA9evXKypncHDQaCzYaIqiYH5+vuhoiruZNpysHrI7ACIiu7Xaff7dqmR/XC5XTff9G61cTHvtc7ITr/yJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGHY4O//XLlyBc8995zdYRA5wu3btwE8mKaXShPD3PJYUT0x+QP4yle+gnv37mF0dNTuUIgchX9zlXv77bftDmFPOHz4sN0htAQO70vkQK04vC4RNQ2H9yUiInIaJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJymIfsDoCIGu/y5cv4zW9+YzxPp9MAgJ/97GeW9b73ve/h61//elNjI6Lmk3Rd1+0OgogaS5IkAMAjjzxScp2PP/4YP/3pTwtOCIhozznDan8iBzhz5gwefvhhfPzxxyUfADA8PGxzpETUDEz+RA4wNjaGTz75pOw63d3deOqpp5oUERHZicmfyAG+/e1v44tf/GLJ1x9++GFMTEzgM5/hTwKRE/AvncgBJEnCCy+8gP379xd9/ZNPPsHp06ebHBUR2YXJn8ghxsfHce/evaKvfeUrX8Hjjz/e5IiIyC5M/kQO8Y1vfANf+9rXCpbv378fP/zhD5sfEBHZhsmfyEGmpqYKqv7v3bvHKn8ih2HyJ3KQ06dP489//rPxXJIkfPOb3yxaI0BEexeTP5GDfPWrX8W3vvUtY9Cfffv2YWpqyuaoiKjZmPyJHGZychL79u0DAHz66acYGxuzOSIiajYmfyKHef755/GXv/wFAPDUU0+V7f9PRHsTkz+Rw3R3dxvd+iYmJmyOhojswIl92sydO3dw/Phxu8MgIgIAY84IaitnOKVvm/nVr34F4P4UrUTlvPrqqwCAl156qeA1Xdfxxz/+ES6Xq9lhtaTR0VG89NJL+M53vmN3KG1lZWUFb775pt1hUA2Y/NvUyMiI3SFQixM/yvyuVOb48eM8VlW6d+8ek3+b4j1/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInoh2FQiGEQiG7w2gLmqYhGo3aHUaBaDSKXC5ndxjUIpj8iajl5XI5YzKiVqZpGubm5iDLsrEsmUzC4/FAkiT4/X5omlZ1ublcDhsbG4jFYvB4PBW9JxaLWY7ZyZMnMTk5WdP2ae9h8ieiHYXDYYTDYdu2v76+btu2K5XL5eD1ejE1NYUjR44AuJ+AOzs7sba2Bl3XMTAwAK/XC1VVqyo7EongrbfewszMDBRF2XF9VVUxMzNjWeZ2uzE7Owuv18saAGLyJ6LWlsvlEIvF7A5jR/F4HG63G/39/caymZkZy5X22NgYFEWp+hZKNSdfuVwOb7zxRtHX+vv70dPTg3g8XtX2ae9h8ieisjRNM6quiz1XFAWSJMHj8WBra8tYR1EUYx1RBe33+7G5uWmULUmS8Si1LBKJGFe75uWt1A5B0zQEAgGcOHHCsnxpaQkrKysF6/f09DQslng8jhdffLHk6yMjIwgEAqz+dzgmfyIqy+v14vTp00YCNj/f2NiALMvIZDJQFAUvv/wyAKCrqwsej8dYZ3p6GtlsFgDQ19dnnABsb28XbC+TyViem694dV1HK85Fdvv2bQDA4cOHLcunp6extrZmPBf77fP5GhJHKpXCk08+ic7OzpLriBhFzORMTP5EVJY5eeU/F1Xcvb29AIDFxUUAsCRosY7L5TKSnjiRKJakRFk7sbsdgtmdO3cA7Bx7IpFAOp2G2+2uewyapuHXv/615bZDMWIyJ3MNDDkPkz8RNY1IeoFAwOZI6mthYWHHdVKpFE6dOtWQxA8AV69exfT09I7rieS/1z4Dqg6TPxFRExw4cKBhiV9RFHz3u99tSNm0N3FKXyJqukbd825VyWQSY2NjDSu/XN9/SZJasp0E2YtX/kTUNOI+8/DwsM2R1FckEgGAkv3nG5n4gQcNIc0P82vFBIPBhsZErY3Jn4jKMncJ0zTN8lwkO3PSy+9ClkwmjXUSiQRkWbaMgCdqAcSJwcbGhvGa3+8HAGN989C5rdTVTwzqUyr5l4o1Go1CkqSKBv0xl72bQXpEd8xjx47VXAa1PyZ/Iiqrq6vL8n/z846ODsu/+esDwNGjR+HxeNDR0YHe3l4kEgnL6+fOnYMsy+jr64OiKOjv74csy1hdXcX8/DyAB939Ll68iMnJyfruYB0cP34cAHD37t2q3pfNZuHz+XY8iZEkyXKMOzo6ah7uWMQoYiZn4j1/IiqrkvvF5dZxu90F3QXNent7y3YnFGXkb6NVuvkB97ssRiIR/PKXvyza1a5UrGL5TuP113LPvtR73nrrLUQikbJjAdDexyt/IqI68Hq9uHnzpuW2RSU2NjYwOzvboKisVFWFqqrwer1N2R61LiZ/h8ofopWonvLbCTiBy+VCPB7H+fPnK564J5VK4dChQzsOzFMPm5ubWFxcRDweN/r6k3Mx+TvU3NycZcjWdqNpmjFevCRJRqOyapjHkM9/RKNRKIrC2c9qlN9OwCk6OzuRSCRw/fr1itYfHBw0Ggs2mqIomJ+fZ3U/AWDyd6xLly7ZHULNxNSpwP37mtvb21hZWam65bd4r5DNZo1uUidPnkQsFuP85zUq1e3MCVwuF86ePWt3GAXOnj3LxE8GJn9qO9euXYOiKBgdHQVw/2orHA5jYWEBqVSqqrLMP4bmqlC3221Me8r5z4lor2Hyd4hcLodkMmlMvVpqUg/Rj1qsJ5JpJdO4CuL9sVgMmqYVdEkqtY1KiSlSzcn6y1/+MgDgypUrxrLd9gPv7OzEj3/8YyiKgvX1dctr7XCciIhK0qmtLC8v67V8bLIs6z6fT89ms7qu6/rq6qoOwFLW9va2Lsuyvrq6quu6rt+4cUMHoKfTaV2WZWP9W7du6bqu65lMRgeg+3w+o4xIJKJnMhld13U9m83qwWCw4m1UKj/uUsuDwaAeDAZrLk/sQ/4+tstxGh8f18fHxyte38kA6MvLy3aH0XZq/T0i2/2In1qbqeWPbW1tTQegv/fee8YykdTMZYkTAjMARgItliTzlwHQt7e3jefb29tVbaMSPp+vYH9KxVeJnd7XrseJyb9yTP61YfJvWz/iID8O8Itf/AIALK2Ki3X1EdXp+dXPCwsLFQ+o4vP50NXVhdXVVTzzzDPo7Oy0NPiqxzampqawuLiIn//853jllVfgcrmMrlVijPVGapfjBNwfytV8K4RKu337Nvbv3293GG3l9u3bdodAtbL79IOqU8uZNiqsJi+1XrnX85e99957lqrvSCRSUSzVunHjhrGdpaWlmqrFK4lJ1JCYr7jb5TiNj48b5fDBRyMf1HZ+xAZ/VKBUY8BKHDlyBGtra0in0/D5fAgEAsZELPXaBnC/f/Ta2hp0Xcf09DT+67/+C8FgsO7zpb/zzjsAgBMnThS81g7HaXx8vOiMb3wUdkVcXl62PY52eywvL+/q+0n2YfJ3gKWlJQDYcdQxsV4ikTC6tplnUauEJEnI5XJwu924dOkS0uk0AoFAXbeRL5lM4ubNm5bt1IOmabhw4QJkWcbg4KCxvF2PExGRQae2Uku1v2htLsuy0cJcVJMDD1qhi0Zn+Y9MJmN5TfQYMDcaFI3XgPtV5GI7mUzGUqVdbhvVyGazejqd1n0+X0GVuVBJa3/zPoj90nXdaLkvy7KlYV47HSc2+KscwAZ/tWCDv7bFan8n6O3tRSaTQU9PDx599FH4/X58/etfL5g2tbOzE5lMBsFgEMD9RmmZTAa9vb1VTeP64osv4sqVK5AkCVeuXLGMdlZuG5US05veuXMHPp+v5tHUSk2TKkkSrl+/jtnZWaytrRWMitYux4mIqBRJ1//vhhe1hZWVFUxMTIAfG+1kYmICAHhftgKSJGF5eRnj4+N2h9JW+HvUts7wyp+IiMhhmPyJiIgchsmfWka5KXbND6JW0s69MKLRKCetcigmf2oZehV9sqn15XK5hp6sNbr8Smiahrm5OciybCwTEztJkgS/31/TlNBbW1vw+/1GGaUmdVJV1XJi7Pf7S5apqipisZgRGwCcPHmS01Y7FJM/ETVE/kyI7Vb+TnK5HLxeL6ampoyhs2OxGDo7O40BqAYGBuD1enccYyO/XFVVcenSJWSzWQwMDGBoaAiKohSse+fOHcvz4eHhomVGo1GEQiF0d3fjtddeM06i3W43ZmdnOW21AzH5E1Hd5XI5xGKxti2/EvF4HG63G/39/caymZkZy1X02NgYFEWpamrp9fV1oybB5XJhbGwMAIxpos26u7sttWLmGgjB7/cjm80ikUhAluWC7qL9/f3o6elBPB6vOEZqf0z+RGSRy+WQTCaNquRYLGZJaMXaX+Qvi0QixpWqWK5pGhRFMZJYLBYzqqrNwxjXWj4AhEKhqhJtrTRNQyAQKBj2eWlpyZiUyaynp6fisoslcOD+WA9mW1tb8Hg8CIVC2NjYKPoecSzC4XDRybyEkZERBAIBVv87CJM/EVlMTk7io48+gq7r2N7ehqIolmrh7e3tgvdkMhnLc/PMg+KqtKurCx6PB4qiYGNjA9PT08hmswCAvr4+4wSg1vKbScxmd/jwYcvy6elprK2tGc/FPuUn7mqI455fpS9uJSwsLOCJJ56Ax+OxJG9VVbGwsIDh4WHjRMvj8RRtPyD2g7P0OQeTPxEZUqkUFEXBs88+C+D+SIOzs7NQFAXXrl0zluWrZORBc4IWVeUul8tIjOJKvtbygfsnBdVMeVwrca99p7gSiQTS6fSuJpx65513IMsynn76actyWZaRzWaRTqcRDAahKAquXr1qvH79+nUjRnGi1dPTg6GhoYKaAlErsNuJpKh9MPkTkeHKlSsArAn46NGjAFC0OrseRGKs98RMjbSwsLDjOqlUCqdOndr1TJMXLlzA7Oxs0Wp7l8sFt9uNcDiMpaUlS6NAcTzF9s0nWq+//npBOeb30N7H5E9EhsXFxYJlIjEUa21OpR04cGDXiT+ZTEKWZUujwlJGR0d3/IxEPMU+Z3IWJn8iMojGZsUafu3mvnUlGl1+MyWTyYoSdjmqquLdd9/F9PR0Reubr+yBB8ezWBe+Uo0KyTmY/InIICa2ef/9941lInmMjIw0ZJviPnOpPuqtKBKJACieWAEY3fNqpWkarl+/bmm/oKpq2UF8crmc5TMS///ggw8s6wAoOYGRmEWS9j4mfyIyPPPMM5BlGefPnzeu/q9duwafz4fBwUFjPXFVKRK3uQGZSFDmWoT84W+TySSA+8lI9D83X43WWn6zuvqJQX1KJf9ScUSjUUiSVHbQH03T4PV6EQgELF0cH3vsMeMEKZlMWlrtb21tYX193fIZDQ4OIhgMIhQKGZ/l5cuXIctywcnJ1tYWAODYsWOV7D7tAUz+RGRwuVyIx+OQZRldXV1G//lXXnnFst65c+cgyxF3vacAACAASURBVDL6+vqgKAr6+/shyzJWV1cxPz8P4EF3vIsXL2JyctLy/qNHj8Lj8aCjowO9vb1IJBJ1Lb/Rjh8/DgC4e/duVe/LZrPw+XxlT1Dm5uZK3rvv6+sDABw8eBBDQ0OQJAmhUAgffvhh0ar8cDhc8FnmH2vzfoj9or1P0jlYelvh/NlUqYmJCQDA8vKyzZE8IBJQq31/JUnC8vJyyerwYkRtw9mzZ6vensfjsYwHYLdQKISOjo6q94W/R23rDK/8iYhq4PV6cfPmzZKj65WysbGB2dnZBkVVPVVVoaoqvF6v3aFQEzH5E1FTmHsQ7IVhZMUtkvPnz1c8cU8qlcKhQ4d23ROgXjY3N7G4uIh4PF52+F/ae5j8iagpurq6iv6/nXV2diKRSBij6e1kcHDQaCzYChRFwfz8fNFRFWlve8juAIjIGfbqfWGXy1XTff9W0K5x0+7xyp+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIYN/trU6Oio3SFQi7t9+zYAflcq9eqrr+LNN9+0O4y2IqaApvbDEf7azO9//3v85Cc/waeffmp3KNTGfv/73+O///u/cfLkSbtDoTZ3+PBhnD9/3u4wqDpnmPyJHIjDshI5Gof3JSIichomfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInKYh+wOgIga7+TJk0in0/jCF74AAPjTn/4El8uFb3zjG8Y67733Hv7t3/4N4+PjdoVJRE3C5E/kAKlUCrqu4w9/+INleS6Xszz/4IMPmhgVEdmF1f5EDvDKK6/goYfKn+tLkoSxsbEmRUREdmLyJ3KA559/Hp9++mnJ1yVJwuOPP46vfvWrTYyKiOzC5E/kAI8++iiOHTuGz3ym+J/8vn378IMf/KDJURGRXZj8iRxiamoKkiQVfe0vf/kLnn/++SZHRER2YfIncoiRkZGiy/ft24eBgQF0d3c3OSIisguTP5FD/O3f/i1OnDiBffv2WZbruo4XXnjBpqiIyA5M/kQO8sILL0DXdcuyffv24R//8R9tioiI7MDkT+Qgzz33HPbv3288f+ihh/DMM8/A5XLZGBURNRuTP5GDfO5zn8P3v/99o8//p59+isnJSZujIqJmY/IncpiJiQmjz/9nP/tZfP/737c5IiJqNiZ/IocZHh7GwYMHAQCnTp3CX/3VX9kcERE1G8f2b6Lf/va32NjYsDsMIjz66KN499138Xd/93e4cuWK3eGQw+3btw8ej2fHIaipfiQ9v+kvNcw//dM/4V//9V/tDoOIqOX8+7//O5577jm7w3CKMzzNaqKPP/4Y4+PjWF5etjsUooqsrKxgYmKioHsgFZqYmAAA/n3XQJIk/OlPf7I7DEfhPX8iIiKHYfInIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iaopQKIRQKGR3GC1L0zREo1G7w6hJNBpFLpezOwyqApM/ETlCLpeDJEl2h1GUpmmYm5uDLMvGsmQyCY/HA0mS4Pf7oWla1eVubW3B7/cbZaRSqaLrqaoKSZKMh9/vL1mmqqqIxWJGbABw8uRJTE5O1hQj2YPJn4iaIhwOIxwO27b99fV127ZdTi6Xg9frxdTUFI4cOQIAiMVi6OzsxNraGnRdx8DAALxeL1RVrapcVVVx6dIlZLNZDAwMYGhoCIqiFKx7584dy/Ph4eGiZUajUYRCIXR3d+O1114zBn9yu92YnZ2F1+tlDUCbYPInoj0vl8shFovZHUZR8Xgcbrcb/f39xrKZmRnLVfTY2BgURanqtsn6+rpRk+ByuTA2NgYA8Hg8Bet2d3dD13XjYa6BEPx+P7LZLBKJBGRZRm9vr+X1/v5+9PT0IB6PVxwj2YfJn4gaTtM0oxq72HNFUSBJEjweD7a2tox1FEUx1onFYkaV9ObmplG2ubq61LJIJGJc8ZqX290OQdM0BAIBnDhxwrJ8aWkJKysrBev39PRUXHaxBA4APp/P8nxrawsejwehUKjkxGPiGIXDYbhcrpLbHBkZQSAQYPV/G2DyJ6KG83q9OH36tJGAzc83NjYgyzIymQwURcHLL78MAOjq6oLH4zHWmZ6eRjabBQD09fUZJwDb29sF28tkMpbn5tsN4uq2Fdy+fRsAcPjwYcvy6elprK2tGc/FvuYn7mqI6vj8Kn1xK2FhYQFPPPEEPB6PJXmrqoqFhQUMDw8bJ2Aej6do+wGxH2K/qHUx+RNRw5kTWf5zUd0tqpEXFxcBwJKgxToul8tIgOJEorOzs2B7+VXSpdjdDkHca98p3kQigXQ6DbfbXfO23nnnHciyjKefftqyXJZlZLNZpNNpBINBKIqCq1evGq9fv37diFGcgPX09GBoaKigpkDUCphrZqg1MfkTUVsRCTAQCNgcye4tLCzsuE4qlcKpU6d2lfgB4MKFC5idnS1abe9yueB2uxEOh7G0tGRpFCiOs9i++QTs9ddfLyjH/B5qXUz+REQt7MCBA7tO/MlkErIsWxoVljI6Olq0R4CZiEfU0lD7YfInora0m/vf7SKZTFaUsMtRVRXvvvsupqenK1rffGUPPDjOxbrwlWpUSK2PyZ+I2oq4n1yqL3o7iUQiAIonVgBG97xaaZqG69evW9o1qKpadhCfXC6HkZER47n4/wcffGBZBwDGx8eLlhEMBncTNjUBkz8RNZy59bimaZbnIpGYE2B+V7FkMmmsI/qZm686xdWpODEwN0QTiU6sbx5G1+6ufmJQn1LJv1R80WgUkiSVHfRH0zR4vV4EAgFL18fHHnvMOHFKJpOWVvtbW1tYX1/H4OCgsWxwcBDBYBChUMj4XC5fvgxZlgtOTkQ3zWPHjlWy+2QjJn8iariuri7L/83POzo6LP/mrw8AR48ehcfjQUdHB3p7e5FIJCyvnzt3DrIso6+vD4qioL+/H7IsY3V1FfPz8wAedPe7ePEiJicn67uDNTp+/DgA4O7du1W9L5vNwufzlT1xmZubK3nvvq+vDwBw8OBBDA0NQZIkhEIhfPjhh0Wr8sPhMGRZRldXlzFGQv5nYN4PsV/UuiS9VTq8OsDExAQAYHl52eZIiCqzsrKCiYkJ2/rFi0TTDj9Ttf59i1qIs2fPVr1Nj8dT0I3STqFQCB0dHVXviyRJWF5eLnkbgeruDK/8iYhs5PV6cfPmzZKj65WysbGB2dnZBkVVPVVVoaoqvF6v3aFQBZj821D+0KhEe1F+O4G9yuVyIR6P4/z58xVP3JNKpXDo0KFd9wSol83NTSwuLiIej5cd/pdaB5N/G5qbm7MMldqudjPFqqZpCIVCRiMm0SCsGuZGUPmPaDQKRVH2zAxlrTydbSn57QT2ss7OTiQSCWM0vZ0MDg4ajQVbgaIomJ+fLzraIrUmJv82dOnSJbtDqItap1jVNA3vv/8+wuEwdF3H6uoqTp8+bdw7rZSu65Zx4bPZrDHu+8mTJxGLxfbMHOWtOp1tOeZZ5trhnv9uuVyumu77t4KzZ88y8bcZJn+yxW6mWH3//fct1Z2iu1EtQ4qaf7DM1ZVut9uYmrTd5yhv5elsicgeTP5tIJfLIZlMGrNp5U+aYZ76NJfLwe/3W7oAmd8vSRJisVjB/dRKpk6ttLzdTLFaifz7nCIx5w8ssts+3J2dnfjxj38MRVGMK2enHWsi2puY/NvA5OQkbt68iWw2i7W1Nfznf/6n5XWv12tMffo///M/8Pl8+N///V/L+z/66COjmltRFMvVbKVTp1ZaXjOnWN3a2jJGSWtE3+3HH38cAPCLX/wCgLOPNRHtITo1zfj4uD4+Pl7Ve9bW1nQA+nvvvWcsy2azOgDd/PGJ59ls1vL+Gzdu6AD07e1tY9mtW7d0APrq6mrB+83S6bQOQI9EInUpr1TMtcpkMkYZ+XFWY6c4nHysl5eXd/UZOUktf990HwB9eXnZ7jCc5EcPNeqkgupDXHGaW/aW60qT/9qVK1cAWO9tHz16FMD9AVzKjR1unjpVNETaTXn11tvbC13Xoaoq3njjDQQCAXz+85+veAKT3XLSsR4dHW3attrV7du3AfBYUXvgCH9NVMsIYKVGOMtfXul6u33/btartKxabG5uGkOWVlteuThyuRw6OjoQDAaN6nMnHWsxwp95ohcqTiR/Dm1bvStXrnCEv+Y6wyv/PU6WZSiKAk3TCrriVDolqnm9epTXCI3q8/zOO+8AAE6cOLHjunv5WF++fLmp22tHHL67dmyE2nxs8NfilpaWAKDikb/yiTPp999/31gmGovtdDVXbOrU3ZTXSCKG1dXVupWpaRouXLgAWZYts5yV4pRjTUTtj8m/xX33u98FcL/bmpgu0zwFp9/vLzsIzTPPPANZlnH+/HljvWvXrsHn8xVNaDtNnVppebVOsVoJj8eDaDRqHI9cLodIJIJgMGi5D15JVz9z/33z/81jlIv+/iLWUvbisSaiPapJLQtJr701cCaT0X0+nw5A9/l8+vb2ti7Lsr66uqpvb29bWrzLslzw/u3tbX1paclYZ3V1taClungtnU7rsizrAPSlpaWC9SotL5PJGOWsra3puq5bYtb1By3cg8GgpUX7TkQPCPGIRCL6rVu3CtYLBoN6MBgsWY65jPxHqTKddqzZ2r9ybO1fO7C1f7P9iA3+mqiV7wm209Sp7a6djrXdU/q2k1b++251nNK36TilLxERkdMw+ZNjpk5tBTzWVEo7t8eIRqNtPf+FEzH5U8tMnVpuit1iY9i3o1Y51u2i0VMRt8pUx5qmYW5uztLgM5lMwuPxGHM/1HKyuLW1Bb/fb5Rhbixspqqq5W9MNBQttW4sFjNiA4CTJ0/umRkwnYLJn1pm6tT8OEo92tle2pdmaPRUxK0w1XEul4PX68XU1JQxXkUsFkNnZyfW1tag6zoGBgbg9Xqr6vKby+WgqiouXbqEbDaLgYEBDA0NGZM8md25c8fy3Nzl1CwajSIUCqG7uxuvvfaa8R12u92YnZ1t+xkwnYTJn4haUqOnIm6VqY7j8TjcbrdltsqZmRnLVfTY2BgURalqlsr19XWjJsHlchndYMWMkmbd3d2Wk1JzDYTg9/uRzWaNbqm9vb2W1/v7+9HT02PpGkuti8mfiOquUVMRVzol8m6mOt7tVNDV0DQNgUCgYATJpaUlrKysFKzf09NTcdnFEjhQODrk1tYWPB4PQqGQZYwIM3E8wuFw2blFRkZGEAgEWP3fBpj8iajuGjUVcaVTIrfLVMdiPoDDhw9blk9PT2Ntbc14LvZrN8M6i2OfX6UvbiUsLCzgiSeegMfjsSRvVVWxsLCA4eFh42TL4/EUbT8g9kPsF7UuJn8iqqtUKgVFUfDss88CuD8r4ezsLBRFwbVr14xl+fKrkYsxJ2hRTe5yuYykKK7kay0fuH9SYD4xaCRxr32n2BKJBNLptDH7Yy3eeecdyLKMp59+2rJclmVks1mk02kEg0EoioKrV68ar1+/ft2IUZxs9fT0YGhoqKCmQNQKmGthqDUx+RNRXe00FXEjmKdEbicLCws7rpNKpXDq1KldJX4AuHDhAmZnZ4tW27tcLrjdboTDYSwtLVkaBYpjKrZvPtl6/fXXC8oxv4daF5M/EdXV4uJiwTKRFIq1NKfyDhw4sOvEn0wmIcuypVFhKaOjozt+TiKeYp81tQcmfyKqK/MkQvkaPRWxndNKN0IymawoYZejqireffddTE9PV7S++coeeHBMi3XhK9WokFofkz8R1ZUdUxEXmxK5HUQiEQDFEysAyyyVtdA0DdevX7e0YVBVtewgPrlczvI5if9/8MEHlnUAlByLPxgM7iZsagImfyKqq2ZNRbzTlMi1lt/Mrn5iUJ9Syb9ULNFoFJIklR30R9M0eL1eBAIBSzfHxx57zDhJSiaTllb7W1tbWF9ft3xOg4ODCAaDCIVCxud5+fJlyLJccHIiptk+duxYJbtPNmLyJ6K6crlciMfjkGUZXV1dRv/5V155xbLeuXPnIMsy+vr6oCgK+vv7IcsyVldXMT8/D+BBd7yLFy9icnLS8v6jR4/C4/Ggo6MDvb29SCQSdS2/GY4fPw4AuHv3blXvy2az8Pl8ZU9S5ubmSt677+vrAwAcPHgQQ0NDkCQJoVAIH374YdGq/HA4XPB55h9v836I/aLWxSl9m4hTflK7acUpfVt1SuRa/75FjcPZs2er3qbH47GMB2C3UCiEjo6OqveFU/o2Haf0JSKyk9frxc2bN0uOrlfKxsYGZmdnGxRV9VRVhaqq8Hq9dodCFWDyJ6K2sRenRBa3Sc6fP1/xxD2pVAqHDh3adU+Aetnc3MTi4iLi8XjZ4X+pdTD5E1Hb2KtTInd2diKRSBij6e1kcHDQaCzYChRFwfz8fNGRFak1PWR3AERElWq1+/z15HK5arrv3wraNW4n45U/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDsLV/Ez3yyCP413/914bNaU7UKGJUPdoZ/75rc+DAAbtDcBQO79tEv/3tb6sexYuoEd5++228+uqruHz5st2hEGHfvn3weDx46CFejzbJGR7pJvrSl76EL33pS3aHQYR79+4BaNwUu0TU2njPn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiByGyZ+IiMhhmPyJiIgchsmfiIjIYZj8iYiIHIbJn4iIyGGY/ImIiBzmIbsDIKLG+8Mf/oBcLmc81zQNAPD+++9b1vvCF76Az372s02NjYiaT9J1Xbc7CCJqLEmSKlovGAwiHA43OBoistkZVvsTOcC3v/3tik4Ajhw50oRoiMhuTP5EDvDiiy/uuM4jjzyC5557rgnREJHdmPyJHECWZTzyyCMlX3/ooYcgyzI+97nPNTEqIrILkz+RAxw8eBDPPfcc9u/fX/T1Tz/9FOPj402OiojswuRP5BA/+MEPcO/evaKvHTx4EMPDw02OiIjswuRP5BD/7//9P3z+858vWL5//36Mjo6WvS1ARHsLkz+RQ+zfvx/PP/98QdX/vXv3MDExYVNURGQHJn8iB5mYmCio+v+bv/kbDAwM2BQREdmByZ/IQZ566il0d3cbzx9++GH84Ac/wL59+2yMioiajcmfyEE+85nPYHx8HA8//DAA4JNPPmErfyIHYvIncpjx8XF88sknAIDe3l4cO3bM5oiIqNmY/Ikc5vHHH8eXv/xlAMDk5KS9wRCRLQpm9fv973+Pn/zkJ/j000/tiIeImkDM5/Uf//EfGB0dtTkaImqUw4cP4/z58wXLC678U6kUkslkU4IiInu43W78wz/8Q9F+/9Qct2/fxu3bt+0Ooy1cuXIFW1tbdofRdq5cuYKXX3656GsFV/7C5cuXGxYQEZHTibEVlpeXbY6k9UmShJdeeomNU6u0srJScgwP3vMnIiJyGCZ/IiIih2HyJyIichgmfyIiIodh8iciInIYJn8iojYXCoUQCoXsDqMlaZqGaDRqdxg1iUajyOVyDSmbyZ+IiHYll8tBkiS7wyigaRrm5uYgy7KxLJlMwuPxQJIk+P1+aJpWdblbW1vw+/1GGalUquh6qqpCkiTj4ff7S5apqipisZgRGwCcPHkSk5OTNcW4EyZ/IqI2Fw6HEQ6Hbdv++vq6bdsuJZfLwev1YmpqCkeOHAEAxGIxdHZ2Ym1tDbquY2BgAF6vF6qqVlWuqqq4dOkSstksBgYGMDQ0BEVRCta9c+eO5fnw8HDRMqPRKEKhELq7u/Haa68ZI3C63W7Mzs7C6/XWvQaAyZ+IiGqWy+UQi8XsDqNAPB6H2+1Gf3+/sWxmZsZyFT02NgZFUaq6ZbK+vm7UJLhcLoyNjQEAPB5Pwbrd3d3Qdd14mGsgBL/fj2w2i0QiAVmW0dvba3m9v78fPT09iMfjFcdYCSZ/IqI2pmmaUZVd7LmiKJAkCR6PxxgiV9M0KIpirBOLxYxq6c3NTaNsc5V1qWWRSMS46jUvt7MdgqZpCAQCOHHihGX50tISVlZWCtbv6empuOxiCRwAfD6f5fnW1hY8Hg9CoRA2NjaKvkccn3A4DJfLVXKbIyMjCAQCda3+Z/InImpjXq8Xp0+fNhKw+fnGxgZkWUYmk4GiKMY4711dXfB4PMY609PTyGazAIC+vj7jBGB7e7tge5lMxvLcfLtBXOHaTcyZcPjwYcvy6elprK2tGc/FfuYn7mqI6vj8Kn1xK2FhYQFPPPEEPB6PJXmrqoqFhQUMDw8bJ18ej6do+wGxH/WcC4LJn4iojZmTWf5zUeUtqpIXFxcBwJKgxToul8tIguJEorOzs2B7+dXSpdjZDkHca98p1kQigXQ6DbfbXfO23nnnHciyjKefftqyXJZlZLNZpNNpBINBKIqCq1evGq9fv37diFGcfPX09GBoaKigpkDUCphrZXaLyZ+IiADASIKBQMDmSHZnYWFhx3VSqRROnTq1q8QPABcuXMDs7GzRanuXywW3241wOIylpSVLo0BxjMX2zSdfr7/+ekE55vfUA5M/ERE5zoEDB3ad+JPJJGRZtjQqLGV0dLRojwAzEY+ooWkkJn8iIrLYzT3wdpBMJitK2OWoqop3330X09PTFa1vvrIHHhzjYl34SjUqrCcmfyIiAvDgnnKp/ujtIhKJACieWAEY3fNqpWkarl+/bmnToKpq2UF8crkcRkZGjOfi/x988IFlHQAYHx8vWkYwGNxN2BZM/kREbczcglzTNMtzkUzMSTC/u1gymTTWEX3NzVee4gpVnBiYG6OJZCfWNw+la2dXPzGoT6nkXyq2aDQKSZLKDvqjaRq8Xi8CgYCl2+Njjz1mnDQlk0lLq/2trS2sr69jcHDQWDY4OIhgMIhQKGR8JpcvX4YsywUnJ6KL5rFjxyrZ/Yow+RMRtbGuri7L/83POzo6LP/mrw8AR48ehcfjQUdHB3p7e5FIJCyvnzt3DrIso6+vD4qioL+/H7IsY3V1FfPz8wAedPe7ePEiJicn67uDNTh+/DgA4O7du1W9L5vNwufzlT1pmZubK3nvvq+vDwBw8OBBDA0NQZIkhEIhfPjhh0Wr8sPhMGRZRldXlzE+Qv7xN++H2K96kPS8TpkrKyuYmJhoib6aRER71cTEBABgeXnZlu2LZNMOv/WSJGF5eblkdXgxogbi7NmzVW/P4/EUdKG0UygUQkdHR9X7Uiafn+GVPxER7Tlerxc3b94sObpeKRsbG5idnW1QVNVTVRWqqsLr9da1XCZ/IiKHyW8nsBe5XC7E43GcP3++4ol7UqkUDh06tOueAPWyubmJxcVFxOPxssP/1mLXyT9/HOlms3v7raLYcWhGgxvOI15fTvs+83trj/x2AntVZ2cnEomEMZreTgYHB43Ggq1AURTMz88XHWlxt3ad/Ofm5izjSu9GLXNC13P77awZx6FV5+yudG7tcsytdvMf0Wi0plnLGvF9TqVSRlylklexfWhVTv7e2sk801w73PPfDZfLVdN9/1Zw9uzZhiR+AICeZ3l5WS+yuCwAVb+nmLW1tZrKqdf2212jj0Otn08jZbNZfW1tzfj/6uqqDsBYVo3t7e2ix/DGjRs6AH11dbWq8hr1fTbvZzAYLLqO2Jft7e2qt99sTvze6rquj4+P6+Pj43aH0RYA6MvLy3aH0XbK5PMftcw9/1adE5rua9XPp5q5tXdS6gxb9M0tNhVoKY08Xub9XFhYMPppm4l9adhVQ5to1e8tkd3qmvzFAA+i+lUMTCCIP0RztaVobFJqTmjxvmQyaSwv98cs5q72+/1VN2SpZB7scjHlN6IR82Xncjn4/X5jf4ttw3y8RLn5x7Dc8dtpX4DSVdtinWo/n1L3pys5NpUe551UOrd2Pe7x5ldNt8L3ORKJ4PTp00VPAIrh97Y1vrdEtquimqAk/F+13a1bt3Rdv1/lKMtyQbWjz+czlmUyGR2A7vP5CsrJJ8uypXrT5/NZnudv/7333isouxIiZnNZxeIU6y4tLVn2V5ZlPZvNFi0rnU7rPp/PsjydTuu6ruu3bt0ytlFuu9UcP/N2zK+bPw9RHZrJZKouv9Q2ajk25Y5ztbLZbNFq/2AwWLKK3KzUdxBFqv3t/j6LsoPBoOX7lP96/rb5vW2N7y2r/SsHVvvXpFy1f8Pu+YsfLPHHpOv3f6TK/VEWK0fc2zT/8d+6dUuXZbns+0r98NayL/nLxD3g/JjyE4R4n/jxqDbe/GXVHr9yx0B8Pjdu3Ki5/GLLqj02Ox2Dat24ccPyg10tEUP+IxgMFpRp9/dZPM9ms0Zieu+99wpeF/i9LR2jHd9bJv/KMfnXxpbkX255JpPRI5FIRX+k4ket2u03MvmLKw0zccW50494NfHu9viVer+4qolEIgWvVVN+sWW7OTb1SP6yLBtXZbUoFsP29rYeDAZ1WZaLNqCz6/tsfi4a+JljzF+f39vSMdrxvR0fHzfeywcfjXwU8aO6DO9bapjIYstjsRgURUEkEjHGQRavF1u/kiEoa31frWVVur/VHJdKl1Vz/EptPxQKQVXVosNX7vbz2c2xFBbCnQAAGkpJREFU2e1wo8lkEh999FHFU2wWUyoGTdPQ1dWFYDBomcnLzu+zJEmW56qq4rHHHoMsy0gkEujo6Kho2/ze2vO9nZiYwNbWFl566aWq3udEo6OjeOmll/Cd73zH7lDayttvv41XX3212HfzTMOv/M3VcaLKU9yry39fsXLElVL+/cydtl8qplr2JX9ZsfYMYr1K7vlWGm/+smqPX7Eyl5aWLGWY1fL51PPY1PqZ6bqup9Ppiu7p76RcDLv9PHS9vt/nYnGK++GiHUCxbfN72xrfW1b7Vw5gtX8tbKn2T6fTOlD+flk1f/Q+n8+4B5nJZBr2B1nNj5m5ellUEZrvRdb7R3S3z8U9THOMu9lesWW7OTa1fmbb29sFVcGioVq1SsVQSUOyZn+fSx0r8Rnkv87vben32PG9ZfKvHJN/bRqe/MVZs/gjKXVvTqyXyWSMhjvms23z2bd4r7nngHj4fD6jYZN5YBZRjvijLXYmX465LPHDXKws0cDKfH91dXXV8gNeasCYYtsotg/FlpU7fvnr5z8XySv/MxHr1fL5lDr21Rybcse50s8s//shHuYW/5W09i8Wl67fb2QmrqTNDers/D7vNIhPsSt/fm9b53ur60z+1WDyr03Dk7+uP2hlLX7Mip2li9qAYDBoNKLy+XxGdV3+64JYV7yW36LZ/Ci1rBLVlLW9vW1cxQH3azjMCcP8nmINhnbaRrFl5Y5fseSXH0O512v5fOpxbHb7mYmGWsUe5u/JTsl/p2O3tLRUUOVs1/e51OeXz/y9M2+b31v7v7e6zuRfDYDJvxblkn9dGvwRUevJ5XJ1nwmM6mdiYgIAsLy8bHMkrU+SJCwvL2N8fNzuUNpKmXx+pmWG9yWi+mLiJ6JSmPyJiGjPEsPOt6NoNIpcLteQsh2R/MtN19oO0546ET8zosZq9FTHrTCVsqZpmJubs8wBIuZnqHUOGKDyacRVVbX8Xvn9/pJlqqqKWCxmxAYAJ0+exOTkZE0x7sQRyV/X9Yoe1Dr4mRE11vr6eluXv5NcLgev14upqSkcOXIEwP3BoDo7O7G2tgZd1zEwMACv1wtVVasqV1VVXLp0CdlsFgMDAxgaGiqY+AsA7ty5Y3k+PDxctMxoNIpQKITu7m689tprxm+b2+3G7OwsvF5v3WsAHJH8iYjogUZPddwKUynH43G43W709/cby2ZmZixX0WNjY1AUpaoZP6uZRry7u9tysVJsFlK/349sNotEIgFZltHb22t5vb+/Hz09PYjH4xXHWAkmfyKiNrLT1MPFbovlLys11bGYzhmAMU2y3+/H5ubmrssH6jO1diU0TUMgEMCJEycsy5eWlrCyslKwfk9PT8VlVzqN+NbWFjweD0KhEDY2Noq+RxyLcDhctoHuyMgIAoFAXav/mfyJiNrI5OQkPvroI+i6ju3tbSiKYqkW3t7eLnhPJpOxPDfPTyGuSru6uuDxeKAoCjY2NjA9PY1sNgsA6OvrM04Aai2/mW7fvg0AOHz4sGX59PS0ZW4IsU/5ibsa4rjnV+mLWwkLCwt44okn4PF4LMlbVVUsLCxgeHjYONHyeDxF2w+I/RD7VQ9M/kREbSKVSkFRFDz77LMAgM7OTszOzkJRFFy7ds1Yli+/KrkYc4IWVeUul8tIjOJKvtbygfsnBeYTg0YR99p3iiuRSCCdTsPtdte8rXfeeQeyLOPpp5+2LJdlGdlsFul0GsFgEIqi4OrVq8br169fN2IUJ1o9PT0YGhoqqCkQtQLmGpjdYvInImoTV65cAWBNwEePHgWAotXZ9SASYyAQaEj5jbCwsLDjOqlUCqdOndpV4geACxcuYHZ2tmi1vcvlgtvtRjgcxtLSkqVRoDieYvvmE63XX3+9oBzze+qByZ+IqE0sLi4WLBOJoVhrcyrtwIEDu078yWQSsixbGhWWMjo6uuNnJOIp9jnXG5M/EVGbEI3NijX82s1960o0uvxmSiaTFSXsclRVxbvvvovp6emK1jdf2QMPjmexLnylGhXWE5M/EVGbEGPbv//++8YykTxGRkYask1xn7lUH/VWFIlEABRPrACM7nm10jQN169ft7RfUFW17CA+uVzO8hmJ/3/wwQeWdQCUnMMgGAzuJmwLJn8iojbxzDPPQJZlnD9/3rj6v3btGnw+HwYHB431xFWlSNzmBmQiQZlrEfKHv00mkwDuJyPR/9x8NVpr+c3q6icG9SmV/EvFEY1GIUlS2UF/NE2D1+tFIBCwdHF87LHHjBOkZDJpabW/tbWF9fV1y2c0ODiIYDCIUChkfJaXL1+GLMsFJydbW1sAgGPHjlWy+xVh8iciahMulwvxeByyLKOrq8voP//KK69Y1jt37hxkWUZfXx8URUF/fz9kWcbq6irm5+cBPOiOd/HiRUxOTlref/ToUXg8HnR0dKC3txeJRKKu5Tfa8ePHAQB3796t6n3ZbBY+n6/sCcrc3FzJe/d9fX0AgIMHD2JoaAiSJCEUCuHDDz8sWpUfDocLPsv8Y23eD7Ff9cApfYmIbNCKU/qKBNRqv/+1TOkrahvOnj1b9fY8Ho9lPAC7hUIhdHR0VL0vnNKXiIgcxev14ubNmyVH1ytlY2MDs7OzDYqqeqqqQlVVeL3eupbL5E9ERJYeBI2YRa7ZxC2S8+fPVzxxTyqVwqFDh3bdE6BeNjc3sbi4iHg8Xnb431ow+RMREbq6uor+v511dnYikUgYo+ntZHBw0Ggs2AoURcH8/HzRURV366G6l0hERG2n1e7z14vL5arpvn8raGTcvPInIiJyGCZ/IiIih2HyJyIichgmfyIiIocp2eBPTB1JRET1J4Zs5W9tZW7fvo39+/fbHUZbKffdKhjh786dO3UdQpCIiIjs8fDDD+Pjjz/OX3ymIPkT0d7HYbyJHI3D+xIRETkNkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5ExEROQyTPxERkcMw+RMRETkMkz8REZHDMPkTERE5zEN2B0BEjXf58mX85je/MZ6n02kAwM9+9jPLet/73vfw9a9/vamxEVHzSbqu63YHQUSNJUkSAOCRRx4puc7HH3+Mn/70pwUnBES055xhtT+RA5w5cwYPP/wwPv7445IPABgeHrY5UiJqBiZ/IgcYGxvDJ598Unad7u5uPPXUU02KiIjsxORP5ADf/va38cUvfrHk6w8//DAmJibwmc/wJ4HICfiXTuQAkiThhRdewP79+4u+/sknn+D06dNNjoqI7MLkT+QQ4+PjuHfvXtHXvvKVr+Dxxx9vckREZBcmfyKH+MY3voGvfe1rBcv379+PH/7wh80PiIhsw+RP5CBTU1MFVf/37t1jlT+RwzD5EznI6dOn8ec//9l4LkkSvvnNbxatESCivYvJn8hBvvrVr+Jb3/qWMejPvn37MDU1ZXNURNRsTP5EDjM5OYl9+/YBAD799FOMjY3ZHBERNRuTP5HDPP/88/jLX/4CAHjqqafK9v8nor2JyZ/IYbq7u41ufRMTEzZHQ0R24MQ+Le6RRx7ZcVhWIqJW8i//8i9YWFiwOwwq7Qyn9G1xn3zyCZ577jmMj4/bHQrtAaOjo3jppZfw5JNP4o9//CNcLpfdIbWkt99+G6+++iouX75sdyhtZ2JiwjJ9NLUmJv82MDIygpGREbvDoD3i+PHjGB0dtTuMliZGQuTfXfXefPNNu0OgCvCePxERkcMw+RMRETkMkz8REZHDMPkTERE5DJM/ERGRwzD5E1HVQqEQQqGQ3WG0LE3TEI1G7Q6jJtFoFLlczu4wqMGY/Imo7eRyOWNyolajaRrm5uYgy7KxLJlMwuPxQJIk+P1+aJpWdblbW1vw+/1GGalUquh6qqpCkiTj4ff7S5apqipisZgRGwCcPHkSk5OTNcVI7YPJn4iqFg6HEQ6Hbdv++vq6bdsuJ5fLwev1YmpqCkeOHAEAxGIxdHZ2Ym1tDbquY2BgAF6vF6qqVlWuqqq4dOkSstksBgYGMDT0/9u7l9c2rjYM4M/A1026kMhCSitwN6HGUFBpIVE3LbEDJYaZbiLj2IhuJCPTFgLRJkLCGBu3CxlCXYiRtCmDbFFvWg1JNq7BXhQ5kCItuogpodIiYG06on/AfItwJjO62JIsWbfnByKai+YcjUXemTPnnHcGmqbV7fv8+XPb8uzsbMNjbm5uIh6P49q1a/jpp58gJnv1er2IRqMIBoNsARhhDP5ENFSq1SpSqVS/q9FQOp2G1+uFz+cz1y0tLdnuoufn56FpWluPTY6OjsyWBIfDYWZiVBSlbt9r167BMAzzZW2BEJaXl6HrOlRVhSzLmJiYsG33+XzweDxIp9Mt15GGC4M/EbWlUqmYzdiNljVNgyRJUBQF5XLZ3EfTNHOfVCplNkmfnJyYx7Y2Vzdbl0gkzDte6/p+90OoVCqIRCK4deuWbX0ymcTOzk7d/h6Pp+VjNwrgABAOh23L5XIZiqIgHo8jn883/Iw4R2tra2dO7+z3+xGJRNj8P6IY/ImoLcFgEPfu3TMDsHU5n89DlmWUSiVomobvv/8eAOB2u6EoirlPKBSCrusAgMnJSfMC4PT0tK68UqlkW7Y+bhB3t4Pg+PgYAHD9+nXb+lAohFwuZy6L71obuNshmuNrm/TFo4T19XV89tlnUBTFFryLxSLW19cxOztrXoApitKw/4D4HuJ70Whh8CeitlgDWe2yaO4Wzcjb29sAYAvQYh+Hw2EGQHEh4XK56sqrbZJupt/9EMSz9vPqq6oqCoUCvF5vx2W9ePECsizj888/t62XZRm6rqNQKCAWi0HTNPz222/m9v39fbOO4gLM4/FgZmamrqVAtApYW2ZodDD4E1HfiAAYiUT6XJOLayWF7cHBAe7evXuhwA8Ajx49QjQabdhs73A44PV6sba2hmQyaesUKM6zKN96Afbzzz/XHcf6GRotDP5ERJfkypUrFw782WwWsizbOhU2Mzc313BEgJWoj2ilofHA4E9EfXeR59/DIpvNthSwz1IsFvHXX38hFAq1tL/1zh54e54bDeFr1qmQRhODPxH1jXie3Gws+jBJJBIAGgdWAObwvE5VKhXs7+/b+jUUi8UzJ/GpVqvw+/3msnj/zz//2PYBgIWFhYbHiMViF6k2DSgGfyJqi7X3eKVSsS2LQGINgLVDxbLZrLmPGGduvesUd6fiwsDaEU0EOrG/dRrdfg/1E5P6NAv+zeq3ubkJSZLOnPSnUqkgGAwiEonYhj5+/PHH5oVTNpu19dovl8s4OjrC9PS0uW56ehqxWAzxeNz8u/zyyy+QZbnu4kQM07xx40YrX5+GDIM/EbXF7Xbb3luXnU6n7d/a/QFgamoKiqLA6XRiYmICqqratj98+BCyLGNychKapsHn80GWZezu7mJ1dRXA2+F+W1tbCAQC3f2CHbp58yYA4PXr1219Ttd1hMPhMy9cVlZWmj67n5ycBAC8++67mJmZgSRJiMfj+Pfffxs25a+trUGWZbjdbnOOhNq/gfV7iO9Fo0UyBmWQLDUkSRIymUzTJjmidvTz9yQCzTD8l7Ozs4PFxcW26ypaIR48eNB2mYqi1A2j7Kd4PA6n09n2d1lcXAQAZDKZXlSLuuNb3vkTEXVJMBjE4eFh09n1msnn84hGoz2qVfuKxSKKxSKCwWC/q0I9wuA/BmqnXyW6bLX9BEaVw+FAOp3GxsZGy4l7Dg4OcPXq1QuPBOiWk5MTbG9vI51Onzn9Lw03Bv8xsLKyYpuOddhUq1Xk83kz9WgzYu54MY1su6wdqWpfm5ub0DSNWc46VNtPYJS5XC6oqmrOpnee6elps7PgINA0Daurqw1nW6TRweA/Bh4/ftzvKlxIIpHAkydPsLS01DSoZ7NZpFIpqKoKVVXx9OnTtjO/GYZhm1te13Vz7vjbt28jlUoxz3mHrFnmhuGZ/0U5HI6OnvsPggcPHjDwjwEGfxp4583ZXi6Xce/ePXO6UzGxydLSUls50wH73PLWJk+v12umN2WecyIadgz+I6harSKbzZoZu5ol5hBjpGsze7WSolUQn0+lUqhUKrZUrGeV0U1//PEHAOD9998317333nsA3iZbAS4+DtzlcuH+/fvQNA1HR0e2baNyLoloPDD4j6BAIIDDw0Pouo5cLoc///yzbh8xaYjH44FhGLh//z5mZmbMHr7npWgF3gQrv98PwzAwNzeHra2tlsvopsPDQwD2bGriDr7b/Rw+/fRTAMDTp0/NdaN0LoloTBg00AAYmUym5f1zuZwBwHj58qW5Ttd1A4Bh/XPv7u4atX9+AEYsFjPfN9puXQfAOD09NZdPT0/bKqNdjerUyfpOy2m2fZjOZbu/p3GVyWQ6+u2QYSwsLBgLCwv9rgad7Zv/9fbSgi6buCO19h5uNFxnZ2cHAOqaltfX11vOiR4Oh+F2u7G7u4s7d+7A5XLZOnN1o4xhMGzn8vj4GO+8805bnxk3x8fHAIC9vb0+12T4lMtlWyscDah+X37Q2dDmnRpavAtutt9Z22vXvXz50pBl2VyfSCRaqkunmh1P1KHR/uFwuGvlGMbbVhTrHfcwnUtxHL746uWLd/4D7xs+8x9zzToDtuLDDz9ELpdDoVBAOBxGJBIxpzftVhmtsCZ5EURnuk8++aSrZb148QIAcOvWrbptw3IuM5lM3dA7vuwvMTVtv+sxjC9ORT4cGPxHTDKZBIBzO4KJ/VRVNYetWTOktUKSJFSrVXi9Xjx+/BiFQgGRSKSrZbTiyy+/BAC8evXKXCeSkoht3VCpVPDo0SPIsmzLlDZK55KIxoRBAw1or9m/VCoZAAxZlo1SqWQYhmH8/vvvZnOcaAYXHcpqX6VSybZN13XDMOydBkXHNOBN87cop1Qq2ZqrzyqjXdbyRZ2sksmkEQ6HDV3XDV3XjXA4bCSTSds+sVjs3A5yzcopFAqGLMuGLMu2jnnnfc9BO5ft/p7GFTv8dY4d/oYCm/1HzcTEBEqlEjweDz744AMsLy/jo48+qkuJ6nK5UCqVEIvFALzpcFYqlTAxMdFWitbvvvsOe3t7kCQJe3t7tlnNziqjHZIk2cp3Op11Hd9CoRBmZ2fhdDoRCATg9/sRCoW6Uo4kSdjf30c0GkUul6ub/WyYziUREcCUvgOPKX2pm/h7ak2nKX2JKX2HBFP6EhERjRsGfyIiojHD4E99cVb6XOuLaFT1Y7TG5uYmk1IRAAZ/6hOjxTHDNDqq1WpPL+h6ffxuqlQqWFlZMeeoAGAmgJIkCcvLyx2ljq5Wq8jn80ilUmYyKavbt28zLTUBYPAnoktSmwlx2I7fLdVqFcFgEF9//bU5DXcqlYLL5UIul4NhGPjiiy8QDAbbTtyUSCTw5MkTLC0tNUxq5fV6EY1GmZaaGPyJqPeq1SpSqdTQHr+b0uk0vF4vfD6fuW5pacl2Nz4/Pw9N09pOQb22tnZurgefzwePx4N0Ot1exWmkMPgT0Zmq1Sqy2azZDyOVStkCVaM+GrXrEomEeScq1lcqFWiaZjZPp1Ips8nbOo1xp8cHgHg83nYA7aVKpYJIJFI3PXQymTSTN1l5PJ6e1MPv9yMSibD5f4wx+BPRmQKBAP777z8YhoHT01NommZrNj49Pa37TKlUsi1b70ZFfw632w1FUaBpGvL5PEKhEHRdBwBMTk6aFwCdHn8QiWyB169ft60PhULI5XLmsvju4XC4J/UQ5Yv60Phh8Ceipg4ODqBpGr766isAb2YajEaj0DQNz549M9fVamXmQWuAFk3gDofDDHjiTr7T4wOtNYNfpufPnwM4v/6qqqJQKMDr9fakHiLNd6+TbtHgYvAnoqZEPntrAJ6amgKAhs3U3SACnjWx0ahYX18/d5+DgwPcvXu3Z4EfeBv8R/EcU2sY/Imoqe3t7bp1InA06k1OF3flypWeBn4igMGfiM4gxqE36hjWq+fRl3X8QZTNZm2jAIh6hcGfiJoSCYBevXplrhMd/fx+f0/KFM+hZ2dne3L8fkokEgDQdIz9/Pz8ZVbHzBJJ44fBn4iaunPnDmRZxsbGhnn3/+zZM4TDYUxPT5v7ibt0Ebjz+by5bXl5GYC9FaF2WttsNgvgTVBUVRWyLNtmv+v0+IM21E9M6tMs+Der7+bmJiRJamnSH+uxm5VTLpcBADdu3Dj3eDSaGPyJqCmHw4F0Og1ZluF2u83x8z/88INtv4cPH0KWZUxOTkLTNPh8PsiyjN3dXayurgJ4Oxxva2sLgUDA9vmpqSkoigKn04mJiQmoqtrV4w+KmzdvAgBev37d1ud0XUc4HD73QkaSJDidTnPZ6XQ2nPJYlC/qQ+NHMgZ1QCwBYP516q5B+z2JwDRo/w3t7OxgcXGxJ/USrRIPHjxo+7OKotjmA+hUPB6H0+nsqA7nWVxcBABkMpmuH5u65lve+RMRXaJgMIjDw0Pbo4tW5PN5RKPRC5dfLBZRLBYRDAYvfCwaXgz+RNQX1hEE4zTNrHiUsrGx0XLinoODA1y9evXCIwFOTk6wvb2NdDptDtmk8cTgT0R94Xa7G74fBy6XC6qqYn9/v6X9p6enzc6CF6FpGlZXVxvOmkjj5X/9rgARjadBe85/2RwOR0+euZ/lssujwcU7fyIiojHD4E9ERDRmGPyJiIjGDIM/ERHRmGGHvyGwuLiIX3/9td/VoBHx448/8vd0DjH97dzcXJ9rMnz29vYGZhIpao4z/A24aDSKv//+u9/VICJqWSAQsOVmoIHzLYM/ERHReOH0vkREROOGwZ+IiGjMMPgTERGNGQZ/IiKiMfN/q4gq1xlHeAYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAesAAAJzCAYAAAAvLjsSAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdb2gb+Z0/8Pc0m+w1S0++3CGndfH+WtKYwLZaupA47W5M7HAlaUe7PeKsY9frPpCNRLNhS0RpfBImyGS3IEHYLNhYenCLsC3iHuxq2OaJI7DZ3jrhUiS4UGLa7coPQj1cqdSFwm6azu9BbiYz+mP9saSZkd4vEPGMRjMfjR199J35fr8fQVEUBURERGRVF75gdgRERES0MyZrIiIii2OyJiIisjgmayIiIot7yuwAzPbHP/4RP/3pT/Ho0SOzQyEiogKHDh3C1atXzQ7DdB3fsk6lUkgkEmaHQWR5t2/fxu3bt80OwxZWVlawtbVldhi2t7KygjfffNPsMCyh41vWqhs3bpgdApGljY2NAQAWFxdNjsT6BEHAxYsXMTo6anYotra0tKT93XW6jm9ZExERWR2TNRERkcUxWRMREVkckzUREZHFMVkTERFZHJM1EbVcMBhEMBg0OwzLEATB8ChFlmVEIpEWR1ZZJBJBPp8v+Vw174uqw2RNRB0nn89bMnkoioJShRBlWcbMzAxEUdTWJRIJuN1uCIIAn88HWZZrPl4+n8fGxgai0SjcbndVr4lGo4Zzd+rUKYyPj5c8frn3Q7VjsiailguFQgiFQqYdf3193bRj1yqfz8Pj8WBiYgKHDx8G8DhhOp1OJJNJKIqCgYEBeDweZDKZmvYdDofxwQcfYGpqCpIkVdw+k8lgamrKsM7lcmF6ehoej6dsC5t2j8maiDpKPp9HNBo1O4yqxWIxuFwu9Pf3a+umpqYMLdmRkRFIklTzrYVavjTl83n88pe/LPlcf38/enp6EIvFajo+VY/JmohaSpZl7RJuqWVJkiAIAtxutzZlpyzLkCRJ20a9FOvz+bC5uantu9T90cJ14XBYa0Xq11vxProsy/D7/Th58qRh/cLCApaWloq27+npaVossVgMr7/+etnnh4eH4ff767ocT5UxWRNRS3k8Hpw/f15LmPrljY0NiKKIbDYLSZK0eaG7u7vhdru1bSYnJ5HL5QAAfX19WsLe3t4uOl42mzUs61uSVr+nqs7FfujQIcP6yclJJJNJbVl9/16vtylxpFIpfPe734XT6Sy7jRoj549vDiZrImopfZIpXFYv9fb29gIA5ufnAcCQUNVtHA6HlpzUxF8qmaj7qsTs++il3LlzB0Dl9xCPx5FOp+FyuRoegyzL+P3vf2+4DF+Kw+EAAMOVDmocJmsisi01Ofn9fpMjaY7Z2dmK26RSKZw9e7YpiRoA3n//fUxOTlbcTk3W7fq7MBuTNRGRje3fv79piVqSJHzve99ryr6pNiyRSUS216x7tVaXSCQwMjLStP3vNPZaEARL3+9vN2xZE5FtqfdHz5w5Y3IkzREOhwGg7PjlZiZq4EkHPP1D/1wpgUCgqTF1KiZrImop/dAeWZYNy2pS0ienwqFAiURC2yYej0MURcPMXmorW03kGxsb2nM+nw8AtO31U3haceiWOglKuWRdLuZIJAJBEKqaJEW/791MaqIOszt69Gjd+6DymKyJqKW6u7sNP+uXu7q6DP8Wbg8AR44cgdvtRldXF3p7exGPxw3PX758GaIooq+vD5Ikob+/H6IoYnl5GVeuXAHwZPjW9evXMT4+3tg32EDHjh0DADx48KCm1+VyOXi93opfPgRBMJzrrq6uuqdhVWNUY6bG4j1rImqpau5z7rSNy+UqGv6l19vbu+PwMHUfhcew2rAt4PFQtHA4jF//+tclh06Vi1ldX2m+73ruOZd7zQcffIBwOLzjWGyqH1vWREQW5vF4sLa2ZricX42NjQ1MT083KSqjTCaDTCYDj8fTkuN1IiZrIrK8wvvcncThcCAWi+Hq1atVF+pIpVI4cOBAxYlMGmFzcxPz8/OIxWLaWGtqPCbrBimc39hurNi5hkhVeJ+7XZWr++x0OhGPx7G6ulrVfgYHB7XOac0mSRKuXLlS8vI361g3Du9ZN8jMzIw2NSLVLp/Po6urq6Z7aOU+BMwY+1kYv5Viawftft6qeX8OhwOXLl1qQTS12Smmdv+9tRJb1g0yNzdndgi7Yva8yPXUF1YURSvmADzuAWvWh0Nh/IqiGIpKmBkbEdkfkzWZbjf1hfX3yMy6X1Yufv1lQd7LI6LdYLKuUz6fRyKR0Orulqs0o066oG6XSqW09ZVq+KrU10ejUciyXHSJtdwxqtVu9YWtEn8t1ISvvj4YDBp+r+pDncADgOE5/fsq9/emvt98Pg+fz8c+CkR2onS4xcVFpZ7TIIqi4vV6lVwupyiKoiwvLysADPva3t5WRFFUlpeXFUVRlFu3bikAlHQ6rYiiqG3/0UcfKYqiKNlsVgGgeL1ebR/hcFjJZrOKoihKLpdTAoFA1ceo5b3oY68mNvV5/Ta5XE7xer0KAOX+/ftafIXnRd2Xfl3hsqIoSiAQUAKBQMX4C19rlfh3Wl9IPe729nZRrB999FHR34X+vW5vb2uxVvv3lk6nS+5vJ6Ojo8ro6GhNr+lUAJTFxUWzw7C9ej+f29BPOv4s1PPHkEwmDR/oivL4g77wg1lN4HoAtARU6oO8VBJQP4wV5UnyqPYY1aom+VSzTTqdVgAo4XB41/uqN3YrxV/t+woEAobkWfi6cDisANC+uKmxqolZUar/e1O/YNaKybp6TNaNwWStYbKu549BbQUV2qmFV/gotX2pdeqxlpeXS37IVjpGtRqVrBu9r3pit1L8tb6vbDarJWb969QvEQsLC9o6/VUXRanv760Wo6OjZffPBx/NfJDyE0FROruL6tLSEsbGxuoaMlT4msL15bbbaT+F6zY3N+H3+7V7ouFw2DBUotIxqlVN7NW+v0buq57YrRR/Le8rGo1CkiSEw2H09fUVvc7n82F+fl7rAf/zn//cMAqhnr+3WoyNjWFrawsXL16s6/Wd5Ny5c7h48SJefPFFs0OxtQ8//BBvv/02R1IAFzjOugU2NzfrnqDg8OHDSCaTyGQymJ+fh9/vB1A8tnE3x2gGu9cXblX8Pp8Pc3NzSCQSmJqaQjabRW9vb9mY5ufncfPmTTzzzDOYmJgouV0z/xZ6e3sxPDzclH23m2PHjvFc7dLDhw/NDsEy2Bu8DgsLCwBQceo/dbt4PK6VntOX5KuGIAjI5/NwuVyYm5tDOp3WEnajjtFIdq8v3Mr4NzY2MDAwAAA4f/48AJRN1MDj4hNerxfnz59HNBotmkrSan8LRNQ4TNZ1+N73vgfg8dAidciMfriUWjP35ZdfBgDMzs5qpee6u7sxPDxcUw3fcDisHeef/umftIL0lY5RLTvXFy5Vi9cq8e80h/XGxgaOHz+OI0eOGF6/tbVlGDpWuA+1Na2PT1Xt3xsR2VAr7oxbWb29DbPZrNb5y+v1GobN6HtvZ7NZbbiV1+vVOgShRAeKcuu2t7e1Tkf6XsqVjlGtwuPWEhtgHBq0sLBQ1BEum81qzyeTSUVRlKJzpXagCgQC2rpKQ7cqxW1m/NXGph6r8PVq7/BSv0tRFA0jEQpjrfT3Jopi2XO6E/YGrx7A3uCNwN7gGnYwq6eDGT3WqM5tZrFj/Pl8vqhjWauMjY0BABYXF1t+bLsRBAGLi4sYHR01OxRb4+ez5gIvgxPZyI0bN9hpiagDMVlTXexeX9hO8QeDQcO0ooODg2aHRA2mn1K23HS1Vu0sGIlEDH1C9Kp5X1QdJus2VvgfpdyjHnavL2yn+NUe4gsLC6ZWRjNbPp9v6gd+s/dfDUVRSl7ylWUZMzMzho6F6vz36pz29XzpzOfz2NjYQDQa1ebJr0Sdw1516tQpjI+Plzx+ufdDtWOybmPqf5RKj0bs227sFP/k5CQURcHk5KTZoZiqnjKqVtp/vfL5PDweDyYmJrTx89FoFE6nE8lkEoqiYGBgAB6Pp+Jw0kLhcBgffPABpqamtImXdpLJZDA1NWVY53K5MD09DY/HU7aFTbvHZE1ElrebMqpW2P9uxGIxuFwuw7j6qakpQ0t2ZGQEkiTVXEmtljr2+Xwev/zlL0s+19/fj56eHsRisZqOT9VjsiaiptKXk9WXelXVW4bUymVaG0WWZfj9fpw8edKwfmFhAUtLS0Xb9/T0NC2WWCyG119/vezzw8PD8Pv9lu8DYldM1kTUVOPj4/j000+hKAq2t7chSZLhkun29nbRa7LZrGFZ3/pTb110d3fD7XZDkiRsbGxgcnJSmze9r69PS9j17t8Kbt++DQA4dOiQYf3k5CSSyaS2rL7XZk2Tm0ql8N3vfhdOp7PsNmqMaszUWEzWRNQ0qVQKkiRps6s5nU5MT09DkiTcvHlTW1dop2lXVfqEql4idjgcWsJSW8r17h+o7TJxM9y5cwdA5Xjj8TjS6TRcLlfDY5BlGb///e+Lprct5HA4AMBwVYMah8maiJpmZWUFgDFhqlOslrqM2whqwtLPoW9Xs7OzFbdJpVI4e/ZsUxI1ALz//vtVdW5Uk3U7nHcrYrImoqaZn58vWqd+qFfT+5gq279/f9MStSRJWi0EMheTNRE1jb7ASaFmlyG1e5nWaiQSiYqXp3fD7Xbj2WefLdtJj1qHyZqImkadG/vjjz/W1qkdy5o1bardy7TqqRX2yo1fHhkZaerxd5qXoVwnvEAg0NSYOhWTNRE1zenTpyGKIq5evaq1rm/evAmv12uYNrXeMqQqM8u0NpM6CUq5ZF0uvkgkAkEQqpokpVSZ2XqoZXyPHj1a9z6oPCZrImoah8OBWCwGURTR3d2tXTp96623DNtdvnwZoiiir68PkiShv78foihieXkZV65cAfBkeNX169cxPj5ueP2RI0fgdrvR1dWF3t5exOPxhu7fLMeOHQMAPHjwoKbX5XI5eL3eil80BEFAV1eXtqzWQa+HGqMaMzUWS2SyBBtRVaxYItOqZU5rLZG50/tQW/mXLl2qOQ63220Yj91MwWAQXV1dJeOs9/fEz2cNS2QSEVmZx+PB2tqa4dJ9NTY2NjA9Pd2kqIwymQwymQw8Hk9LjteJmKyJyJbsVOZ0N9RbCVevXq26UEcqlcKBAwea2lNctbm5ifn5ecRiMW1YHjUekzUR2ZKdypxWq1zZWqfTiXg8jtXV1ar2Mzg4qHVOazZJknDlypWSM8WxjnXjPGV2AERE9Win+5jVvBeHw1HXfetm2ymmdvodmY0tayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOHYw+z9qKT8iKk2dTpL/V6pz+/Zt7N271+wwbI1/a090/Axmd+7c4fR4REQWtW/fPnz22Wdmh2G2Cx2frInaCadnJGpLnG6UiIjI6pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKeMjsAIqrfjRs38Ic//EFbTqfTAIBf/OIXhu2+//3v47nnnmtpbETUOIKiKIrZQRBRfQRBAAA8/fTTZbf57LPP8LOf/awogRORbVzgZXAiG7tw4QL27duHzz77rOwDAM6cOWNypES0G0zWRDY2MjKCzz//fMdtDh48iJdeeqlFERFRMzBZE9nYd77zHXzlK18p+/y+ffswNjaGL3yB/9WJ7Iz/g4lsTBAEvPbaa9i7d2/J5z///HOcP3++xVERUaMxWRPZ3OjoKB4+fFjyua997Wt44YUXWhwRETUakzWRzX3zm9/EN77xjaL1e/fuxY9//OPWB0REDcdkTdQGJiYmii6FP3z4kJfAidoEkzVRGzh//jz+9re/acuCIOBb3/pWyRY3EdkPkzVRG/j617+Ob3/729okKXv27MHExITJURFRozBZE7WJ8fFx7NmzBwDw6NEjjIyMmBwRETUKkzVRm3j11Vfx97//HQDw0ksv7Tj+mojshcmaqE0cPHhQG6Y1NjZmcjRE1Egs5GEzTz/9dMXpJYmIdvLv//7vmJ2dNTsMqt4Flsi0mc8//xyvvPIKRkdHzQ6FmuDcuXO4ePEiXnzxxbperygK/vKXv8DhcDQ4Mmv58MMP8fbbb+PGjRtmh2I7Y2NjhrKqZA9M1jY0PDyM4eFhs8OgJjl27Bh/vxWoM7bxPNXuvffeMzsEqgPvWRMREVkckzUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNVEbCgaDCAaDZodhG7IsIxKJmB1GkUgkgnw+b3YYZAFM1kTUcPl8XisqYnWyLGNmZgaiKGrrEokE3G43BEGAz+eDLMs17zefz2NjYwPRaBRut7uq10SjUcN5O3XqFMbHx+s6PrUXJmuiNhQKhRAKhUw7/vr6umnHrkU+n4fH48HExAQOHz4M4HHCdDqdSCaTUBQFAwMD8Hg8yGQyNe07HA7jgw8+wNTUFCRJqrh9JpPB1NSUYZ3L5cL09DQ8Hg9b2B2OyZqIGiqfzyMajZodRlVisRhcLhf6+/u1dVNTU4aW7MjICCRJqvm2Qi1fmPL5PH75y1+WfK6/vx89PT2IxWI1HZ/aC5M1UZuRZVm7jFtqWZIkCIIAt9uNra0tbRtJkrRt1MuxPp8Pm5ub2r4FQdAe5daFw2GtJalfb7X76LIsw+/34+TJk4b1CwsLWFpaKtq+p6enabHEYjG8/vrrZZ8fHh6G3+/n5fAOxmRN1GY8Hg/Onz+vJUz98sbGBkRRRDabhSRJePPNNwEA3d3dcLvd2jaTk5PI5XIAgL6+Pi1hb29vFx0vm80alvWtSUVRYNVaQbdv3wYAHDp0yLB+cnISyWRSW1bfu9frbUocqVQK3/3ud+F0Ostuo8aoxkydh8maqM3oE03hsnq5t7e3FwAwPz8PAIaEqm7jcDi0BKUm/lIJRd1XJWbfRy90584dAJXjj8fjSKfTcLlcDY9BlmX8/ve/N1yGL0UtzKK/ykGdhcmaiMpSE5Tf7zc5ksarpkRkKpXC2bNnm5KoAeD999/H5ORkxe3UZN2OvweqDpM1EVEZ+/fvb1qiliQJ3/ve95qyb2o/LJFJRBU1636tlSUSCYyMjDRt/zuNvRYEwbL3+skcbFkTUVnqPdIzZ86YHEnjhcNhACg7frmZiRp40vlO/9A/V0ogEGhqTGRdTNZEbUY/vEeWZcOympj0CapwOFAikdC2icfjEEXRMLuX2spWE/nGxob2nM/nAwBte/00nlYbuqVOglIuWZeLNxKJQBCEqiZJ0e97N5OaqEPsjh49Wvc+yN6YrInaTHd3t+Fn/XJXV5fh38LtAeDIkSNwu93o6upCb28v4vG44fnLly9DFEX09fVBkiT09/dDFEUsLy/jypUrAJ4M37p+/TrGx8cb+wYb5NixYwCABw8e1PS6XC4Hr9db8YuHIAiG89zV1VX3FKxqjGrM1Hl4z5qozVRzr3OnbVwuV9HwL73e3t4dh4ep+yg8hpWGbQGPh6GFw2H8+te/Ljl0qly86vpK833Xc8+53Gs++OADhMPhHcdiU3tjy5qIOpbH48Ha2prhUn41NjY2MD093aSojDKZDDKZDDweT0uOR9bEZN2BCqefJCq8z90pHA4HYrEYrl69WnWhjlQqhQMHDlScyKQRNjc3MT8/j1gspo21ps7Ey+AdaGZmRpu5yk52ut8XDodx+PBhnDhxgh9qdSi8z91Jw4acTifi8bhW1KOSwcHBFkT1mCRJuHLlCi9/E1vWnWhubs7sEOqiKIphbupcLqcNeTl16hSi0Shr/9ap3BCiTuFwOHDp0iWzwyhy6dIlJmoCwGRNNqP/4NK3oF0ul1ZCkLV/iajdMFl3gHw+j0QioZVFLFcMQB0Tq26XSqW09ZVKLKrU10ejUciyXHTputwxgN2Pw3U6nXjjjTcgSRLW19ct9d6IiHaDyboDjI+PY21tDblcDslkEr/5zW+KtpFlGR6PBz09PVAUBW+88QaGhoa0XqiVSiwCj5PZ8PAwFEXBuXPncP369aqP0SgvvPACAOBXv/pV2703IupgCtkKAGVxcbHq7ZPJpAJAuX//vrYul8spABT9r395eVkp/HMAoAQCAe3nUs/r1wFQtre3teXt7e2ajlGtUrHs9Lzd3lstv99Otbi4uOPfAJU3OjqqjI6Omh0G1eYn7A3e5tQWpjq1IoCSvaWXlpYAFPe4np2drXoyC6/Xi+7ubiwvL+P06dNwOp2GzkqNOEY97Pbebt++jb1799b0mk5z+/ZtAMDKyorJkdjP1tZW1TXIyULM/rpAtUGNLS+UaYUWri+33U7PF667f/++Ioqitj4cDlcVS6122o961UDforXje+ODj2Y+2LK2nZ/wnjUZlOt8Vo3Dhw8jmUwinU7D6/XC7/drRRwadYxK7t69CwA4efJkQ4/byve2uLhYsiITH08ei4uLAGB6HHZ8jI6O7vpvlFqPybrNLSwsAEDFjk7qdvF4XBv2pK+YVA1BEJDP5+FyuTA3N4d0Og2/39/QY+xElmVcu3YNoigaJq5oh/dGRB1OIVsBarsMns1mFQCKKIpKNptVFEVRbt26pV0O83q9iqI86TBV+Mhms4bncrmcoijGTmpqxyvg8eVn9TjZbNZwuXinYyiKogQCgYodsvTHVWNRFEVJp9OKKIqKKIqGjmBWeW/VqvX326nYwax+7GBmS7wM3u56e3uRzWbR09ODZ599Fj6fD88991xRSUOn04lsNqsVt/d6vchms+jt7a2pxOLrr7+OlZUVCIKAlZUVw6xQOx2jGuVKDgqCgNXVVUxPTyOZTBbN+GSH90ZEtBNBURTF7CCoeoIgYHFxkfed2hR/v9VZWlrC2NgY+PFVu7GxMQDQ7vuTLVxgy5qIiMjimKyJiIgsjsmaiDqOnXvqRyIRFqrpQEzWRATgccGXnWqGW33/1ZJlGTMzMxBFUVunFnMRBAE+n6+uMqv5fB4bGxuIRqNaYZhCW1tb8Pl82nHKFXuRJEmLx+12I5FIaM+dOnWKpWA7EJM1EQFAUaUyu+2/Gvl8Hh6PBxMTE9oUvNFoFE6nE8lkEoqiYGBgAB6Pp+YiLOFwGB988AGmpqYgSVLJY2cyGczNzSGXy2FgYABDQ0NF20YiEbjdboRCISiKglAohPPnz2tXAlwuF6anp1kKtsMwWRMR8vk8otGobfdfrVgsBpfLhf7+fm3d1NSUoZU6MjICSZJqLtcaCoV2nAd+fX1da807HA6MjIwAQFErXJ1sx+VyGf5dW1vTtunv70dPT49Ww53aH5M1kc3p65Xr622r1PX6S9CF68LhsNbCU9fLsqxdjgUet0DVy7f6aVXr3T+w+xrmtZBlGX6/v2gq2oWFBa0Qi15PT09Dj6+/7K7n9XoNy+FwGACwsbEBAFpd9cIvAsPDw/D7/bwc3iGYrIlsbnx8HJ9++ikURcH29jYkSTJcIt3e3i56TTabNSzrE4Hyf3NId3d3w+12a7W+JycnkcvlAAB9fX1awq53/62mVuo6dOiQYf3k5CSSyaS2rL6vwiTaaOrv58yZM4b1ly5dQiAQwPHjx7GxsYH/+q//wvb2ttbCVqnvQ31f1N6YrIlsLJVKQZIkvPzyywAez6Q2PT0NSZJw8+ZNbV2hamZW0ydU9bKxw+HQkpjaUq53/0DlS8eNdOfOHQCVY4vH40in00XJsdHu3r0LURRx4sSJoudCoRC8Xi+OHz+Oe/fu4emnny7aRi1128zCOGQdTNZENqbWc9YnzCNHjgBAyUu7jaAmMX0hEzuYnZ2tuE0qlcLZs2ebnqgB4Nq1a5ieni5ZXz4SiWBgYEC7kjE+Pl7UmUx9nd1+D1QfJmsiG5ufny9ap36Il+qRTDvbv39/SxJ1IpGAKIqGjm765/x+P06fPg2Hw4Hx8XFIkoQbN240PS6yLiZrIhtTOy2V6mTU7Huuzd5/qyUSiZLJs9EymQzu3buHycnJks+fP38ewJMvXWoxmampqabHRtbFZE1kY2rBj48//lhbp14uHR4ebsox1XukhR2jrE7tZV1ubLI6lKqZZFnG6uqq4T59JpOBz+fTlgt7jatJu1xvcrXSG7U3JmsiGzt9+jREUcTVq1e11vXNmzfh9XoxODiobae2gtVEqw4LAqAlCn0rvXAqTnUGrXw+j3g8DlEUDcmj3v23cuiWOglKuWRdLpZIJAJBEKqaJEW/78LjyLIMj8cDv99vGNr2/PPPG774vPHGGwCenHP1XKrrVeqQrqNHj1aMi+yPyZrIxhwOB2KxGERRRHd3tzZ++a233jJsd/nyZYiiiL6+PkiShP7+/qKa5mpr7/r16xgfHze8/siRI3C73ejq6kJvby/i8XhD998Kx44dAwA8ePCgptflcjl4vd6KXyrK1VtXzczMlO1H0NfXp/08ODiIW7duYW1tDYIg4N1338WtW7cMX77070N9X9TeWM/aZljvuL1Z7ferJhurfUzUW89abdFfunSp5mO63W7DeGyzBYNBdHV11fxeWM/alljPmog6h8fjwdramuEyfTU2NjYwPT3dpKhql8lkkMlk4PF4zA6FWoTJmohK0vcwb5cpLdXbBlevXq26UEcqlcKBAwda0lO8Gpubm5ifn0csFis5RpvaE5M1EZWkDhkq/NnunE4n4vE4VldXq9p+cHBQ65xmBZIk4cqVKyVnjqP29ZTZARCRNVntPnUjORyOuu5bW4Fd46bdYcuaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOHcxsaGxsDO+9957ZYVCTvP322/z9VqBOtXnu3DmTI7GflZUVy0y6Q9XjDGY2Mz09jd/97ndmh0EW9cc//hH/8z//g1OnTpkdClnY+DoD0m0AACAASURBVPh42cIgZEkXmKyJ2ki903ASkaVxulEiIiKrY7ImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii3vK7ACIqH6nTp1COp3Gl7/8ZQDAX//6VzgcDnzzm9/Utrl//z7+4z/+A6Ojo2aFSUS7xGRNZGOpVAqKouBPf/qTYX0+nzcsf/LJJy2MiogajZfBiWzsrbfewlNP7fydWxAEjIyMtCgiImoGJmsiG3v11Vfx6NGjss8LgoAXXngBX//611sYFRE1GpM1kY09++yzOHr0KL7whdL/lffs2YMf/ehHLY6KiBqNyZrI5iYmJiAIQsnn/v73v+PVV19tcURE1GhM1kQ2Nzw8XHL9nj17MDAwgIMHD7Y4IiJqNCZrIpv7l3/5F5w8eRJ79uwxrFcUBa+99ppJURFRIzFZE7WB1157DYqiGNbt2bMHP/zhD02KiIgaicmaqA288sor2Lt3r7b81FNP4fTp03A4HCZGRUSNwmRN1Aa+9KUv4Qc/+IE25vrRo0cYHx83OSoiahQma6I2MTY2po25/uIXv4gf/OAHJkdERI3CZE3UJs6cOYNnnnkGAHD27Fn8wz/8g8kREVGjcG5wi/jb3/6GZDK542xURJU8++yzuHfvHr761a9iZWXF7HDIxr761a/i+PHjZodB/0dQCruQkinee+899twlIktherCMC2xZW8Rf//pXAPzPQZWNjY0BABYXF02OxPoEQcDi4iLLg9ZoaWlJ+zsja+A9ayIiIotjsiYiIrI4JmsiIiKLY7ImIiKyOCZrIiIii2OyJiIisjgma6IOFgwGEQwGzQ7DkmRZRiQSMTuMukQiEeTzebPDoAZisiYi0+TzeQiCYHYYRWRZxszMDERR1NYlEgm43W4IggCfzwdZlmvebz6fx8bGBqLRKNxud8lttra24PP5tOOkUqmS20mSpMXjdruRSCS0506dOoXx8fG6YiRrYrIm6mChUAihUMi046+vr5t27HLy+Tw8Hg8mJiZw+PBhAEA0GoXT6UQymYSiKBgYGIDH40Emk6lp3+FwGB988AGmpqYgSVLJY2cyGczNzSGXy2FgYABDQ0NF20YiEbjdboRCISiKglAohPPnz2tXAlwuF6anp+HxeNjCbhNM1kRkinw+j2g0anYYRWKxGFwuF/r7+7V1U1NThlbqyMgIJEmq+RZCpS9H6+vrWmve4XBgZGQEAIpa4X6/H8DjpKz/d21tTdumv78fPT09iMViNcVI1sRkTdShZFnWLu2WWpYkSbvEurW1pW2jXn4FHrc41cu1m5ub2r4FQdAe5daFw2Gtxahfb+Z9dFmW4ff7cfLkScP6hYUFLC0tFW3f09PT0OPrL7vreb1ew3I4HAYAbGxsAID2+yn8IjA8PAy/38/L4W2Ac4MTdSiPx2O4vKpf3tjYgCiKyGazePbZZ9HT04O5uTl0d3dr229sbGBychLnzp3Dz3/+c/T19eH+/fs4fPgwtre3DdsC0PalCoVCmJ2dBWCdOfFv374NADh06JBh/eTkJCYnJ7Vl9YtJYRJtNPUS9pkzZwzrL126hFwuh+PHj+Ojjz7CJ598gu3tbTidTsN26vu4fft22S8CZA9sWRN1qGQyWXZZvQTc29sLAJifnwdgTKrqNg6HQ0taarIvTBr6fVVi5n30O3fuAKgcazweRzqd1i4/N8vdu3chiiJOnDhR9FwoFILX68Xx48dx7949PP3000XbOBwOADBc9SB7YrImol1Tk5Z6L9Wu1Jb+TlKpFM6ePdv0RA0A165dw/T0tJZ09SKRCAYGBpDL5QAA4+PjRZ3J1NfZ/fdCTNZERDXZv39/SxJ1IpGAKIqGjm765/x+P06fPg2Hw4Hx8XFIkoQbN240PS4yB5M1ETVMs+/hmi2RSJRMno2WyWRw7949w31yvfPnzwN40nJW+wdMTU01PTYyB5M1Ee2aek+0sCOU3ai9rMuNTVaHUjWTLMtYXV013LfPZDLw+XzacmFnMTVpl+tEFggEmhAptRKTNVGH0g/nkWXZsKwmK33SKhz+o86Ylc/nEY/HIYqiIVmorWw1kavDjABoiUfdXj+1p5lDt9RJUMol63KxRSIRCIJQ1SQp+n0XHkeWZXg8Hvj9fsNQt+eff97wReiNN94A8OR3oJ5bdb1KHdJ19OjRinGRtTFZE3Uo/dCq7u5uw3JXV5fh38LtAeDIkSNwu93o6upCb28v4vG44fnLly9DFEX09fVBkiT09/dDFEUsLy/jypUrAJ6MC75+/TrGx8cb+wbrcOzYMQDAgwcPanpdLpeD1+ut+CVDEATDOe3q6jKMRZ+ZmSk5sxkA9PX1aT8PDg7i1q1bWFtbgyAIePfdd3Hr1i0MDg4aXqO+D/V9kX0JilUGOHa4paUljI2NWWa8KVnX2NgYAGBxcdGU46vJxQ5/q4IgYHFxEaOjo1W/Rm3hX7p0qebjud3uoiFxZgoGg+jq6qr5vfDzyHIusGVNRKTj8XiwtrZmuGxfjY2NDUxPTzcpqtplMhlkMhl4PB6zQ6EGYLJuM4VTRhI1UuF97nbkcDgQi8Vw9erVqgt1pFIpHDhwoCU9xauxubmJ+fl5xGKxkmO0yX6YrNvMzMwMzp8/X/a+l9VVU0KwEn3HnMJHJBKBJEmsRFSnwvvc7crpdCIej2N1dbWq7QcHB7XOaVYgSRKuXLlSciY5sicm6zYzNzdndgi7UqmEYDUURcH29ra2nMvloCgKFEXBqVOnEI1GWeu3Tup5VB/tzOFw1HXf2gouXbrERN1mmKzJUho1L7T+g0p/GdDlcmklA1nrl4jsgsna5vL5PBKJhFbKsNyE/eo4VnW7VCqlra9UFlGlvj4ajUKWZcOQk52O0Wi7HYfrdDrxxhtvQJIkrK+vG55rp/NERO2DydrmxsfHsba2hlwuh2Qyid/85jdF26gTLfT09EBRFLzxxhsYGhrSeoqq97j1ZRElScKbb76p7SMSiWB4eBiKouDcuXO4fv161cewohdeeAEA8Ktf/Upbx/NERJalkCUsLi4qtf46ksmkAkC5f/++ti6XyykADPtaXl4u2jcAJRAIaD+Xel6/DoCyvb2tLW9vb9d0jFqViqnR+7DreRodHVVGR0er3r6TAVAWFxfNDsN26vk8oqb6CSdFsYh6JiHw+XyYn58vek3hpBVut7tsZy1FUUpOclG4Tj3W8vKyVulHr9IxatWIiTcq7cOu52lsbAwffvghZ6WqwsrKCo4dO1Z1LW16bGtrC7dv3277ToQ2wklR7Gx+fr6q7dTkoBT05K3lP+JPf/pTiKKI8+fPo6urS5vlqZHHaCW1Y5m+wAHPExFZVlMb7lS1ei47ocxl3sL16rL+cnml/ZTbdzqdVrxerwJACYfDVR+jVuWO36h93Lp1SwGg3Lp1q2h7q58nXgavHngZvC68DG45P2HL2sYWFhYAoGLnJHW7eDyutSj1VY6qIQgC8vk8XC4X5ubmkE6n4ff7G3qMVpFlGdeuXYMoiobCBzxPRGRZZn9doMfq+SabzWYVAIooiko2m1UU5UmLEYDi9XoVRXnSyanwkc1mDc/lcjlFUYyd1NTOUvi/TlDqcbLZrKHFuNMxaqU/vhqTXiAQqNghq9w+0um0IoqiIoqioSOYnc4TW9bVA1vWdWHL2nLYsraz3t5eZLNZ9PT04Nlnn4XP58Nzzz1XVIbQ6XQim81q92e9Xi+y2Sx6e3trKov4+uuvY2VlBYIgYGVlxTC7007HqEWlEoK72YcgCFhdXcX09DSSyWTRDE92Ok9E1FnYG9wiWJKOqmV2iUw7qadEJvHzyILYG5yIiMjqmKyJiEqwc8e/SCTCee/bDJM1Nd1OJSv1D7KHfD7f1N9Xs/dfDVmWMTMzA1EUtXXq3PCCIMDn89VVtW1raws+n0/bR7l54TOZjOH/hs/nK7vPTCajlZRVz9upU6dYWa7NMFlT0yklJgAp9SB7KCx+Yrf9V5LP5+HxeDAxMaHVqI5Go3A6nUgmk1AUBQMDA/B4PDXN6Z7P55HJZDA3N4dcLoeBgQEMDQ2VnNHuzp07huUzZ86U3GckEkEwGMTBgwfxzjvvaP+PXC4XpqenWVmujTBZE1HV8vk8otGobfdfjVgsBpfLhf7+fm3d1NSUoZU6MjICSZJqqv62vr6utdQdDgdGRkYAQKvkpnfw4EHDF1l9C1/l8/mQy+UQj8chimLRiIL+/n709PRoJWHJ3pisiTqEvpyqvoSnqtQticJ14XBYawmq62VZhiRJWtKJRqPapVt9ydZ69w/svixqtWRZht/vx8mTJw3rFxYWsLS0VLR9T09P1fsulXCBx8P39La2tuB2uxEMBrGxsVHyNeq5CIVCRfPP6w0PD8Pv9/NyeBtgsibqEOPj4/j000+hKAq2t7chSZLhMun29nbRa7LZrGE5FAppP6utvu7ubq1AycbGBiYnJ5HL5QAAfX19WsKud/+tdPv2bQDAoUOHDOsnJyeRTCa1ZfU9FSbaWqjnvfASt3ppfXZ2FsePH4fb7TYk20wmg9nZWZw5c0b7YlSuLrr6PtT3RfbFZE3UAVKpFCRJwssvvwzg8eQs09PTkCQJN2/e1NYVqmayFn1CVS8dOxwOLZGpLeV69w88TuL6RN4s6r3iSnHF43Gk02m4XK66j3X37l2IoogTJ04Y1ouiiFwuh3Q6jUAgAEmS8P7772vPr66uajGqX4x6enowNDRU1BJXW936KxxkT0zWRB1gZWUFgDFhHjlyBABKXt5tBDWR6edGt7rZ2dmK26RSKZw9e3ZXiRoArl27hunp6ZKXsR0OB1wuF0KhEBYWFgyd0NTzqR5f/8Xo3XffLdqP/jVkX0zWRB2gVDlV9YO8XH1tKm3//v27TtSJRAKiKBo6sZVz7ty5ir8jNZ5qy+aS/TBZE3UAtXNTqY5Gu7nvWo1m77+VEolEVQl2J5lMBvfu3cPk5GRV2+tbzsCT81lqSFa5Tmxkf0zWRB1AnRv7448/1tapH/bDw8NNOaZ6n7TcGGErCofDAEonQgDacKt6ybKM1dVVw/33TCaz46Qn+Xze8DtSf/7kk08M2wAoOwe6WjiG7IvJmqgDnD59GqIo4urVq1rr+ubNm/B6vYaa3mqrTU20+g5LakLRt9ILp+NMJBIAHicPdfyvvrVX7/5bNXRLnQSlXLIuF0ckEoEgCDtOkiLLMjweD/x+v2HI2vPPP699oUkkEoZe3VtbW1hfXzf8jgYHBxEIBBAMBrXf5Y0bNyCKYtGXia2tLQDA0aNHq3n7ZGFM1kQdwOFwIBaLQRRFdHd3a+OX33rrLcN2ly9fhiiK6OvrgyRJ6O/vLyq5qrYKr1+/jvHxccPrjxw5Arfbja6uLvT29iIejzd0/8127NgxAMCDBw9qel0ul4PX693xC8XMzEzZe899fX0AgGeeeQZDQ0MQBAHBYBB//vOfS17aDoVCRb/LwnOtfx/q+yL7YolMi2BJOqqWFUtkqgnDan+/9ZTIVFvz+jrk1XK73Ybx2GYLBoPo6uqq+b3w88hyWCKTiEjP4/FgbW2t7Oxh5WxsbGB6erpJUdUuk8kgk8nA4/GYHQo1AJM1Ee2Kvod5O0xrqd4yuHr1atWFOlKpFA4cOLDrnuKNsrm5ifn5ecRisR2nIyX7YLImol3p7u4u+bOdOZ1OxONxbbawSgYHB7XOaVYgSRKuXLlSctY4sqenzA6AiOytXe9rOhyOuu5bW4Fd46by2LImIiKyOCZrIiIii2OyJiIisjgmayIiIotjsiYiIrI4zmBmEe+99x5++MMfmh0GEZGG6cEyLnDolkX84Ac/wH/+53/i0aNHZodCNvbhhx/i7bffxo0bN8wOhWzuq1/9qtkhkA6TtUU89dRT+Ld/+zezwyCbe/jwIYDmlb0kInPwnjUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNRERkcUxWRMREVkckzUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNRERkcUxWRMREVkckzUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNRERkcUxWRMREVkckzUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNRERkcUxWRMREVkckzUREZHFMVkTERFZHJM1ERGRxTFZExERWRyTNRERkcUxWRMREVkckzUREZHFMVkTERFZ3FNmB0BE9fvTn/6EfD6vLcuyDAD4+OOPDdt9+ctfxhe/+MWWxkZEjSMoiqKYHQQR1UcQhKq2CwQCCIVCTY6GiJrkAi+DE9nYd77znaoS9uHDh1sQDRE1C5M1kY29/vrrFbd5+umn8corr7QgGiJqFiZrIhsTRRFPP/102eefeuopiKKIL33pSy2MiogajcmayMaeeeYZvPLKK9i7d2/J5x89eoTR0dEWR0VEjcZkTWRzP/rRj/Dw4cOSzz3zzDM4c+ZMiyMiokZjsiayuX/913/FP/7jPxat37t3L86dO7fjZXIisgcmayKb27t3L1599dWiS+EPHz7E2NiYSVERUSMxWRO1gbGxsaJL4f/8z/+MgYEBkyIiokZisiZqAy+99BIOHjyoLe/btw8/+tGPsGfPHhOjIqJGYbImagNf+MIXMDo6in379gEAPv/8c/YCJ2ojTNZEbWJ0dBSff/45AKC3txdHjx41OSIiahQma6I28cILL+D//b//BwAYHx83NxgiaihW3WqRP/7xj/jpT3+KR48emR0KtTG1Ls9///d/49y5cyZHQ+3s0KFDuHr1qtlhdAy2rFsklUohkUiYHQa1OZfLhQMHDuC3v/2t2aHYwsrKCra2tswOw3ZWVlbw5ptvmh1GR2HLusVu3LhhdgjU5tSx1YuLiyZHYn2CIODixYvsjFejpaUljuFvMbasiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiMoKBoMIBoNmh2FJsiwjEomYHUZdIpEI8vm82WFQDZisiciy8vk8BEEwO4wisixjZmYGoihq6xKJBNxuNwRBgM/ngyzLNe93a2sLPp9P20cqlSq5XSaTgSAI2sPn85XdZyaTQTQa1WIDgFOnTmF8fLyuGMkcTNZEVFYoFEIoFDLt+Ovr66Ydu5x8Pg+Px4OJiQkcPnwYABCNRuF0OpFMJqEoCgYGBuDxeJDJZGrabyaTwdzcHHK5HAYGBjA0NARJkoq2vXPnjmH5zJkzJfcZiUQQDAZx8OBBvPPOO9oMdy6XC9PT0/B4PGxh2wSTNRFZUj6fRzQaNTuMIrFYDC6XC/39/dq6qakpQyt1ZGQEkiTVdAthfX1da6k7HA6MjIwAANxud9G2Bw8ehKIo2kPfwlf5fD7kcjnE43GIooje3l7D8/39/ejp6UEsFqs6RjIPkzURlSTLsnZpt9SyJEkQBAFut1ubslOWZUiSpG0TjUa1y7Sbm5vavvWXcMutC4fDWqtSv97M++iyLMPv9+PkyZOG9QsLC1haWiravqenp+p9l0q4AOD1eg3LW1tbcLvdCAaD2NjYKPka9fyEQiE4HI6yxxweHobf7+flcDtQqCUWFxcVnm5qhdHRUWV0dHTX+xFFUQGg/d3qlz/66CNFURQlm80qABSv16soiqI9r98ml8spXq9XAaDcv39fURRF2d7eNuxbvy/9usJlRVGUQCCgBAKBXb8/df+Li4tVb59MJhUASjab3XG7+/fvKwCUdDpdd2y5XE4BoCSTyZIxqA9RFJXt7W3t+XQ6rb1uYWFB2+bWrVtFx1DPeeExKuHnWcv9hC1rIiopmUyWXVYvAauXVufn5wE8qfql38bhcGitQ7Wl7HQ6i45XeJm2HDPvo6v3iivFGo/HkU6n4XK56j7W3bt3IYoiTpw4YVgviiJyuRzS6TQCgQAkScL777+vPb+6uqrFODk5iVwuh56eHgwNDRW1xNVWt/6qB1kTkzURNZ2atPx+v8mR7M7s7GzFbVKpFM6ePburRA0A165dw/T0dMnL2A6HAy6XC6FQCAsLC4ZOaOo5Vo+v/7L07rvvFu1H/xqyLiZrIqIG2r9//64TdSKRgCiKhk5s5Zw7d65kj3E9NR71CgjZD5M1EbVMYWepdpNIJKpKsDvJZDK4d+8eJicnq9pe33IGnpzjUkOyynViI+tjsiaiplPviZYbD2wX4XAYQOlECEAbblUvWZaxurpquCefyWR2nPQkn89jeHhYW1Z//uSTTwzbAChbtzsQCOwmbGoBJmsiKkk/nEeWZcOy+uGvT1qFw38SiYS2jTrWV9+yU1uAaiLXd35Sk5O6vX5qTzOHbqmToJRL1uVii0QiEARhx0lSZFmGx+OB3+83DGN7/vnntS85iUTCMKvZ1tYW1tfXMTg4qK0bHBxEIBBAMBjUfic3btyAKIpFXybUIXdHjx6t5u2TiZisiaik7u5uw8/65a6uLsO/hdsDwJEjR+B2u9HV1YXe3l7E43HD85cvX4Yoiujr64MkSejv74coilheXsaVK1cAQGthXr9+HePj4419g3U4duwYAODBgwc1vS6Xy8Hr9e74JWNmZqbsvee+vj4AwDPPPIOhoSEIgoBgMIg///nPJS9th0IhiKKI7u5ubXx64fnXvw/1fZF1CYp+rAU1zdLSEsbGxsDTTc02NjYGAFhcXDTl+GpysMPfuiAIWFxcLHt5uBS1hX/p0qWaj+d2u4uGxJkpGAyiq6ur5vfCz7OWu8CWNRFRDTweD9bW1srOHlbOxsYGpqenmxRV7TKZDDKZDDwej9mhUBWYrImoYQrvc7cjh8OBWCyGq1evVl2oI5VK4cCBA7vuKd4om5ubmJ+fRywW23E6UrIOJmubKZyfmchKCu9ztyun04l4PK7NFlbJ4OCg1jnNCiRJwpUrV0rOJEfW9JTZAVBtZmZm2mJig3w+j66urpruee1U1zgcDuPw4cM4ceJEW7QU6jk/VmC3eHfD4XDUdd/aCuwadydjy9pm5ubmzA6hIeqpU6woCra3t7XlXC6nlQg8deoUotEoxsfH2+LyqxXrOBOReZisqeV2U6dYf9lO34J2uVxaXV6Px1N2HKwdWLWOMxGZh8na4vL5PBKJhFY3uLA6jr5+cD6fh8/nM4zl1L9eEAREo9GiTkDV1B+udn9m1il2Op144403IEmS1jJtp/NDRJ2LydrixsfHsba2hlwuh2Qyid/85jeG5z0eD9xuNyRJwm9/+1t4vV787//+r+H1n376qXYJWZIkQ8uzu7tbe/3GxoZWUg94PBFDYUKqtD/9ZWpVNps1LOunUlQvYzfKCy+8AAD41a9+BYDnh4jaRGvrZ3eueoq1q0Xm79+/r61TC9Lr96Uu53I5w+tv3bqlADAUpv/oo48UAMry8nLR6/XUAvbhcLgh+ysXcz0qvbbTz8/o6KgyOjpa12s7DQBlcXHR7DBsp57PM9qVn/Bst0g9f9xer7fka6r9YC/1ejXZi6JY8fWF63ezPysk60Lten5GR0e11/PBRzMf1DI/4XSjLVLP9Hzlpm0sXF/tdrt9/W62q3Zf1djpteqQp0AgoF1O7rTzMzY2hq2tLVy8eLHm13aac+fO4eLFi3jxxRfNDsVWPvzwQ7z99tu8RdM6FzjOuo2JoghJkiDLctHkB9XWFdZv14j9Ndvdu3cBACdPnqy4bTufn97eXkPZRCrv2LFjPFc1evjwodkhdBx2MLOwhYUFAKh6SsNCanGCjz/+WFundnSq9OFUqv7wbvbXCrIs49q1axBF0VAysJxOOz9EZF9M1hb2ve99D8DjIU1q3Vl9LVufz7fjBCCnT5+GKIq4evWqtt3Nmzfh9XpLJrNK9Yer3V8z6xTrx0/rf9YXJFDHW6v7L8du54eIOliLbo53vHp7T2azWa3jktfrVba3txVRFJXl5WVle3vb0NlD34lJtb29rSwsLGjbLC8vF/WKVp9Lp9OKKIoKAGVhYaFou2r3l81mtf0kk0lFURRDzIrypDd1IBDQ1gUCASUQCJQ9F/r3WvgIh8PKRx99tONr7H5+qsXe4NUD2Bu8HuwN3nLsYNYqVq7/aqf6w2aw2/kxu561ndRTz5qs/XnWpljPmoiIyOqYrDtcJ9Qf3g2eHyrHzv0JIpGIrefP70RM1h2uU+oP14vnp3b5fL6p85k3e//VkGUZMzMzhg6Gap15de74er7cbW1twefzafvQdyjVy2Qyhjnl1Y6J5baNRqNabABw6tSptqlQ1ymYrDuc8n9zT6sPMuL5qV2zy3uaXT40n8/D4/FgYmIChw8fBvC4wIvT6UQymYSiKBgYGIDH46lp2GU+n0cmk8Hc3BxyuRwGBgYwNDSkFXXRu3PnjmFZP4RQLxKJIBgM4uDBg3jnnXe0v2GXy4Xp6WnbV6jrJEzWRNQwzS7vaYXyobFYDC6XC/39/dq6qakpQyt1ZGQEkiTVVEVufX1da6k7HA6MjIwAgFbxTe/gwYOGL5H6Fr7K5/Mhl8tpwwx7e3sNz/f396Onp8cw1JGsi8maiAA0r7xntWVGzSyvWi1ZluH3+4tmyFtYWMDS0lLR9j09PVXvu1TCBYpnv9va2oLb7UYwGDSM0ddTz0UoFDLUfS80PDwMv9/Py+E2wGRNRACaV96z2jKjdigfevv2bQDAoUOHDOsnJyeRTCa1ZfU97WaaWfW8F17iVi+tz87O4vjx43C73YZkm8lkMDs7izNnzmhfjNxud8n73+r7UN8XWReTyRr77AAAIABJREFUNREhlUpBkiS8/PLLAACn04np6WlIkoSbN29q6woVXlotRZ9Q1UvHDodDS2RqS7ne/QOPk7g+kTeLeq+4UlzxeBzpdBoul6vuY929exeiKOLEiROG9aIoIpfLIZ1OIxAIQJIkvP/++9rzq6urWozqF6Oenh4MDQ0VtcTVVndhXXayHiZrIsLKygoAY8I8cuQIAJS8vNsIaiLz+/1N2X8zzM7OVtwmlUrh7Nmzu0rUAHDt2jVMT0+XvIztcDjgcrkQCoWwsLBg6ISmnk/1+PovRu+++27RfvSvIetisiYizM/PF61TP8hL9Uam8vbv37/rRJ1IJCCKoqETWznnzp2r+DtS4yn1eyZ7YLImIkPhkELNLu9plfKqjZBIJKpKsDvJZDK4d+8eJicnq9pe33IGnpzPUkOyynViI+tjsiYiU8p7liozanXhcBhA6UQIQBtuVS9ZlrG6umq4/57JZHac9CSfzxt+R+rPn3zyiWEbAGXnQA8EArsJm1qAyZqIWlbes1KZ0WaWV20EdRKUcsm6XByRSASCIOw4SYosy/B4PPD7/YYha88//7z2hSaRSBh6dW9tbWF9fd3wOxocHEQgEEAwGNR+lzdu3IAoikVfJtTSu0ePHq3m7ZOJmKyJCA6HA7FYDKIooru7Wxu//NZbbxm2u3z5MkRRRF9fHyRJQn9/P0RRxPLyMq5cuQLgyfCq69evY3x83PD6I0eOwO12o6urC729vYjH4w3df7MdO3YMAPDgwYOaXpfL5eD1enf8QjEzM1P23nNfXx8A4JlnnsHQ0BAEQUAwGMSf//znkpe2Q6FQ0e+y8Fzr34f6vsi6WCKzRVhSjlrFiiUyrVpmtJ4SmWpr/tKlSzUfz+12G8Zjmy0YDKKrq6vm98LPs5ZjiUwiolp4PB6sra2VnT2snI2NDUxPTzcpqtplMhlkMhl4PB6zQ6EqMFkTUVO1W5lR9ZbB1atXqy7UkUqlcODAgV33FG+Uzc1NzM/PIxaL7TgdKVkHkzURNVU7lhl1Op2Ix+PabGGVDA4Oap3TrECSJFy5cqXkrHFkTU+ZHQARtbd2va/pcDjqum9tBXaNu5OxZU1ERGRxTNZEREQWx2RNRERkcUzWREREFscOZi2mliIkahZ1Ckn+rVXn9u3b2Lt3r9lh2Ar/tlqPM5i1yJ07dzilHxG1jX379uGzzz4zO4xOcYHJmqiNcBpIorbE6UaJiIisjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIiCyOyZqIiMjimKyJiIgsjsmaiIjI4pisiYiILO4pswMgovrduHEDf/jDH7TldDoNAPjFL35h2O773/8+nnvuuZbGRkSNIyiKopgdBBHVRxAEAMDTTz9ddpvPPvsMP/vZz4oSOBHZxgVeBieysQsXLmDfvn347LPPyj4A4MyZMyZHSkS7wWRNZGMjIyP4/PPPd9zm4MGDeOmll1oUERE1A5M1kY195zvfwVe+8pWyz+/btw9jY2P4whf4X53Izvg/mMjGBEHAa6+9hr1795Z8/vPPP8f58+dbHBURNRqTNZHNjY6O4uHDhyWf+9rXvoYXXnihxRERUaMxWRPZ3De/+U184xvfKFq/d+9e/PjHP259QETUcEzWRG1gYmKi6FL4w4cPeQmcqE0wWRO1gfPnz+Nvf/ubtiwIAr71rW+VbHETkf0wWRO1ga9//ev49re/rU2SsmfPHkxMTJgcFRE1CpM1UZsYHx/Hnj17AACPHj3CyMiIyRERUaMwWRO1iVdffRV///vfAQAvvfTSjuOvichemKyJ2sTBgwe1YVpjY2MmR0NEjVRUyOPOnTs4duyYWfEQERF1LHWu/wIXikpk/u53vwPwuPQeEdmLoij4y1/+AofDYXYobeftt98GAFy8eNHkSKzv3LlzuHjxIl588UWzQ7GVpaUlvPfeeyWfK1vPenh4uGkBERHZjfohys/G6hw7doznqkYPHz4sm6x5z5qIiMjimKyJiIgsjsmaiIjI4pisiYiILI7JmoiIyOKYrImIWiwYDCIYDJodhiXJsoxIJGJ2GHWJRCLI5/NN2TeTNRFRh8nn81rRFyuRZRkzMzMQRVFbl0gk4Ha7IQgCfD4fZFmueb9bW1vw+XzaPlKpVMntMpkMBEHQHj6fr+w+M5kMotGoFhsAnDp1CuPj43XFWAmTNRFRi4VCIYRCIdOOv76+btqxy8nn8/B4PJiYmMDhw4cBANFoFE6nE8lkEoqiYGBgAB6PB5lMpqb9ZjIZzM3NIZfLYWBgAENDQ5AkqWjbO3fuGJbPnDlTcp+RSATBYBAHDx7EO++8A3UiUJfLhenpaXg8noa3sJmsiYg6SD6fRzQaNTuMIrFYDC6XC/39/dq6qakpQyt1ZGQEkiTVdAthfX1da6k7HA6tGp3b7S7a9uDBg1AURXvoW/gqn8+HXC6HeDwOURTR29treL6/vx89PT2IxWJVx1gNJmsiohaSZVm7tFtqWZIkCIIAt9uNra0tbRtJkrRtotGodpl2c3NT27f+Em65deFwWGtV6tebeR9dlmX4/X6cPHnSsH5hYQFLS0tF2/f09FS971IJFwC8Xq9heWtrC263G8FgEBsbGyVfo56fUCi045S+w8PD8Pv9jb0crhRYXFxUSqwmIupoo6Ojyujo6K73I4qiAkD7nNUvf/TRR4qiKEo2m1UAKF6vV1EURXtev00ul1O8Xq8CQLl//76iKIqyvb1t2Ld+X/p1hcuKoiiBQEAJBAK7fn/q/hcXF6vePplMKgCUbDa743b3799XACjpdLru2HK5nAJASSaTJWNQH6IoKtvb29rz6XRae93CwoK2za1bt4qOoZ7zwmNUskP+/Qlb1kRELZRMJssuq5eA1Uur8/PzAKDdE9Vv43A4tNah2lJ2Op1Fxyu8TFuOmffR1XvFlWKNx+NIp9NwuVx1H+vu3bsQRREnTpwwrBdFEblcDul0GoFAAJIk4f3339eeX11d1WKcnJxELpdDT08PhoaGilriaqtbf9Vjt5isiYhsSk1afr/f5Eh2Z3Z2tuI2qVQKZ8+e3VWiBoBr165henq65GVsh8MBl8uFUCiEhYUFQyc09Ryrx9d/WXr33XeL9qN/TSMwWRMRkeXt379/14k6kUhAFEVDJ7Zyzp07V7LHuJ4aj3oFpJmYrImIbK6ws1S7SSQSVSXYnWQyGdy7dw+Tk5NVba9vOQNPznGpIVnlOrE1EpM1EZFNqfdEy40HtotwOAygdCIEoA23qpcsy1hdXTXck89kMjtOepLP5w31uNWfP/nkE8M2ADA6OlpyH4FAYDdhGzBZExG1kH44jyzLhmX1w1+ftAqH/yT+f3v3E9pGevcB/Ks3WWgTWolQ7BQHB0qoMbQosJB4L2ti+5KQ0XYhzjpxvbnIQaJb2H2jS4SEMTZuDhaEZiFG0qGLcCxiClkNbS6OIKYQZ2GLBM0hPiyRD2ElKJFY2FPTeQ9+n8nMaEYa/bNG1vcDItFo9Mwzo7F+ep555vml0+o64l5fbctOtABFINcOfhLBSayvndqzm7duiUlQrIK1Vd1isRhcLlfNSVJKpRL8fj9CoZDuNrazZ8+qP3LS6bRuVrO9vT1sb29jYmJCXTYxMYFIJIJoNKp+Jg8fPoQkSVU/JsQtd+fOnbOz+7YwWBMRHaDBwUHd/7XPPR6P7l/j+gAwOjoKn88Hj8eD4eFhpFIp3eu3b9+GJEkYGRmBLMsYGxuDJEnY2NjA4uIiAKgtzHv37mFubq69O9iE8+fPAwBev37d0PvK5TICgUDNHxkLCwuW155HRkYAAMePH8fk5CRcLhei0SjevHlj2rW9tLQESZIwODio3p9uPP7a/RD71Q4uRXtPAIAHDx5gdnYWhsVERH1tdnYWALC+vt6V7Yvg0AvfzS6XC+vr65bdw2ZEC//WrVsNb8/n81XdEtdN0WgUHo+n4X2pEX8/Y8uaiIi6zu/34+nTp5azh1nZ2dlBOBzuUK0al8/nkc/n4ff721puy8HaOFXeQev29p3C7DgcxDUopvrrv3OQ59rBM17nPozcbjeSySRWVlZsJ+rIZrM4ceJEyyPF22V3dxdra2tIJpM1pyNtxtFWC1hYWGjbPWaVSgUej6ehbp52br+XHcRxaObz6aRaKf5WV1fx85//3PZtGkInzsFsNovJyUkA+6NDzWaJMtsXpxxno34817rNeJ37sB6XgYEBpFIpNalHPdoBYE4gyzIWFxdNZ5JrWQNzk1qCyTyzzRBzszaqXdvvdZ0+Ds1+Pp1kNheyoijKkydPFADKxsZGQ+V16hwsl8vKxsaGAsBy/mWxL9r5iJ2qH8+1ds0N3g/Q4NzgtK8n5gZ3ato22ufUz8fqF6z4xW2WscdKJ/dRm5pveXlZvf1GS+xLR36V9xCnnmtE3dTWYC3u2ROp28S9ZoL4IxT3uWnvV7NK2ybel06n1eW1/pBFerlgMNjwtR07qepq1cl4XUmktKtUKggGg+r+mm1De7xEucZjWOv41dsXQJ8qT/sQ6zT6+Vhdq7VzbOwc53ZcozTesuGEc3B1dRXXrl0zDdhmeK51/lwjcrwGmuGWYEjdViwW1bRv2i49kc6tWCxWpYDTlmMkSZKu6zAQCOieG7cv0qhpy7bDTqo67brxeFy3v5IkKeVy2bSsXC6nBAIB3XKR5u3Zs2fqNmptt5HjZ0zDJ17Xfh7GtHSNfj5m22jm2Fjtr92UfVbnDUy6wbt9DoqyI5GIaao/q23zXOvsuWYHu8HtA7vBm1KrG7xj16zFl5X4Q1KU/S+oWn+QZuWI63zaP/xnz54pkiTVfJ/Vl24z+2JcJq6HGutkDA7ifeKLo9H6Gpc1evxqHQPx+WhzsTbz+bR6bOodAzvE+4yPSCRSdey7fQ6K5+VyWQ0kIhex9nWB55p1HQ/6XGOwto/Bujm1gnXLo8GtiOnjbt68qY7IFaNg9/b2sLm5aasccc1Rex1vbGysqzfAi7pr6zQ6Ogpgv77GqefaNYS/meNnplQqIRQKYXV1VTeash3lN3ps2knRjJAtlUrq7EzJZFKtj1POQXGbyuDgIEKhkK6OWjzXrHXjXGv1ePST58+f47333ut2NXrK8+fPrV9sILJbgsWvVLPl8XhckSRJ/bWNBn9N292+nfc1W5bd/W3kuNhd1sjxs9p+JBLRtQqbLb+Vfe70Z6Yo70ZXG7vSu3kOGp/ncjkFgNp1a3fbPNcO/ly7fv26+j4++Ojkw0TnusHFcm1Xl+hOFNetjO8zK0d0FRqv7dXbfo2dbnhfjMvMrseL9exc/7RbX+OyRo+fWZnxeFxXhlYzn087j007PzOr17p9DprVU1zPFdexzbbNc6375xq7we0D2A3ejK5csxYthlrXjhr5gw8EAur1uEKhcKBf/FZfZGLAiqIoaqtIe12u3V+grT4X1/O0dWxle2bLWjk27Q7WdgYuHfQ5aLV/4rgZX+e5Zv2egz7XGKztY7BuTseDtfiFK/5AxKjM1dVV0/UKhYKu60v8Mtb+Uhbv1Y4sF49AIKAOytFOiiHKEX+wZr+6a9GWJb6UzcoSg4MkSVKXbWxs6L68rSbrMNuG2T6YLat1/IzrG5+LwGX8TMR6zXw+Vse+kWNT6zjbGQ1uVpai7A9qEi1V7QCubp6D9SY9MWtZ81w7mHPNDgZr+xism9PxYK0o+yMzxR9YIBAw/UUtWtuRSEQpFovqiFDRFWZ8XRDriteMo2e1D6tldjRSVrFYVFtcwH4PgjZYaN9jNmq43jbMltU6fsb1jQ9jsGm0fLPX23Fsau1vvWBdb3/j8XhVF2y3zkGrY25kdn2X51rnzzU7GKztAxism1ErWDNFJpGDVCqVticAoPbodorMXtJMikxiikyinsFATURmGKyJiIgcri+CtdU8xcYHERF1l8gx0YtisRgqlUpHyu6LYK0oiq0HEZFTVSqVjjYqOl2+HaVSCQsLC5AkSV0mErE0m6AJ2J95LhgMqmVks1nT9fL5vK4BFwwGLcvM5/NIJBJq3QBgamoKc3NzTdWxnr4I1kREvW57e7uny6+nUqnA7/fjxo0b6nTViUQCAwMDyGQyUBQF4+Pj8Pv9yOfzDZWbz+dx//59lMtljI+PY3JysiojHwB88803uueXLl0yLTMWiyEajeLkyZP48ssv1cae1+tFOByG3+9vewubwZqIyOE6nePbCTnEk8kkvF4vxsbG1GU3b97UtVJnZmYgy3JDqXO3t7fVlro2r7wx3SoAnDx5Utfbqm3hC8FgEOVyGalUCpIkYXh4WPf62NgYhoaGkEwmbdfRDgZrIqIOqpdz22zcjHGZVY5vkcccgJofPBgMYnd3t+XygfbklLdDJHy5cOGCbnk8HlcT6WgNDQ3ZLtss4AJAIBDQPd/b24PP50M0GsXOzo7pe8SxWFpaqnnnxvT0NEKhUFu7wxmsiYg6aG5uDj/88AMURUGxWIQsy7pu0mKxWPWeQqGgey6ylAHvxuAMDg7C5/NBlmXs7Oxgfn4e5XIZADAyMqIG7GbLP0gi29SZM2d0y+fn53XZ7cQ+GQNtI8RxN3Zxi6715eVlfPDBB/D5fLpgm8/nsby8jEuXLqk/jHw+n+n1b7EfNbNoNYjBmoioQ7LZLGRZxkcffQRgP51nOByGLMt4/PixuszI2LVqRhtQRdex2+1WA5loKTdbPrAfxLWBvFPEteJ69UqlUsjlcvB6vU1v69tvv4UkSfjwww91yyVJQrlcRi6XQyQSgSzL+Prrr9XXt7a21DqKH0ZDQ0OYnJysaomLVre2h6NVDNZERB1SL+d2J4hAFgqFOlJ+JywvL9ddJ5vN4sqVKy0FagC4e/cuwuGwaTe22+2G1+vF0tIS4vG4bhCaOJ5i+9ofRl999VVVOdr3tAODNRFRh6ytrVUtE1/kZqORydqxY8daDtTpdBqSJOkGsVm5evVq3c9I1Mfsc243Bmsiog4Rg5vMBhq1ct3Vjk6Xf5DS6bStAFtLPp/HixcvMD8/b2t9bcsZeHc8zW7JshrE1k4M1kREHSISWXz33XfqMvFlPz093ZFtiuukVvcIO9Hq6ioA80AIQL3dqlmlUglbW1u66+/5fL7mpCeVSkX3GYn/v3r1SrcOAMuEJZFIpJVq6zBYExF1yMWLFyFJElZWVtTW9ePHjxEIBDAxMaGuJ1ptItBqByyJgKJtpRun40yn0wD2g4e4/1fb2mu2/IO6dUtMgmIVrK3qEYvF4HK5ak6SUiqV4Pf7EQqFdLesnT17Vv1Bk06ndaO69/b2sL29rfuMJiYmEIlEEI1G1c/y4cOHkCSp6sfE3t4eAODcuXN2dt8WBmsiog5xu91IJpOQJAmDg4Pq/ct37tzRrXf79m1IkoSRkRHIsoyxsTFIkoSNjQ0sLi4CeHd71b179zA3N6d7/+joKHw+HzweD4aHh5FKpdpafqedP38eAPD69euG3lculxEIBGr+oFhYWLC89jwyMgIAOH78OCYnJ+FyuRCNRvHmzRvTru2lpaWqz9J4rLX7IfarHZjPmojIBifmsxYBw2nf183ksxat+Vu3bjW8PZ/Pp7sfu9ui0Sg8Hk/D+8J81kRE5Gh+vx9Pnz61nD3Mys7ODsLhcIdq1bh8Po98Pg+/39/WchmsiYh6kHaEeSeyPB00cclgZWXFdqKObDaLEydOtDxSvF12d3extraGZDJZczrSZjBYExH1oMHBQdP/97KBgQGkUil1trB6JiYm1MFpTiDLMhYXF01njWvV0baXSEREHee069Tt4na7m7pu7QSdrDdb1kRERA7HYE1ERORwDNZEREQOx2BNRETkcJYDzK5evXqQ9SAicrTnz58D4HejXX/+85/x6NGjblejp4iUqmaqZjD7/vvv8cUXX+Dt27cdrxgRtdf333+Pf/3rX5iamup2VYioCWfOnMHKyopx8WdVwZqIehenCyY6lDjdKBERkdMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYExERORyDNRERkcMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYExERORyDNRERkcMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYExERORyDNRERkcMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYExERORyDNRERkcMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYExERORyDNRERkcMxWBMRETkcgzUREZHDHe12BYioeVNTU8jlcvjlL38JAPjxxx/hdrvx29/+Vl3n5cuX+Mtf/oLr1693q5pE1CIGa6Iels1moSgK/v3vf+uWVyoV3fNXr14dYK2IqN3YDU7Uw+7cuYOjR2v/5na5XJiZmTmgGhFRJzBYE/WwTz75BG/fvrV83eVy4f3338evfvWrA6wVEbUbgzVRDzt9+jTOnTuH//kf8z/lI0eO4Pe///0B14qI2o3BmqjH3bhxAy6Xy/S1//73v/jkk08OuEZE1G4M1kQ9bnp62nT5kSNHMD4+jpMnTx5wjYio3RisiXrcL37xC1y4cAFHjhzRLVcUBZ9++mmXakVE7cRgTXQIfPrpp1AURbfsyJEj+Pjjj7tUIyJqJwZrokPgd7/7Hd577z31+dGjR3Hx4kW43e4u1oqI2oXBmugQ+NnPfobLly+r91y/ffsWc3NzXa4VEbULgzXRITE7O6vec/3Tn/4Uly9f7nKNiKhdGKyJDolLly7h+PHjAIArV67gJz/5SZdrRETtwrnBHeI///kPMplMzdmoiOo5ffo0Xrx4gVOnTmFzc7Pb1aEedurUKXzwwQfdrgb9P5diHEJKXfHo0SOO3CUiR2F4cIzP2LJ2iB9//BEA/ziovtnZWQDA+vp6l2vifC6XC+vr60wP2qAHDx6o5xk5A69ZExERORyDNRERkcMxWBMRETkcgzUREZHDMVgTERE5HIM1ERGRwzFYE/WxaDSKaDTa7Wo4UqlUQiwW63Y1mhKLxVCpVLpdDWojBmsi6ppKpQKXy9XtalQplUpYWFiAJEnqsnQ6DZ/PB5fLhWAwiFKp1HC5e3t7CAaDahnZbNZ0vXw+D5fLpT6CwaBlmfl8HolEQq0bAExNTWFubq6pOpIzMVgT9bGlpSUsLS11bfvb29td27aVSqUCv9+PGzdu4Ne//jUAIJFIYGBgAJlMBoqiYHx8HH6/H/l8vqFy8/k87t+/j3K5jPHxcUxOTkKW5ap1v/nmG93zS5cumZYZi8UQjUZx8uRJfPnll+qkSl6vF+FwGH6/ny3sQ4LBmoi6olKpIJFIdLsaVZLJJLxeL8bGxtRlN2/e1LVSZ2ZmIMtyQ5cQtre31Za62+3GzMwMAMDn81Wte/LkSSiKoj60LXwhGAyiXC4jlUpBkiQMDw/rXh8bG8PQ0BCSyaTtOpJzMVgT9alSqaR27Zo9l2UZLpcLPp8Pe3t76jqyLKvrJBIJtZt2d3dXLVvbhWu1bHV1VW1Vapd38zp6qVRCKBTChQsXdMvj8TgePHhQtf7Q0JDtss0CLgAEAgHd8729Pfh8PkSjUezs7Ji+RxyfpaUluN1uy21OT08jFAqxO/wwUMgR1tfXFX4cZMf169eV69evt1yOJEkKAPW80z5/9uyZoiiKUigUFABKIBBQFEVRX9euUy6XlUAgoABQXr58qSiKohSLRV3Z2rK0y4zPFUVRIpGIEolEWt4/Uf76+rrt9TOZjAJAKRQKNdd7+fKlAkDJ5XJN161cLisAlEwmY1oH8ZAkSSkWi+rruVxOfV88HlfXefLkSdU2xDE3bqMefh85zh/YsibqU5lMxvK56AIWXatra2sA9IlmxDput1ttHYqW8sDAQNX2jN20Vrp5HV1cK65X11QqhVwuB6/X2/S2vv32W0iShA8//FC3XJIklMtl5HI5RCIRyLKMr7/+Wn19a2tLreP8/DzK5TKGhoYwOTlZ1RIXrW5trwf1JgZrImqZCFqhUKjLNWnN8vJy3XWy2SyuXLnSUqAGgLt37yIcDpt2Y7vdbni9XiwtLSEej+sGoYljLLav/bH01VdfVZWjfQ/1LgZrIqIGHDt2rOVAnU6nIUmSbhCblatXr5qOGNcS9RE9IHT4MFgTUdsYB0sdNul02laArSWfz+PFixeYn5+3tb625Qy8O8Zmt2RZDWKj3sdgTUQtE9dEre4H7hWrq6sAzAMhAPV2q2aVSiVsbW3prsnn8/mak55UKhVMT0+rz8X/X716pVsHAK5fv25aRiQSaaXa5AAM1kR9Sns7T6lU0j0XX/7aoGW8/SedTqvriHt9tS070QIUgVw7+EkEJ7G+dmrPbt66JSZBsQrWVnWLxWJwuVw1J0kplUrw+/0IhUK629jOnj2r/shJp9O6Wc329vawvb2NiYkJddnExAQikQii0aj6mTx8+BCSJFX9mBC33J07d87O7pODMVgT9anBwUHd/7XPPR6P7l/j+gAwOjoKn88Hj8eD4eFhpFIp3eu3b9+GJEkYGRmBLMsYGxuDJEnY2NjA4uIiAKgtzHv37mFubq69O9iE8+fPAwBev37d0PvK5TICgUDNHxkLCwuW155HRkYAAMePH8fk5CRcLhei0SjevHlj2rW9tLQESZIwODio3p9uPP7a/RD7Rb3LpWjvxaCuefDgAWZnZ8GPg+qZnZ0FAKyvr3dl+yI49MK56nK5sL6+btk9bEa08G/dutXw9nw+X9Utcd0UjUbh8Xga3hd+HzlSbszOAAAIlElEQVTOZ2xZExFp+P1+PH361HL2MCs7OzsIh8MdqlXj8vk88vk8/H5/t6tCbcBgfcgYp4wkaifjde7DyO12I5lMYmVlxXaijmw2ixMnTrQ8Urxddnd3sba2hmQyWXM6UuodDNaHzMLCAq5du1b3vkynsptCsBbt4B3jIxaLQZZlZiJqkvE692E1MDCAVCqlzhZWz8TEhDo4zQlkWcbi4qLpTHLUmxisD5n79+93uwpNaySFYC2KoqBYLKrPy+Wymr1oamoKiUSCuX6bpGgyQR3265lut7up69ZOcOvWLQbqQ4bBmhyjkRSC9Wi/qLTdgF6vV00ZyFy/RNQrGKx7XKVSQTqdVlMZWk3YL+5jFeuJ7mU7aREF8f5EIoFSqaRLf1hrG3bZTSHY6n24AwMD+PzzzyHLMra3t3Wv9cJxIqL+w2Dd4+bm5vD06VOUy2VkMhn885//rFpHTMYwNDQERVHw+eefY3JyUh0pKq5x7+zsQJIkFAoFyLKMP/3pT2oZsVgM09PTUBQFV69exb1792xvo1mi1duJWbHef/99AMDf//53dVmvHici6gMHnJOTLDSTP1bkvRU5hBXlXY5cbVkbGxtVZQNQcwYb1zdbBkCXU1fkK7a7jWY8efJEkSRJKZfLTb3fbL9qvd4rx6ld+az7ARrMZ037mM/acf7ASVEcoplJCILBINbW1qreY5y0wufzWQ7SUhTFdJIL4zKxrY2NDVy8eLHqdpB622iGz+dDOBxu+naYepN39Opxmp2dxT/+8Q/OSmXD5uYmzp8/bzuXNu3b29vD8+fPD/0gwh7CSVF6md10eCI4KIaRvI38IX7xxReQJAnXrl2Dx+NRZ3lq5za0Gkkh2AzRxa5NcNCLx4mI+kRnW+5kVzPdTrDo5jUuF8+13eX1yrEqO5fLKYFAQAGgrK6u2t5GI3K5XEvd58Y6mXny5IkCQHny5EnV+k4/TuwGtw/sBm8Ku8Ed5w9sWfeweDwOAHUHJ4n1UqmU2qLUZjmyw+VyoVKpwOv14v79+8jlcgiFQm3dhnhPoykEG1UqlXD37l1IkqTLZtRLx4mI+ky3fy7QvmZ+yRYKBQWAIkmSUigUFEV512IEoAQCAUVR3g1yMj4KhYLuNTGQSztITQyWwv8PghLbKRQKuhZjrW3YVSwWFUmSTMvJZDLqepFIpG7LW7sP2gFquVxOkSRJkSRJNxCsl44TW9b2gS3rprBl7ThsWfey4eFhFAoFDA0N4fTp0wgGg/jNb35TlYZwYGAAhUJBvT4bCARQKBQwPDzcUFrEP/7xj9jc3ITL5cLm5qZudqda27DLTgpBO1wul24fPB6POt3o1tYWwuEwMplM1QxPvXKciKj/cDS4QzAlHdnV7RSZvaSZFJnE7yMH4mhwIiIip2OwJiJqUjcGB8ZiMc5p34cYrKnjaqWs1D6oN1QqlY5+Xp0uv11KpRIWFhZ0c9qL+eNFitdmMrtVKhXs7OwgkUiYJrGZmppi1rg+xGBNHaeYTABi9qDeYEx+0mvlt0OlUoHf78eNGzfUPNaJRAIDAwPIZDJQFAXj4+Pw+/0Nz/u+urqKv/3tb7h586bpgEuv14twOMyscX2GwZqIbKtUKkgkEj1bfrskk0l4vV7dDHs3b97UtXZnZmYgy3LDGeKWlpZ08wyYGRsbw9DQkJrulQ4/BmuiPqFNp6pN4SmYXZIwLltdXVVbe2J5qVSCLMtql20ikVC7gbUpW5stH2g9LWo7lUolhEIhXLhwQbc8Ho/jwYMHVesPDQ11pB7T09MIhULsDu8TDNZEfWJubg4//PADFEVBsViELMu6rtRisVj1nkKhoHuubfGJyxeDg4NqgpKdnR3Mz8+jXC4D2L8/XgTsZst3mufPnwMAzpw5o1s+Pz+PTCajPhf7bczH3i5i+6I+dLgxWBP1gWw2C1mW8dFHHwHYn5wlHA5DlmU8fvxYXWZkZ7IWbUAV3cJut1sNUqKl3Gz5gL2u4YPyzTffAKhf91QqhVwuB6/X25F6iIxu2t4LOrwYrIn6wObmJgB9wBwdHQUA067bdhBBSjs3+mGwvLxcd51sNosrV650LFAD74L1YTu+ZI7BmqgPmKVTFV/2VlO8UvOOHTvW0UBN/YfBmqgPiHuBzQYjdeqa6kGV7zTpdLpjedipfzFYE/UBMTf2d999py4TA8ump6c7sk1xLfXSpUsdKb9bVldXAcDyHueZmZmDrI6aFIYONwZroj5w8eJFSJKElZUVtXX9+PFjBAIBXU5v0QoWgXZnZ0d9TeQU17bSjVNtptNpAPuBLJVKQZIk3QxfzZbvpFu3xCQoVsHaqq6xWAwul8vWJCnasq22s7e3BwA4d+5c3fKo9zFYE/UBt9uNZDIJSZIwODio3r98584d3Xq3b9+GJEkYGRmBLMsYGxurSrkqRmXfu3cPc3NzuvePjo7C5/PB4/FgeHgYqVSqreU7wfnz5wEAr1+/buh95XIZgUCg7o8OqxSvRmL7oj50uDFFpkMwJR3Z5cQUmSKYOO387VSKTNHi1+Yqt8vn8+nux25WNBqFx+Npqg718PvIcZgik4ioUX6/H0+fPtV149uxs7ODcDjc8vbz+Tzy+Tz8fn/LZVFvYLAmopZoR5j3y9SX4rLCysqK7UQd2WwWJ06caHmk+O7uLtbW1pBMJtXb7+jwY7AmopYMDg6a/v+wGxgYQCqVwtbWlq31JyYm1MFprZBlGYuLi6YzwtHhdbTbFSCi3tbP1zXdbndHrhnXctDbI2dgy5qIiMjhGKyJiIgcjsGaiIjI4RisiYiIHI7BmoiIyOE4g5lDPHr0CB9//HG3q0FEpGJ4cIzPeOuWQ1y+fBl//etf8fbt225XhYgIp06d6nYVSIMtayIiImfj3OBEREROx2BNRETkcAzWREREDncUwP92uxJERERk6R//Bxk1ZEkrxM2/AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, - "execution_count": 19, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -135,19 +137,24 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 20, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3gc5bn38e+t3iVbbrLlRjMBY4xtiOkmEGKaqYceCCEQQhLCSULgpJKTcAJpLxDaIUAooYSSxIQWysEGAgRssI0pphhjy1W2rN6l5/3jGdlrWSuvJc2upP19rmuunZ2Znbk1Xs+987Qx5xwiIpK8UhIdgIiIJJYSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQKRTszsUDNblug4ROJFiUD6FTNbYWZHJTIG59zLzrlJYe3fzL5kZi+ZWY2ZlZvZfDObE9bxRHZEiUCSjpmlJvDYpwGPAPcCpcBI4KfACT3Yl5mZ/g9Lr+lLJAOCmaWY2VVm9omZbTKzh81saMT6R8xsnZlVBb+2945Yd7eZ3WpmT5lZHXBEcOfxfTNbEnzmL2aWFWw/y8zKIj4fddtg/Q/MbK2ZrTGzr5mZM7PduvgbDPg98Avn3B3OuSrnXLtzbr5z7qJgm6vN7M8Rn5kQ7C8teD/PzK4xs38B9cAPzWxBp+P8p5k9HsxnmtlvzWylma03s9vMLDtYN8zMnjCzSjOrMLOXlViSk/7RZaC4DDgJOBwYDWwGbo5Y/zSwOzACeAu4v9PnzwauAfKBV4JlpwOzgYnAFOAr3Ry/y23NbDbwXeAoYLcgvmgmAWOBR7vZJhZfBi7G/y1/ACaZ2e4R688GHgjmrwP2AKYG8Y3B34EAfA8oA4bj70x+CGjMmSSkRCADxdeBHznnypxzTcDVwGkdv5Sdc3c552oi1u1rZoURn5/rnPtX8Au8MVh2o3NujXOuAvgH/mIZTbRtTwf+5Jx71zlXD/y8m30UB69rY/6ru3Z3cLxW51wVMBc4CyBICHsCjwd3IBcB/+mcq3DO1QD/A5wZ7KcFKAHGO+dagroRJYIkpEQgA8V44G9BMUYl8D7QBow0s1QzuzYoNqoGVgSfGRbx+VVd7HNdxHw9kNfN8aNtO7rTvrs6TodNwWtJN9vEovMxHiBIBPi7gb8HSWk4kAMsjDhvzwTLAX4DfAw8a2bLzeyqXsYlA5QSgQwUq4BjnHNFEVOWc241/uJ3Ir54phCYEHzGIj4f1i/dtfhK3w5ju9l2Gf7vOLWbberwF+8Oo7rYpvPf8iwwzMym4hNCR7HQRqAB2DvinBU65/IAgjuo7znndsFXVn/XzI7sJjYZpJQIpD9KN7OsiCkNuA24xszGA5jZcDM7Mdg+H2jC/+LOwRd/xMvDwAVm9jkzy2Fr+ft2gmKX7wI/MbMLzKwgqAQ/xMxuDzZbBBxmZuOCoq3/2lEAzrlWfL3Db4ChwHPB8nbgj8D/M7MRAGY2xsy+FMwfb2a7BUVI1fg7rLaenAQZ2JQIpD96Cv9LtmO6GrgBeBxfjFEDvA58Ptj+XuAzYDXwXrAuLpxzTwM3Ai/ii1leC1Y1Rdn+UeAM4KvAGmA98Et8OT/OueeAvwBLgIXAEzGG8gD+juiRIDF0uDKI6/Wg2Ox5fKU1+Mr154HaIO5bnHPzYjyeDCKmuiGRvmNmnwOWApmdLsgi/ZbuCER6ycxONrMMMxuCb675DyUBGUiUCER67+tAOfAJvoz9G4kNR2TnqGhIRCTJ6Y5ARCTJpSU6gJ01bNgwN2HChESHISIyoCxcuHCjc254V+sGXCKYMGECCxYs2PGGIiKyhZl9Fm2dioZERJKcEoGISJJTIhARSXIDro5ARKQnWlpaKCsro7GxcccbD2BZWVmUlpaSnp4e82eUCEQkKZSVlZGfn8+ECRPw4+wNPs45Nm3aRFlZGRMnToz5cyoaEpGk0NjYSHFx8aBNAgBmRnFx8U7f9SgRiEjSGMxJoENP/kYVDXWlvR0aKqCu3E+1G6BuI7Q1weTToHBMoiPsmbZWSNU/uYhsK3muCq3NULt+68U98gJfVw51wXztBqjfBC7K8zle+AVMPQsOvhyKd43v39BTlSvhxV/BkocgPRcKRvtkVjAGCkv9+8j5zPxERywy6FRWVvLAAw9w6aWX7tTnjj32WB544AGKiopCiiyZEsF7c+GvX9t+eXou5A2H3OFQNB7GTPfzeSMgdxjkjvDvc4dDUzW8dhO8dR+8/WfY+xQ49Lswcu/4/z2xqC2Hl38HC+4EDKZfAKnpUL0aqlbD+nd94uv85MPMwq2JomB0kCDGwJDxMO5ASElNxF8jMqBVVlZyyy23bJcI2traSE2N/n/qqaeeCju0JEoEY/eHE24MLvDBhT13GGTkxr6P3GI47ndw2A98QlhwFyx9FCYdC4d+D0pnhBf/zmishtdu9jG21MN+58LhV3VdpNXaDDVrtyaH6tUR82WwdpG/Y+pQvJv/W/c5XcVMIjvhqquu4pNPPmHq1Kmkp6eTl5dHSUkJixYt4r333uOkk05i1apVNDY28p3vfIeLL74Y2DqsTm1tLccccwyHHHIIr776KmPGjGHu3LlkZ2f3OrYBNwz1jBkzXL8Za6i+At74I/z7VmjYDBMP9xfJiYdBIiqlWpvgzTvh5d/64q29ToQjfgzD9+jdflsaoWYNrH4LXrke1r8DQybAId+Ffc+CtIw+CV8kTO+//z6f+9znAPj5P97lvTXVfbr/vUYX8LMTopcOrFixguOPP56lS5cyb948jjvuOJYuXbqlmWdFRQVDhw6loaGB/fffn/nz51NcXLxNIthtt91YsGABU6dO5fTTT2fOnDmce+653f6tHcxsoXOuy1+rajXUGzlDYdaVcPlSOPqXUP4B3DsH7jgKPnjKVzrHQ3sbLHoA/jAd/vlfMGofuOj/4PR7e58EANKzYOgusM9pcMnLcOaDkD0E/nEZ/GEavHmHT0IiErMDDjhgm7b+N954I/vuuy8zZ85k1apVfPTRR9t9ZuLEiUydOhWA6dOns2LFij6JRff2fSEzDw76Nux/ESy6H/51PTx0FozY29ch7H1yOOXqzsGyp+CF//ZJaPR+MOcPsOsRfX+sDmaw57Ew6Rj4+HmYfx08+T146Xdw8Hdg+vmQ3vtbVZEwdffLPV5yc7cWS8+bN4/nn3+e1157jZycHGbNmtVlX4DMzMwt86mpqTQ0NPRJLLoj6EvpWbD/hfDtt+Hk233Lo8cuhJtmwMJ7+vZX84pX4M4vwkNn+zuC0++Fi14MNwlEMoPdvwgXPgdf/jsMnQjPXAnXT4FX/wDNdfGJQ2SAyM/Pp6ampst1VVVVDBkyhJycHD744ANef/31uMamO4IwpKbBvmfAPv8By56El37ri1Fe+G/f5DRnmK94zhnmK6y7ep+e1fW+1y72+/n4ecgf7e8A9j07cRW3Zj757HqET07zfw3P/hhe+X/BXdLX1BxVBCguLubggw9m8uTJZGdnM3LkyC3rZs+ezW233caUKVOYNGkSM2fOjGtsqiyOB+dg+Yuw+CGoWecrcus2Qv1GaG/t+jMZeZBTHJEohkFjFXzwBGQV+UrpAy7qn8UwK/8NL/3aJ6vsITDzUjjgYsgOrx20yI50VYE6WO1sZbHuCOLBDHb9gp8iOecv7h2Joa7cJ4e6jdsmi5q1sH6pL1o69Pv+l3Z/vqiO+zyc+xisXgjzfwMvXgOv3gSf/zoceKlPDiLSbygRJJKZv6BnFw2cXso7Y8x0OPshX5z10m/8XcK//xcO/CbM/AZkFSQ6QhFBlcUSDyX7whl/hkv+BRMPhXn/AzdMgZd/r0plkX5AiUDiZ9RkOPN+uHgelO4PL/w8aGV0E7T0TTM4Edl5SgQSf6P3g3Me8U1PR02GZ38EN0yFf98+eDumOQer3vC9tEX6GSUCSZyxB8B5c+ErT/k6kqevgBunwYI/QVtLoqPrW6/e6Pt93DsH6jYlOhqRbSgRSOJNOBi+8qTvmFZQAk9c7ofLePt+/wyFge7dv8NzP/Ujt65d7BNCxfJERyX9XF5eXtyOpUQg/UNHx7QLn4OzH/FNTOdeCrd8HpY84ntPD0Sr3oS/fR3Gft4nuvMe9wMU3vFFKBtg/WFk0FIikP7FDPY42lcon3E/pGb650jcepD/ZT2QOkBWfAoPngn5JX6gvvQs38fiwuf8+FR3Hw8fPJnoKCVOrrzySm655ZYt76+++mp+/vOfc+SRRzJt2jT22Wcf5s6dm5DY1LNY+rf2dnjv7zDvWti4zPdNOPoaGH9goiPrXn0F3Hm07xB44fMwbLdt19eW+ySxeiEcc53vbCeh2qa37dNXwbp3+vYAo/aBY66Nuvrtt9/m8ssvZ/78+QDstddePPPMMxQVFVFQUMDGjRuZOXMmH330EWZGXl4etbW1PQpFw1DL4JKSApNPgUtfgxNvgeq18KfZ8JdzYdMniY6ua61N8JcvQ+VncOYD2ycB8E/FO/8f/qFGT/8A/vmj+A1bLgmx3377sWHDBtasWcPixYsZMmQIJSUl/PCHP2TKlCkcddRRrF69mvXr18c9NvUsloEhJRX2O8cP6f3azX5Qu2XP+EHtDv+BfzZEf+AcPH4ZfPYKnHonjD8o+rYZOXDGffDMf/mnyVWt8qPWRhtwsKfaWv1d1cK7obkWUtL9I0tT0oLXdD9o4Zblnd8H22XkwrTz/bhXA103v9zDdNppp/Hoo4+ybt06zjzzTO6//37Ky8tZuHAh6enpTJgwocvhp8OmRCADS0YOHH4FTDvP91B+439h8QNw2BV+YLu0zB3vI0zzroUlD8EXfuwf5LMjKam+aKhonO9PUbMeznqwbxJbS4N/tvarf/B3J8W7++HC25p9cmhthKYaaG/x79tbfLPd9tbgtdNy1wYfv+DvZPTc6h4588wzueiii9i4cSPz58/n4YcfZsSIEaSnp/Piiy/y2WefJSQuJQIZmPJHwgk3wAFf900zn/2xf1LaUVfDXicl5lGhix6E+df6Z0Qf+v3YP2cGB30LCkvhrxf7J9yd+6h/KlxPNGz25+L123wdRen+MPta2GO2L2rrqcUP+RZQL//O34XJTtt7772pqalhzJgxlJSUcM4553DCCScwY8YMpk6dyp577pmQuFRZLIPDJ/8Hz/7Ej9JaegB86RrfYS1ePn0Z7jvZFwWd+5gvSumJla/7SmRLhbP/AqVd1u11rXotvH6z75DXXAu7Hw0HX+5j6qvE+NhFsPRRuOBpGBffMfN7S8NQJ6Cy2MzuMrMNZrY0yvoTzWyJmS0yswVmdkhYsUgS2PUL8PWXYM5NULnSd9p6+HzfhDNs5cvgL+f43tGn39vzJAD+4nrh8zvXvHTjRzD3W34gv9du9o8RveQVP4zHhIP79u7ouN/5YqzHvgYNlX23X0moMFsN3Q3M7mb9C8C+zrmpwFeBO0KMRZJBSipM+zJ8eyHM+i/46Fm4+QDfIqdhczjHrC2H+//D93c455G+eU7EsN18Mhi5Fzx0jh+DqSurF/rWSTftD+884ityL3sbTr3DN2UMQ1YBnHqXf0bGP74zsPp1SFShJQLn3EtARTfra93WcqlcQN8o6RuZeTDrKvj2WzDlDP8r+Yap8NotvnK0rzTX+2Kc2g3+uQtF4/pu33nD4fwngualV2xtXuqcLwa75wT44xfg0/n+aXWXL4XjfgtDJvRdDNGUTocjfuRbIr19X/jH60MDrSi8J3ryN4ZaR2BmE4AnnHOTo6w/GfgVMAI4zjn3WpTtLgYuBhg3btz0RNWsywC1bqmvTF7+IqRlwR5fgsmn+jL0nj7qs70dHjkP3n/CD62953F9G/OW47TBM1fBG7f7eGvX+/GK8kv8I0CnfyUxD/hpb4f7ToKyN+Hi+TB8j/jHsJM+/fRT8vPzKS4uxhLRmCAOnHNs2rSJmpoaJk6cuM267uoIEpoIIrY7DPipc+6oHe1TlcXSY6ve8EUo7/7NPxY0I89fwCefCrscAWkZse/rnz/ybf+/9Cv/+M0wOefvap79ERTvBgd/x9/pJLqpbPVaP/RH4Rj42gvhxtPSCP+6AZprIHe4nzqe5Z073L/uIKm3tLRQVlaWkHb68ZSVlUVpaSnp6dvWVfX7RBBs+ymwv3NuY3fbKRFIr7W1+g5fS/8K782FxkrIKoK95vikMOHQ7tvJv3kHPPk932/hmF/Hr6lq9RrIG9m/2vAvewYePMPfncz+VTjHqK/wdSUrX/V1MW1RnlmRkReRGIZDTvHW+Y7l4w7s+w578fLhs75BQg8fa9svH15vZrsBnzjnnJlNAzIADdQu4UtNg11m+enY38LyebD0MZ8Y3roXckfA3if5pFB6wLZt7z98Fp66wrfJn31tfPsrFIyO37FiNWm278vx+i3+rmqPo/t2/5Wr4M+nwuZP4bS7YO9TfNPYunKo2xhM5Vvf1wfvK1f6yvS6jb4jXIfhe4ZbmR6G8g/hnz+Ej5+DGRfC8b/v80OEdkdgZg8Cs4BhwHrgZ0A6gHPuNjO7EjgPaAEagCucc6/saL+6I5DQtDTAR8/5pPDhM77nbUHp1qSQkgZ/OsZ39LrgaV8pLb7Y5o4joWYdfONfkD+qb/a77h3fIqu53tfDTDx05/fR3u7v+Oo2+j4mz1zlW5AddTV8/hu962AXtobNMO86ePOPkJ4Dh18Z9J7fiSLMCAkrGgqDEoHERVONL/ZY+hh8/LwfZsFSfSXt1573D9CRrTZ8ALfP8v0gzv1r7y+wy+fBQ+dCZr7voDdyr76I0ieEx78Ny57yfU9OurXvEldfaWuFt+6B//ulTwbTz4cjfuxbkvWCEoFIbzRs9q2Dls/zTTX76qI02Cz4k3+63Bf/21do99SSR+Dv34Bhu8M5j/rK6L7kHCz8EzzzQ1/BfOJN4bX62lnL5/tBCDe8C+MP8fUuJVP6ZNdKBCISPufg4S/Dsqfhwmf9syN29vOv3ujHjhp/iC8O6osOetGUfwiPXQjrlsD0C/ywJBm54R2vOxWf+ibOHzzh+6Mc/Uv43Jw+rYPS8whEJHxmcMKNkDcKHr1w5zrvtbfB01f6JLD3KfDlv4abBMD3ffjaC/7uZeHd8L+Hw5pF4R6zs6YaeP5q3wP+kxfhCz+Bb74Je50Y14YISgQi0ndyhsKpf/TDXj91RWyfaWmER77ihxQ/8Fv+OQ7x6iORluGLss6bC811fuTXV64P/yFB7e3w9v3wh+n+2RqTT/VDoxz2/YQ0b1UiEJG+Nf4gOOwHsPhBWPJw99vWV/geyu//w3fO+9I1iWnJs8vhvsXTpGPg+Z/BfSdC1epwjrXydbjjCzD3Ul8M9LUX4OTbEtoAQYlARPreYVfA2JnwxHejjwBbuRLumu3b+592V/g9tHckZ6gfPXbOTVC20Peafq+PHibvHGxe4YvM7vqSb2p7yh/hq8/u3FDjIVFlsYiEo3Il3HqIH031q//cdnjude/An0/zfTfOegAm9LNR6Dd94ofaXvOWf9DQ7Ot23G/EOd+ZrWK5nzZ9snW+4lNoqvJjXR10GRxyedwrpvtlz2IRGeSKxsGcG3z5/4vX+E5csLWPQFYBfPWZ/tkct3hX3/Jp3q/g5d/DZ6/6Hsmjp/lf8xXLoSLyQh9c7Jtrt+7DUv05GLqLf0rc0F3gc8f37Si1fUSJQETCs/fJftjsV673Q3rUboC/XxpeH4G+lJoOR/4Udj0yeIToF30ldkv91m1S0vzQ30N3gfEH+9eOqWhc7x5SFEcqGhKRcDXX+V7HNeugqdoP6nfGn8NvHtqXGir9s5rb22DoRH+hL97VD0GSOjB+T6toSEQSJyPXNwm9K3gOxEm3Jn4I7Z2VXQRH/yLRUYRGiUBEwlcyBa74OHE9d6Vbaj4qIvGhJNBvKRGIiCQ5JQIRkSSnRCAikuSUCEREkpwSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSSnRCAikuSUCEREkpwSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSQXWiIws7vMbIOZLY2y/hwzWxJMr5rZvmHFIiIi0YV5R3A3MLub9Z8ChzvnpgC/AG4PMRYREYlih4nAzL5lZkN2dsfOuZeAim7Wv+qc2xy8fR0o3dljiIhI78VyRzAKeNPMHjaz2WZmIcRxIfB0tJVmdrGZLTCzBeXl5SEcXkQkee0wETjnfgzsDtwJfAX4yMz+x8x27YsAzOwIfCK4spsYbnfOzXDOzRg+fHhfHFZERAIx1RE45xywLphagSHAo2b2694c3MymAHcAJzrnNvVmXyIi0jNpO9rAzC4Dzgc24i/aVzjnWswsBfgI+EFPDmxm44C/Al92zn3Yk32IiEjv7TARAMOAU5xzn0UudM61m9nx0T5kZg8Cs4BhZlYG/AxIDz57G/BToBi4Jah2aHXOzejJHyEiIj1nvtRnBxuZTQMOARzwL+fcW2EHFs2MGTPcggULEnV4EZEBycwWRvuxHUvz0Z8A9+B/vQ8D/mRmP+7bEEVEJFFiKRo6G9jPOdcIYGbXAm8BvwwzMBERiY9YWg2tALIi3mcCn4QSjYiIxF0sdwRNwLtm9hy+juCLwCtmdiOAc+6yEOMTEZGQxZII/hZMHeaFE4qIiCTCDhOBc+4eM8sA9ggWLXPOtYQbloiIxEssHcpm4VsNrQAMGGtm5weDyomIyAAXS9HQ74CjnXPLAMxsD+BBYHqYgYmISHzE0moovSMJAATDQaSHF5KIiMRTLHcEC83sTuC+4P05wMLwQhIRkXiKJRFcAnwTuAxfR/AScEuYQYmISPx0mwiCEUYXOucmA7+PT0giIhJP3dYROOfagcXBkNEiIjIIxVI0VILvWfwGUNex0Dk3J7SoREQkbmJJBD8PPQoREUmYWBLBsc65bZ4nbGbXAfPDCUlEROIpln4EX+xi2TF9HYiIiCRG1DsCM/sGcCmwi5ktiViVD7wadmAiIhIf3RUNPQA8DfwKuCpieY1zriLUqEREJG6iJgLnXBVQBZxlZqnAyGD7PDPLc86tjFOMIiISolhGH/0WcDWwHmgPFjtgSnhhiYhIvMTSauhyYJJzblPYwYiISPzF0mpoFb6ISEREBqFY7giWA/PM7En884sBcM5p7CERkUEglkSwMpgygklERAaRWJ5ZvN0QE2YWSwIREZEBIGodgZm9EjF/X6fVb4QWkYiIxFV3lcW5EfOTO62zEGIREZEE6C4RuCjzXb0XEZEBqruy/iIzOxmfLIrM7JRguQGFoUcmIiJx0d0dwXxgDnB8MH9CMB2Pf25xt8zsLjPbYGZLo6zf08xeM7MmM/v+zocuIiJ9obuxhi7o5b7vBm4C7o2yvgK4DDipl8cREZFeiKVncY84517CX+yjrd/gnHsTaAkrBhER2bHQEoGIiAwMAyIRmNnFZrbAzBaUl5cnOhwRkUFlh4nAzP7DzPKD+R+b2V/NbFr4oW3lnLvdOTfDOTdj+PDh8Ty0iMigF8sdwU+cczVmdgjwJeAe4NZwwxIRkXiJZcygtuD1OOBW59xcM7t6Rx8ysweBWcAwMysDfgakAzjnbjOzUcACoABoN7PLgb2cc9U7/VeIiEiPxZIIVpvZ/wJHAdeZWSYx3Ek4587awfp1QGlMUYqISGhiKRo6HfgnMNs5VwkMBa4INSoREYmbWO4ISoAnnXNNZjYL/6ziaJ3ERERkgInljuAxoM3MdgPuBCYCD4QalYiIxE0siaDdOdcKnAJc75z7T/xdgoiIDAKxJIIWMzsLOA94IliWHl5IIiIST7EkgguAA4FrnHOfmtlE4M/hhiUiIvESSzPQ94DvA++Y2WSgzDl3beiRiYhIXOyw1VDQUugeYAX+oTRjzez8YHRREREZ4GJpPvo74Gjn3DIAM9sDeBCYHmZgIiISH7HUEaR3JAEA59yHqLJYRGTQiOWOYKGZ3QncF7w/B1gYXkgiIhJPsSSCS4Bv4h8rafjnFd8SZlAiIhI/3SYCM0sBFjrnJgO/j09IIiIST93WETjn2oHFZjYuTvGIiEicxTro3Ltm9gZQ17HQOTcntKhERCRuYkkEPw89ChERSZioiSAYbXSkc25+p+WHAavDDkxEROKjuzqC64GaLpbXB+tERGQQ6C4RTHDOLem80Dm3AJgQWkQiIhJX3SWCrG7WZfd1ICIikhjdJYI3zeyizgvN7ELUs1hEZNDortXQ5cDfzCxySIkZQAZwctiBiYhIfERNBM659cBBZnYEMDlY/KRz7v/iEpmIiMTFDvsROOdeBF6MQywiIpIAsQxDLSIig5gSgYhIklMiEBFJckoEIiJJTolARCTJKRGIiCQ5JQIRkSQXWiIws7vMbIOZLY2y3szsRjP72MyWmNm0sGIREZHowrwjuBuY3c36Y4Ddg+li4NYQYxERkShCSwTOuZeAim42ORG413mvA0VmVhJWPCIi0rVE1hGMAVZFvC8Llm3HzC42swVmtqC8vDwuwYmIJItEJgLrYpnrakPn3O3OuRnOuRnDhw8POSwRkeSSyERQBoyNeF8KrElQLCIiSSuRieBx4Lyg9dBMoMo5tzaB8YiIJKUdDkPdU2b2IDALGGZmZcDPgHQA59xtwFPAscDHQD1wQVixiIhIdKElAufcWTtY74BvhnV8ERGJjXoWi4gkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJJTIhARSXJKBCIiSS7URGBms81smZl9bGZXdbF+iJn9zcyWmNkbZjY5zHhERGR7oSUCM0sFbgaOAfYCzjKzvTpt9kNgkXNuCnAecENY8YiISNfSQtz3AcDHzrnlAGb2EHAi8F7ENnsBvwJwzn1gZhPMbKRzbn2IccVVW7tjZUU9y9bVULa5nuH5mZQOyaZ0SA7D8zJJSbFEhygiSS7MRDAGWBXxvhpIsusAAA7OSURBVAz4fKdtFgOnAK+Y2QHAeKAU2CYRmNnFwMUA48aN61EwTa1ttLU7cjLC+ZOdc6yrbmTZuho+XF/DB8HrR+traWpt7/IzGakpjC7KonRIDmOKsn2CGJrNmKIcSodkM7Igi9RBlCha29pJS1W1lEh/E2Yi6OoK5jq9vxa4wcwWAe8AbwOt233IuduB2wFmzJjReR8xefGDDVzy57fISk+hODeT4rwMhuZmbJkvzg3e5/llQ3MzGJaXSXZG6nb72lzXzLL1NSxbV8Oy9TV8GLzWNG4NfWRBJnuMzOfLM8ezx6h8Jo3MZ+zQHDbVNlG2uYGyygbKNtdTtrmB1ZsbeOGDDWysbdrmOGkpRklRFqVBYhgzJJvRRdmMKfKvJYVZZKVvH18iVTW08NmmOlZsquezjf51ZYV/La9pYtzQHPYZU8jeYwrYZ0wh+4wppCgnI9FhiyS1MBNBGTA24n0psCZyA+dcNXABgJkZ8Gkw9bndRuRz5ew9qahrYlNtM5vqmtlY28SH62rYWNdMc5Rf7dnpqUFSyCArPZXlG+sor9l6wS7MTmfSyHxOnDqaSaMKmDQynz1G5kW9uA3NzWD3kfldrmtsaWN1ZcOW5LAlUVQ28NJH5WyoacJ1SoPD8jIoKcxmdFHWdkliTFE2w/q4+Mk5R0Vds7/Qb6rjs+C14/3m+pZtth9ZkMn44lyOmDScEflZLN9Yy5LVlTz5ztot25QOyWafMYVMDqZ9xhQyNFfJQSRezHW+svTVjs3SgA+BI4HVwJvA2c65dyO2KQLqnXPNZnYRcKhz7rzu9jtjxgy3YMGCPo3VOUddcxsVtc1srGuioraZirqt85vq/FTf1MrEYblMGpXPHiPzmTQqnxH5mfgcFr6m1jbWVzWxurKBNZUNrK1qYHVlI2uC92sqG6hrbtvmM+mptiVRjCzIIsWMtnZHm3O0tzvanaOtHdpdx7x/bW9nyzZtztHuoKmljdWbG6hp2nrnYwajC7OZMCyH8cW5TCjueM1l3NCcLu+oACrrm1m6upqla6p4Z3UVS1dX8dmm+i3rxxRlM3lMAZNHFzK51CeHYXmZ4ZxYkSRgZgudczO6XBdWIggOfCxwPZAK3OWcu8bMLgFwzt1mZgcC9wJt+ErkC51zm7vbZxiJYLBwzlHd0Mqaqq2JITJRbAjuZFJTDDNINQvmjdQU/96CZX7eb9uxTUaqMaYo21/ogwt/6ZBsMtP6pniqqqGFd9f4pPDO6mqWrq7i0411W9aPKsjaktBG5GcyIuJ1ZEEmI/KzGJKTHrfELDKQJCwRhEGJILnUNLbw7hqfFN5bW826qkY21DSxvrpxmzqZDhmpKQzPz2R4fuaW5DAiP9Mnj4JMxg7NYeyQHDLSVGktyaW7RBBmHYFIr+VnpTNzl2Jm7lK83bqG5jbKa5pYX9PIhuomNtQ0sj543VDdxKcb6/j3pxVUdqq3SDEYXZTti6+Kc2IuzoqFc47aplYfR3Uj64OY1lU1Ul7bRFNLO23t7bS2O1rbfFFcS3s7bcH71mBd5Pu2dkdLmy+yG5qbwciCLEoKsxhVkMWoyNfCLIbnZaplVhcaW9qorG8hPyuN3Exd9jrTGZEBKzsjlXHFOYwrzul2u8aWIGFUN7Kyon5LxfaKTfU8/c7aqBXcHQlifHEOE4pzGVOUTU1ja3Bxb9zm7mR9tU8+66obqe9UTwOQl5nG8PxMstJTSUsx0lLNv6akkJmeRmowH7kuNSWF9FRfNJceXNw31TWzvqqRt1ZuZn1VE81t2zZySDEYnp/JqMJsRhVkUlKYvTVxFGax56j8QdFKq7m1nYq6ZjYFjT8qgsYfFXXNQWOQJl+3F6yrjajXKspJZ3RhRwu8oJFFRIu8ZOzfo6IhSXpV9S18FjRxXRnRAqqjyWt3MtJSGFmQyaiCLF9Xke/rK0YWZAWTr8PIC+FXaEcLrnVBUtry2mk+snIfYOKwXPYtLWTfsUXsO7aIvUoK4tYMubWtnbqmNmqbW6lraqW2yb/6+bYty+qbW/12Tdtut7m+hY21TV0WC4Jvcu2bgWdSHNEcvDgvg6KcdKobWlldWc+aoO5sdWXDdvuKbGDRkRzGFGVTUpRNeorR0u5oaW2npa29y/nW9nZa2hzNnebb2h1DctIpCVr2jS7MoqQoO5TvRldURyDSQ3VNrays8ImhbHMDBdnpjCzwxTEjCzIpzO7/ldN1Ta2sq25k9eYGlq6pYvGqShatqmR9tU9y6anG50oK2LfUJ4apYwvZZVhej34VN7a0Uba5gVUV9ayMmFYFU+dWbdGkphi5GankZfqinNzMNPIy0yjKSWdYXuY2fX46+gEV52ZSkJ220/8e1Y0t2zSuWL25YZuWeOuqG2nv4WXS380Z6SkppKYa1Q0t2+2rICvNJ4Yin3xKCoPEU+gT0ajCrC13hL2hRCAi21lX1ciiVZUsLqtk8apKlpRVbSlCyc9MY8rYwi3JYb+xRYwoyMI5x6a6Zj7bVN/lxX5ddeM2fV2y01MZNzTHV9IPzWZITkZwUU/1F/iMjgv91ot+XmYamWkp/SbBtra1s666kbVVjbS1O9JTU8hITSEt1RfZpQevaalGRmrKlvn0lJTtkmlrWzvra5oiEk0ja6u2zq+patiuTssMRuT7Yr7TZ4zl7M/3bHQFVRaLyHZGFWYxu3AUsyePAvy4WMvLayOSQxW3v7Sc1uAn7PD8TOqaWrerAxlZkMn4obkctOswxg3NYVxx9paL//C8+PWzCUtaagqlQ3IoHdJ9XVSs++ooaoqmvrl1+wRR2cDaqsZeHz8a3RGISFSNLW28u6aaxasqeW9tNQVZ6Ywbmu0r6Yf6i2N/G+ZEuqY7AhHpkaz0VKaPH8L08UMSHYqESA2ORUSSnBKBiEiSUyIQEUlySgQiIklOiUBEJMkpEYiIJDklAhGRJKdEICKS5AZcz2IzKwc+6+HHhwEb+zCcvtbf44P+H6Pi6x3F1zv9Ob7xzrnhXa0YcImgN8xsQbQu1v1Bf48P+n+Miq93FF/v9Pf4olHRkIhIklMiEBFJcsmWCG5PdAA70N/jg/4fo+LrHcXXO/09vi4lVR2BiIhsL9nuCEREpBMlAhGRJDcoE4GZzTazZWb2sZld1cV6M7Mbg/VLzGxaHGMba2Yvmtn7ZvaumX2ni21mmVmVmS0Kpp/GK77g+CvM7J3g2Ns9Di7B529SxHlZZGbVZnZ5p23ifv7M7C4z22BmSyOWDTWz58zso+C1y6e77Oj7GmJ8vzGzD4J/w7+ZWVGUz3b7fQgxvqvNbHXEv+OxUT6bqPP3l4jYVpjZoiifDf389ZpzblBNQCrwCbALkAEsBvbqtM2xwNOAATOBf8cxvhJgWjCfD3zYRXyzgCcSeA5XAMO6WZ+w89fFv/U6fEeZhJ4/4DBgGrA0YtmvgauC+auA66L8Dd1+X0OM72ggLZi/rqv4Yvk+hBjf1cD3Y/gOJOT8dVr/O+CniTp/vZ0G4x3BAcDHzrnlzrlm4CHgxE7bnAjc67zXgSIzK4lHcM65tc65t4L5GuB9YEw8jt2HEnb+OjkS+MQ519Oe5n3GOfcSUNFp8YnAPcH8PcBJXXw0lu9rKPE55551zrUGb18HSvv6uLGKcv5ikbDz18HMDDgdeLCvjxsvgzERjAFWRbwvY/sLbSzbhM7MJgD7Af/uYvWBZrbYzJ42s73jGhg44FkzW2hmF3exvl+cP+BMov/nS+T56zDSObcW/A8AYEQX2/SXc/lV/F1eV3b0fQjTt4Kiq7uiFK31h/N3KLDeOfdRlPWJPH8xGYyJwLpY1rmNbCzbhMrM8oDHgMudc9WdVr+FL+7YF/gD8Pd4xgYc7JybBhwDfNPMDuu0vj+cvwxgDvBIF6sTff52Rn84lz8CWoH7o2yyo+9DWG4FdgWmAmvxxS+dJfz8AWfR/d1Aos5fzAZjIigDxka8LwXW9GCb0JhZOj4J3O+c+2vn9c65audcbTD/FJBuZsPiFZ9zbk3wugH4G/72O1JCz1/gGOAt59z6zisSff4irO8oMgteN3SxTaK/i+cDxwPnuKBAu7MYvg+hcM6td861OefagT9GOW6iz18acArwl2jbJOr87YzBmAjeBHY3s4nBr8Yzgcc7bfM4cF7Q+mUmUNVxCx+2oDzxTuB959zvo2wzKtgOMzsA/++0KU7x5ZpZfsc8vkJxaafNEnb+IkT9FZbI89fJ48D5wfz5wNwutonl+xoKM5sNXAnMcc7VR9kmlu9DWPFF1judHOW4CTt/gaOAD5xzZV2tTOT52ymJrq0OY8K3avkQ35rgR8GyS4BLgnkDbg7WvwPMiGNsh+BvXZcAi4Lp2E7xfQt4F98C4nXgoDjGt0tw3MVBDP3q/AXHz8Ff2AsjliX0/OGT0lqgBf8r9UKgGHgB+Ch4HRpsOxp4qrvva5zi+xhfvt7xPbytc3zRvg9xiu++4Pu1BH9xL+lP5y9YfnfH9y5i27ifv95OGmJCRCTJDcaiIRER2QlKBCIiSU6JQEQkySkRiIgkOSUCEZEkp0Qg0omZtdm2I5z22YiWZjYhcgRLkf4gLdEBiPRDDc65qYkOQiRedEcgEqNgXPnrzOyNYNotWD7ezF4IBkd7wczGBctHBuP8Lw6mg4JdpZrZH80/j+JZM8tO2B8lghKBSFeyOxUNnRGxrto5dwBwE3B9sOwm/LDcU/ADt90YLL8RmO/84HfT8D1LAXYHbnbO7Q1UAqeG/PeIdEs9i0U6MbNa51xeF8tXAF9wzi0PBg5c55wrNrON+OEPWoLla51zw8ysHCh1zjVF7GMC8Jxzbvfg/ZVAunPul+H/ZSJd0x2ByM5xUeajbdOVpoj5NlRXJwmmRCCyc86IeH0tmH8VP+olwDnAK8H8C8A3AMws1cwK4hWkyM7QLxGR7WV3ehD5M865jiakmWb2b/yPqLOCZZcBd5nZFUA5cEGw/DvA7WZ2If6X/zfwI1iK9CuqIxCJUVBHMMM5tzHRsYj0JRUNiYgkOd0RiIgkOd0RiIgkOSUCEZEkp0QgIpLklAhERJKcEoGISJL7/wI2FTuZRO7hAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXiU5dX48e+ZrIQkbAESdgSEAAoiIooiigvuqKjgbq3Wre5trb9aa1vf175t1bpS931BXKDuYt0VZREUgggiSFhCAIGwJGQ5vz/uJzDESRhgnnkmk/O5rrky86xnIJkz9y6qijHGGFNXKOgAjDHGJCZLEMYYYyKyBGGMMSYiSxDGGGMisgRhjDEmIksQxhhjIrIEYUyURORQEZkfdBzGxIslCNMoiMhiETkyyBhU9WNV7e3X9UXkGBH5SETKRKRURD4UkZP8up8xO2MJwhiPiKQEeO8xwIvAk0AnoD3wR+DE3biWiIj9bZs9Zr9EplETkZCI3Cgi34vIGhGZICKtw/a/KCIrRWS99+28X9i+x0XkARF5Q0Q2AYd7JZUbRORr75wXRCTTO36EiBSHnV/vsd7+34rIChFZLiK/FBEVkZ4R3oMAdwB/UdWHVXW9qtao6oeqerF3zJ9E5Omwc7p510v1Xn8gIreJyKfAZuAmEZle5z7Xishk73mGiPxDRH4UkRIRGS8izbx9eSLymoisE5G1IvKxJZymyf7TTWN3FTAaOAzoAPwE3Be2/02gF9AOmAk8U+f8s4DbgBzgE2/bGcAooDuwL3BBA/ePeKyIjAKuA44Eenrx1ac30BmY2MAx0TgXuAT3Xu4BeotIr7D9ZwHPes//BuwNDPTi64grsQBcDxQDbXElmZsAm5OnCbIEYRq7XwH/T1WLVbUC+BMwpvabtao+qqplYfsGiEiLsPMnqeqn3jf2cm/b3aq6XFXXAv/BfYjWp75jzwAeU9W5qroZuLWBa7Txfq6I+l1H9rh3vypVXQ9MAsYBeImiDzDZK7FcDFyrqmtVtQz4H2Csd51KoADoqqqVXtuLJYgmyBKEaey6Aq941SHrgHlANdBeRFJE5Hav+mkDsNg7Jy/s/KURrrky7PlmILuB+9d3bIc61450n1prvJ8FDRwTjbr3eBYvQeBKD696yaotkAXMCPt3e8vbDvB3YCHwjogsEpEb9zAu00hZgjCN3VLgWFVtGfbIVNVluA/Fk3HVPC2Abt45Ena+X9+MV+Aam2t1buDY+bj3cVoDx2zCfajXyo9wTN338g6QJyIDcYmitnppNbAF6Bf2b9ZCVbMBvBLX9aq6F66R/DoRGdlAbCZJWYIwjUmaiGSGPVKB8cBtItIVQETaisjJ3vE5QAXuG3oWrholXiYAF4pIoYhksb1+/2e86pvrgJtF5EIRyfUa3w8RkQe9w2YBw0Wki1dF9vudBaCqVbh2jb8DrYF3ve01wEPAnSLSDkBEOorIMd7zE0Skp1cVtQFXIqvenX8E07hZgjCNyRu4b761jz8B/wIm46pDyoCpwIHe8U8CS4BlQJG3Ly5U9U3gbuB9XHXN596uinqOnwicCfwCWA6UAH/FtSOgqu8CLwBfAzOA16IM5VlcCepFL2HU+p0X11Sv+m0KrrEcXKP+FGCjF/f9qvpBlPczSUSs7ckY/4lIITAHyKjzQW1MwrIShDE+EZFTRCRdRFrhupX+x5KDaUwsQRjjn18BpcD3uDr8y4INx5hdY1VMxhhjIrIShDHGmIhSgw4glvLy8rRbt25Bh2GMMY3GjBkzVqtq20j7kipBdOvWjenTp+/8QGOMMQCIyJL69lkVkzHGmIgsQRhjjInIEoQxxpiIfG2D8ObE/xeQAjysqrdHOGYEcBeQBqxW1cOiPdcYY/ZUZWUlxcXFlJeX7/zgRiwzM5NOnTqRlpYW9Tm+JQhv+cb7gKNwi49ME5HJqloUdkxL4H5glKr+GDZx2E7PNcaYWCguLiYnJ4du3brh5idMPqrKmjVrKC4upnv37lGf52cV0xBgoaouUtWtwPO4qZfDnQW8rKo/Aqjqql041xhj9lh5eTlt2rRJ2uQAICK0adNml0tJfiaIjuy4gEmxty3c3kArbz3dGSJy3i6cC4CIXCIi00VkemlpaYxCN8Y0JcmcHGrtznv0M0FEiqbuvB6pwP7A8cAxuPnw947yXLdR9UFVHayqg9u2jTjWo0GV1TXc/8FCPvrOkosxxoTzM0EUs+MqWp1w89zXPeYtVd2kqquBj4ABUZ4bE6kh4cGPFvHmnD1dDtgYY3bdunXruP/++3f5vOOOO45169b5ENF2fiaIaUAvEekuIum4BdEn1zlmEnCoiKR6q24diFtTOJpzY0JEKMzPpWhFmR+XN8aYBtWXIKqrG17E74033qBly5Z+hQX42ItJVatE5ErgbVxX1UdVda6IXOrtH6+q80TkLdwqWTW47qxzACKd61eshQW5PPvlEqprlJRQ8tdFGmMSx4033sj333/PwIEDSUtLIzs7m4KCAmbNmkVRURGjR49m6dKllJeXc/XVV3PJJZcA26cW2rhxI8ceeyyHHHIIn332GR07dmTSpEk0a9Zsj2PzdRyEqr6BWyYyfNv4Oq//jlszd6fn+qWwIIfyyhp+WL2Jnu2y43FLY0wCuvU/cylaviGm1+zbIZdbTuxX7/7bb7+dOXPmMGvWLD744AOOP/545syZs6076qOPPkrr1q3ZsmULBxxwAKeddhpt2rTZ4RoLFizgueee46GHHuKMM87gpZde4pxzztnj2G0kNa4EATBvRWx/MYwxZlcNGTJkh7EKd999NwMGDGDo0KEsXbqUBQsW/Oyc7t27M3DgQAD2339/Fi9eHJNYkmo2193Vq302qSFh3ooNnDigQ9DhGGMC0tA3/Xhp3rz5tucffPABU6ZM4fPPPycrK4sRI0ZEHMuQkZGx7XlKSgpbtmyJSSxWggAyUlPo0TbbShDGmLjLycmhrCxyJ5n169fTqlUrsrKy+Pbbb5k6dWpcY7MShKewIIepi9YGHYYxpolp06YNw4YNo3///jRr1oz27dtv2zdq1CjGjx/PvvvuS+/evRk6dGhcY7ME4enbIZdXZy3np01badU8PehwjDFNyLPPPhtxe0ZGBm+++WbEfbXtDHl5ecyZM2fb9htuuCFmcVkVk8caqo0xZkeWIABUtyWIIksQxhgDWIKAyi3wwjnk/fgWbXMyLEEYY4zHEoQqbCqFl37Jqa0WMc+m3DDGGMASBKRnwbjnoXUPrlt9C+mrvmZrVU3QURljTOAsQQBktYZzXqI6I5eHU2/nx4XfBB2RMcYEzhJErRYdWXXy86RQQ/7ks6FsZdARGWPMz2Rnx2++OEsQYTr1GsAl1TeSXr4anh4D5euDDskYYwJjCSJMakqIivb7cUfrm6F0Hjx3FlTu2hquxhizK373u9/tsB7En/70J2699VZGjhzJoEGD2GeffZg0aVIgsdlI6joKC3J4cd7e/G70eOTlX8JLF8EZT0IoJejQjDF+e/NGWBnjNsj8feDY2+vdPXbsWK655houv/xyACZMmMBbb73FtddeS25uLqtXr2bo0KGcdNJJcV8720oQdRQW5LJm01ZWdTsRRv0Nvn0NXrvWdYc1xpgY22+//Vi1ahXLly9n9uzZtGrVioKCAm666Sb23XdfjjzySJYtW0ZJSUncY7MSRB3hI6rbD70UNq2Cj/8JzdvCyJsDjs4Y46sGvun7acyYMUycOJGVK1cyduxYnnnmGUpLS5kxYwZpaWl069Yt4jTffrMSRB2F+XXmZDriZhh0Hnz8D/ji3wFGZoxJVmPHjuX5559n4sSJjBkzhvXr19OuXTvS0tJ4//33WbJkSSBxWQmijhZZaXRs2Wz7iGoROP5O2LwW3vwtZLWBfcYEG6QxJqn069ePsrIyOnbsSEFBAWeffTYnnngigwcPZuDAgfTp0yeQuCxBRFBYkLvjrK4pqXDaI/D0qfDKpdCsFfQcGVyAxpik88032xvH8/Ly+PzzzyMet3HjxniFZFVMkfQtyGFR6UbKK6u3b0zLhHHPQds+8MK5UDwjuACNMSYOLEFEUFiQS43CdyV1Ju7LbAHnTITmefDMGCj9LpgAjTEmDixBRNDg4kE5+XDuK25cxNOnwvplcY7OGBNr2gS6se/Oe7QEEUGX1lk0T0+haHk9a0O06QFnT4Qt6+Dp01wDtjGmUcrMzGTNmjVJnSRUlTVr1pCZmblL51kjdQShkNA7P6fhtSE6DISxz7iqpufGwrmvuqnDjTGNSqdOnSguLqa0tDToUHyVmZlJp06ddukcSxD1KCzIZfLs5ahq/cPb9zoMTn0IXrzAPcY+Aylp8QzTGLOH0tLS6N69e9BhJCSrYqpHYUEuZeVVFP+0peED+42G4/8JC96GyVfZlBzGmKRhJYh69O2wvaG6c+udVB0dcBFsWg0f/I/r4XT0X+IQoTHG+MtKEPXok5+DCNGvUX3Yb+GAi+Gzu+HTu/0Nzhhj4sDXBCEio0RkvogsFJEbI+wfISLrRWSW9/hj2L6rRWSOiMwVkWv8jDOSrPRUurVpHrmrayQicOzfoO9oePdmmPWcvwEaY4zPfKtiEpEU4D7gKKAYmCYik1W1qM6hH6vqCXXO7Q9cDAwBtgJvicjrqrrAr3gjKSzIYW59XV0jCaXAqQ/Clp9g0hVureu9j/EvQGOM8ZGfJYghwEJVXaSqW4HngZOjPLcQmKqqm1W1CvgQOMWnOOsPIj+XJWs2U1ZeGf1JqRmuN1P+PjDhfPjxC/8CNMYYH/mZIDoCS8NeF3vb6jpIRGaLyJsi0s/bNgcYLiJtRCQLOA7o7GOsEdWOqJ6/Msp2iFoZOW4gXW4HePYMWDXPh+iMMcZffiaISIMH6vYBnQl0VdUBwD3AqwCqOg/4G/Au8BYwG6iKeBORS0RkuohMj/VAl8IODUy5sTPZbeHclyE1E546FdYt3fk5xhiTQPxMEMXs+K2/E7A8/ABV3aCqG73nbwBpIpLnvX5EVQep6nBgLRCx/UFVH1TVwao6uG3btjF9Ax1aZJKbmUpRtD2Z6mrVDc55CbZugqdOgU1rYhqfMcb4yc8EMQ3oJSLdRSQdGAtMDj9ARPLFG6YsIkO8eNZ4r9t5P7sApwJx7xYkIvTtkLt7JYha+f3hrOdh/VJ49nSoiN9c7sYYsyd8SxBe4/KVwNvAPGCCqs4VkUtF5FLvsDHAHBGZDdwNjNXtM2a9JCJFwH+AK1T1J79ibUhhQS7zV5ZRXbMHI6S7HgxjHoPls2DCuVC1NXYBGmOMT3wdSe1VG71RZ9v4sOf3AvfWc+6hfsYWrcKCXLZUVrNkzSb2apu9+xfqcxyc+C+YfCW8epmbwylk4xSNMYnLPqF2ou+2tSF2sx0i3KBzYeQtMGcivH2TzdtkjEloliB2ome7bFJCQtGK9bG54CHXwtAr4IsH4JM7YnNNY4zxgU3WtxOZaSn0aNs8NiUIcFNyHP1X2Lwa3vszZOXB/ufH5trGGBNDVoKIQmHBHvZkqisUgpPvgx4j4fXrYcOK2F3bGGNixBJEFPoW5LJifTnrNsew91FKGhz/D6ipgumPxO66xhgTI5YgolA75UZRLEsRAK33gt7HwfRHoXInCxMZY0ycWYKIQmEsezLVNfQy2LwGvp4Q+2sbY8wesAQRhbY5GeRlZ8S2HaJWt0PczK9TH7Bur8aYhGIJIkqFBTn+JAgRGHo5lM6DRe/H/vrGGLObdpogRCQkIvuJyPEicoSItI9HYImmb0EuC0o2UlldE/uL9z8NmrdzpQhjjEkQ9SYIEekhIg8CC4HbgXHA5cC7IjJVRC4UkSZTAiksyGVrdQ3fl/ow2V5qBhzwS1jwDqyO66J5xhhTr4Y+4P8KPA30UNVjVPUcVR2jqvsCJwEtgHPjEWQi2N5Q7UM1E8DgX0BKupUijDEJo94EoarjVPWjsNlVw/etUtW7VPUJf8NLHHu1bU56asifnkzgFhja5wyY/RxsXuvPPYwxZhdE0wZxuojkeM//ICIvi8gg/0NLLGkpIfZun+1fCQJcl9fKzTDzSf/uYYwxUYqmDeFmVS0TkUOAY4AngCZZD1KYH+MpN+rK7w/dh8OXD0J1pX/3McaYKESTIKq9n8cDD6jqJCDdv5ASV2FBLqs3bmVVWbl/Nxl6OWxYBvMm7/xYY4zxUTQJYpmI/Bs4A3hDRDKiPC/p+DqiulavY9wUHNZYbYwJWDQf9Gfglg0dparrgNbAb3yNKkHVLh5UtNzHaqZQCA68DIqnwdJp/t3HGGN2IpoEUQC8rqoLRGQEcDrwpa9RJagWWWl0aJHpbzsEwMCzIKMFTL3f3/sYY0wDokkQLwHVItITeAToDjzra1QJLOZrQ0SSkQ37nwdFk2B9sb/3MsaYekSTIGpUtQo4FbhLVa/FlSqapL4dclm0ehPlldU7P3hPDLkEUPjyIX/vY4wx9YgmQVSKyDjgPOA1b1uafyEltsKCXKprlAUlPky5Ea5lFyg8EWY8Dls3+XsvY4yJIJoEcSFwEHCbqv4gIt1xU3A0Sb5PuRFu6BVQvs6NrjbGmDjbaYJQ1SLgBuAbEekPFKvq7b5HlqC6ts4iKz0l9qvLRdJ5CHQYBFPHQ40Ps8gaY0wDoplqYwSwALgPuB/4TkSG+xxXwgqFhN75Pq0NUVftWhFrFsDCKf7fzxhjwkRTxfRP4GhVPUxVh+Om27jT37ASW2FBLkUrNhBhHsPY6zcacgqsy6sxJu6iSRBpqjq/9oWqfkcTbqQGlyDKyqtYtm6L/zdLSYMhF7vV5lbN8/9+xhjjiSZBTBeRR0RkhPd4CJjhd2CJrG88ptwIt/+FkNrMShHGmLiKJkFcBswFrgKuBoqAS/0MKtH1yc9BJE49mQCyWsOAsTD7Bdi0Oj73NMY0edH0YqpQ1TtU9VRVPUVV71TVingEl6iaZ6TStXVW/BIEwIGXQnUFzHgsfvc0xjRpDa1J/Y2IfF3fI5qLi8goEZkvIgtF5MYI+0eIyHoRmeU9/hi271oRmSsic0TkORHJ3L236I+4TLkRrl0f6DESvnwYqrbG777GmCYrtYF9J+zJhUUkBdc19iigGJgmIpO9cRXhPlbVE+qc2xFXpdVXVbeIyARgLPD4nsQUS4UFubw1dyWbKqpontHQP2MMHXQ5PH0azH0FBpwZn3saY5qshqqYflTVJfU9AEREGjh/CLBQVRep6lbgeeDkXYgtFWgmIqlAFrB8F871XWFBLqrw7co4NVSDK0Hk9Yap90E8utgaY5q0hhLE+yLyaxHpEr5RRNJF5AgReQI4v4HzOwJLw14Xe9vqOkhEZovImyLSD0BVlwH/AH4EVgDrVfWdSDcRkUtEZLqITC8tLW0gnNgqLMgBiM+I6loiMPRSWDEbfvw8fvc1xjRJDSWIUbjlRp8TkeUiUiQii3CjqscBd6rq4w2cH6l0Ufdr70ygq6oOAO4BXgUQkVa40kZ3oAPQXETOiXQTVX1QVQer6uC2bds2EE5sdWzZjNzM1Pi2QwDsOxaatbIur8YY39WbIFS1XFXvV9VhQFdgJDBIVbuq6sWqOmsn1y4GOoe97kSdaiJV3aCqG73nbwBpIpIHHAn8oKqlqloJvAwcvKtvzk8iEv+GaoD0LDcu4tvX4afF8b23MaZJiWptaVWtVNUV3pKj0ZoG9BKR7iKSjmtknhx+gIjk17ZjiMgQL541uKqloSKS5e0fCSTcMOLCglzmryyjpibO7QFDLgYJwRcPxve+xpgmJaoEsTu8RYauxK1nPQ+YoKpzReRSEakdaDcGmCMis4G7gbHqfAFMxFVBfePFmXCfhn0Lctm8tZolazfH98a5HaDfKTDzSSiPcwnGGNNk+No/06s2eqPOtvFhz+8F7q3n3FuAW/yMb0+Frw3RPa95fG9+4GXwzYsw61nXcG2MMTEWzXTfV3qNxqaOXu2zSQlJ/NshADrtD50PhC8egBqflz81xjRJ0VQx5eMGuU3wRkY3NPahSclMS2GvvObBJAhwa0X8tBi+eyuY+xtjklo0czH9AegFPAJcACwQkf8RkR4+x9YoFBbkUrQ8oATR5wRo0RmmPhDM/Y0xSS3aXkwKrPQeVUArYKKI/J+PsTUKhQW5LF9fzrrNAcyPlJIKQy6BxR/Diqimx2q6VN16GjYC3ZioRdMGcZWIzAD+D/gU2EdVLwP2B07zOb6E17dDnNeGqGvQeZDW3EoRO/PR3+H+oa7nlzEmKtGUIPKAU1X1GFV90Ru4hqrWsIcT+iWD2ik3AmuHaNYS9jsb5kyEspJgYkh030yE92+DUBp8/E+orgo6ImMahWjaIP4ItPFKEr8WkUFh+xJu8Fq8tcvJJC87PbgEAd5aEZUw/dHgYkhUP34Br14OXYfBaQ/BuiUumRpjdiqaKqabgSeANrjSxGMi8ge/A2tMCgtymbcywATRpgfsPQqmPQyV5cHFkWjW/gDPj4MWneDMp6HwZGjf35UirGuwMTsVTRXTWcABqnqLN3htKHC2v2E1LoUFuXxXspGq6prgghh6GWxebd+Oa235CZ49A7QGzn7RLdsaCsGh18Pq72De5J1fw5gmLpoEsRgIX80tA/jel2gaqcKCHLZW1bBo9abggug+3H07nvqA9dSproQJ57kSxJnPuBJWrb4nQ5te8NE/7N/JmJ2IJkFUAHNF5HEReQyYA2wUkbtF5G5/w2scaqfcCGw8BHhrRVwGJXPgh4+CiyNoqvDate7f4KR7oNuwHfeHUlwpomSODTA0ZieiSRCvADcB7wMfAP8PeBOY4T2avB5ts0lPCQXbUA3Qfwxk5TXtLq+f/gu+egqG/xYGjot8zD5joGVX1/XVShHG1Gunk/Wp6hPedN17e5vm13Z1NU5aSohe7bPju7pcxEAy4YCL4MP/gzXf71i10hQUTYYpt0D/0+Dwm+o/LiUNDrkWXrsGFr0PPY6IX4zGNCLR9GIagVtF7j7gfuA7ERnuc1yNjls8KKDBcuEGX+Q+AL8Yv/Njk8myGfDyJdBpCJx8v6tya8jAsyCng2uLMMZEFE0V0z+Bo1X1MFUdDhwD3OlvWI1PYUEuqzdWUFpWEWwgOe1dVdNXz8CWXVnfqRFbtxSeHQvZ7WDcc64ktTOpGTDsaljyKSz+1P8YjWmEokkQaao6v/aFqn4HpPkXUuMU+IjqcEMvg8pNri4+2ZVvcN1Zqypcd9bmedGfO+g8aN4WPrZShDGRRJMgZojIIyIywns8hDVO/0zfsMWDAlewL3Q7FL74d3JPK1FdBRMvdOMaznwS2vbetfPTs+CgK+H7/0Kx/UobU1c0CeJSYC5wFXA1UORtM2FaZqVT0CIzMRIEuFLE+qXw7WtBR+IPVXjrd7BwChz/T9hrxO5d54CLILOllSKMiaDBBCEiIWCGqt6hqqeq6imqeqeqBlzRnpgKC3KD78lUa+9R0Kpb8nZ5/WK8m1rk4Ktg/wt2/zoZOW7hpflvwMpvYhaeMcmgwQThzdg6W0S6xCmeRq1vQS7fl26ivDIB5vkJpbh1q5dOdT18ksn8N+Gt30PhiXDkrXt+vQN/BRm5bo4m07gtmAKvXArl64OOJClEU8VUgBtJ/Z6ITK59+B1YY1RYkEt1jbJw1cagQ3H2O9t98CVTKWLFbJh4EXQYCKc86OZX2lPNWsKQi2Huq1D63Z5fzwRjyWfwwtkw+znXq23r5qAjavSi+eu6Fbfuw59xXV5rH6aO2p5MCVPNlJED+50Lc1+BDcuDjmbPbVju/vCbtYJxz7tG5lgZejmkNYNP7ojdNU38rJzjfjdadIbj74AfP3fzcVUFsNJjEokmQRynqh+GP4Dj/A6sMerapjnN0lISp6Ea4MBL3IymXz4UdCR7pmIjPHsmVJTBWS9ATn5sr988Dwb/Ar6e4Cb5M43HT4vh6dMgvTmc+4rreHDiXbDwXXjlVza1+x6IJkEcFWHbsbEOJBmkhITe+TmJlSBadYM+x8OMxxpvkbumGl6+2E2wd/pjkN/fn/scdCWEUuHTu/y5vom9jaXw1KlQVQ7nvgwtO7vt+18AR/0F5r7sJm+0Obd2S70JQkQuE5FvgN4i8nXY4wfAunvUo3bKDU2kX8ihl7v1Eb5+IehIds87N7teRsf+H/SK9H0lRnILYNC5bhT6+mX+3cfERkUZPDPGVT2eNQHaFe64f9hVbubemU/Au3+0JLEbGipBPAucCEz2ftY+9ldVWzCoHn0Lcli/pZIV6xNoZbcuB0HBwMa5VsS0h2HqfW5Z1SEX+3+/YVcDCp/ZTPYJraoCXjjHdU0+4wnocmDk4464GQ74pfv/tPalXVZvglDV9aq6WFXHAcVAJaBAtnV7rV9CrA1Rl4grRayeD9+/F3Q00Vs4Bd74LfQ6Bo75n/jcs2UXGDAWZjwOG1fF555m19TUuK6siz6Ak++FvY+p/1gROPbvsM8Z8N6f3RcOE7VoZnO9EigB3gVe9x5JOjx3z/VJpCk3wvU7BbLzG0+X15IimHABtOsLYx5x4zri5ZDroHorfH5v/O5polM7gn7uy3DUn92svDsTCsHo+2HvY+H1G1xHBBOVaBqprwF6q2o/Vd3He+zrd2CNVXZGKl3bZDFvZYIliNR0GPJL9628dP7Ojw9SWYmbgC+9ueuxlJET3/u36eHWlPjyYdi8Nr73Ng376B/w5YOuQ8Gwq6M/LyUNTn8cuh3iSh/z3/QtxGQSTYJYCtiwxF1QmJ8ga0PUtf+FkJqZ2KWIrZvh+XGweQ2c9Ty06BhMHIde72bETeR/q6Zm+mPw/l9h37Guh9KuSst008EXDIAJ58MPH8c+xiQTTYJYBHwgIr8XketqH9FcXERGich8EVkoIjdG2D9CRNaLyCzv8Udve++wbbNEZIOIXLNrby04hQW5LF6zic1bE2wm1eZ5sO8ZMPv5xPxmXFMDr14Ky2bCaQ9Dh/2Ci6VdoZvK44t/27QNiaBoMrx+HfQ62rU77O4I+owcOOclaN0dnhubfNPQxFg0/8o/4tof0oGcsEeDRCQFtwrdsUBfYJyI9I1w6MeqOtB7/BlAVefXbgP2Bzbj1sZuFAoLclCFb1cmYCli6OVQtRb/IxQAAB5oSURBVMWNi0g0//0zFE2Co//qxm4E7dAboGJ94x9k2Ngt/gRe+iV03N9VE6Xs4XI0Wa3h3Fchq40bYLdqXkzCTEY7TRCqemvdB3BbFNceAixU1UWquhV4Hjh5N2IcCXyvqkt249xAFCZqQzW4b8Z7He4+9KoTaGnxmU/BJ3e6arCDrgg6GqfDQPeN9fP7YOumoKNpmlZ8Dc+NcwM+z5rg2qViIbcAzpsEKRnw5GgbPV+PhgbKfRL2vO7SZF9Gce2OuPaLWsXetroOEpHZIvKmiPSLsH8s8FwDcV4iItNFZHppaWkUYfmvU6tm5GSmJmaCAFeKKFsBDx4Or1/vBoatmhfclASLPoTXroEeR8Bxf9/5etLxNPw3sGWtq/828bX2B/cNPyPHjZLOah3b67fu7qbmqK6Ap0bDhhWxvX4SaKgEEZ6q685tEM1fcKRj6o7Smgl0VdUBwD3AqztcQCQdOAl4sb6bqOqDqjpYVQe3bds2irD8JyIU5ucm1liIcD2PdF0Em7WE2S/ApMvh/qFwexd47Dh4+//BnJfdHDd+D6wr/Q4mnAttesam+iDWOg+B7sPdQKvKBBr8mOw2roKnToGaSvch3qKTP/dp3xfOfgk2rXb3S8S2uQClNrBP63ke6XUkxUDnsNedgB2mFFXVDWHP3xCR+0UkT1VXe5uPBWaqakkU90sofTvkMmH6UmpqlFAogb4Rg2vgG3a1e9TUwJoFrmF4+Uz388uHoNobA9CsNXQcBB0Gbf+Z0z42cWxaA8+eDinprvogs0Vsrhtrw38DT5zo1viOx2jupq58gys5bCyB8ybv+lKyu6rT/q5309Nj3NQd502Kf9fqBNVQgmgpIqfgShktReRUb7sA0fwlTwN6iUh3YBmuqmiHUS0ikg+UqKqKyBDvXmvCDhlHA9VLiaywIIfNW6v5ce1muuXFqN7UD6GQ+wNs2xsGjnPbqrbCqrlhSeMr+P4fblZYgNxO0HG/sKSx365/uFeWw/NnQdlKOP81aNU1tu8rlrodCp2Hwqf/gkHnuzElxh+1vxerityU7p0PiM99uw93JdgXznFtHmdPdN1im7iGEsSHuOqd2ucnhu37aGcXVtUqbxT220AK8KiqzhWRS73944ExwGUiUgVsAcaqN8udiGThZpL91a69pcQQ3lCd0AkiktR096HfYT/gIrdt6ya3WE94SWPef7af06bXjiWN/H3c+gqRqMLkK91qd6c/Hr8Pgd0l4koRz5zmJjwcdG7QESWn2ll7F3/sFoPyc2LGSPocB6MfgFcugYm/cHM8JVqVZ5xJQs06uocGDx6s06dPDzoMAMorq+n7x7e48vCeXHe0z0XkoGxeC8u/2p4wls2EjSvdvlCq6zHVYZDrnthxELQthJRUeP9/4cPbYeQf3YC0xkAVHhwBFRvgimnufZjYUXXjHKY/CkffBgdfGVwsXz4Eb9wA+54Jo8fHZtXCBCYiM1R1cKR99lvuk8y0FPZqm01RIo6ojpWs1tBzpHvU2rB8x1JG0atuumWA1GYuaSyfCQPPdnMeNRa1pYgXznYr9O17etARJZcPbnfJYdjVwSYHcO1M5evgv391S/YmWs+6OLIE4aPCglxmLvkp6DDiK7eDexSe4F6rwtpFOyaNAePghLsa3x9d7+Pc5IEf/8PN1ZTk3yzjZtrDrkQ58Gw48tago3EOvcGNoP/sHtfb74g/BB1RICxB+KiwIIf/zF7O+i2VtGjWROsyRdzkd216NP5v3aGQqxJ76SL49jXoe9LOzzENm/uKm2F171Fw4t2J86VBxM33VL4ePvq764Rx8K+DjiqyspVQ+i3sNSLml45muu/TRSTHe/4HEXlZRAbFPJIklNAjqs3u6XcKtO7hPjSSqP0uEIs+hJcvgc4HwpjHEq9dR8SVdPuOhnf+ADOeCDqi7TYsh6nj4dFj4Z99YMJ5vsyMEE0Z+WZVLRORQ4BjgCcAm+IyCv0sQSSfUIorRaz8Gha8G3Q0jdfyWa47a+sebtbe9KygI4oslAKnPuQGl/7najeANCjrlrppXx45Gu4odOtilK+DETfCL97xpcdVNCm7dv6F44EHVHWSiPwp5pEkobY5GbRpnm4JItnse4ZrVP3IWyM7UapFGos137sBac1auSk0mrUKOqKGpabDGU/B06e6Ek9GLvQ6Mj73/mmxm8m26NXtM8/m7+PaRApPhrZ7+3r7aBLEMhH5N3Ak8DcRySC6kkeTJyIUFiTo2hBm96WkwSHXuG6ZP3wEex0WdESNR9lKbwqNajjnZdehoTFIz3KLVz1+ghtMd+4r0PUgf+615ns3q3HRJFgxy20rGAgjb4G+J7v2vDiJ5oP+DNxgt1Gqug5oDfzG16iSSGFBDvNLyqiqrgk6FBNLA8+GnALXFmGiU77eTWexabUbqezzt9+Yy2zhklqLjm7Fw+WzYnft1Qvc79L4Q+CeQfDera5666i/wNWz4VcfwqHXxTU5QHQliALgdVWtEJERwL7Ak75GlUQKC3LZWlXDD6s30au9ze+SNNIy4eCr4O3fw49TocvQoCNKbJXl8NxZrrfNWS+4+Y8ao+y2bq6mR0e5+aJ+8Rbk9dq9a6361ispvOqmFgHXYH/M/7jFqlp2iV3cuymaEsRLQLWI9AQeAboDz/oaVRKp7clUZO0QyWf/8yErz62TbOpXU+26Bi/5BE4Zv+PAysaoRSe34JCIW0ti3dKdnwOu19vKOfDf2+DeIXD/gfDB/0JmSxj1N7huHlz0jlsPJQGSA0RXgqjx5lU6FbhLVe8Rka/8DixZ9GibTVqKMG9FGScPDDoaE1Ppzd0f83u3uilHglwiNVGpwmvXunEjo/4G+4wJOqLYyOvpqpsePwGePNmVJLLb/fw4VdfjrbZNYc1CkBB0HeZGbBeeCDn58Y8/StEkiEoRGQecx/YJ+5roqK9dl54aole7HCtBJKsDfgmf3uVKEWOfCTqaxPP+bW6qlUOvh6GXBh1NbBXsC2dPcI3uT50KF7zmRl2rui8MRa+6pPDTYpAU6H6o+0LR54TIySQBRZMgLgQuBW5T1R+86buf9jes5FJYkMtHCxJjtTsTY5m5cOBlbqqIkiK3AI1xvvi3a3gddB4ccXPQ0fijy1A48yl4diw8c7pbYKpoMqz/0U1Y2f0wlxx7Hw/N2wQd7S6LZk3qIuAG4BsR6Q8Uq+rtvkeWRAoLcigtq2D1xoqgQzF+OPBXkJ7t5mgybpbfaQ/Dm79z35aPvzO5x4r0PBJOexiWTXdJsV0hnHw/3LDAjfMYdF6jTA4QRQnC67n0BLAYt1hQZxE5X1V3uiaEcfqGjag+tFdiLItqYiirtatP/uQuGPH73e/V0hhVlO24Tsjyr1yVCrh69tMeTrwpNPzQbzS07w/N81w1U5KI5n/un8DRqjofQET2xq3y1kj7qcVfoSWI5Df0Cjc3zid3wuj7g47GH1UVrhdO7ay8y2dC6Xy2rUDcorNrqN//ArcOSJeDmtbqe3k9g44g5qJJEGm1yQFAVb8TEWuk3gWtmqeTn5tpI6qTWXZbGHyhq2I47HeJvYRqNKqrYPX8HadpL5kLNd6EcFl5bhGovqO3LzvbSBpeTfSiSRAzROQR4Cnv9dnADP9CSk6FBTk2J1OyO/jXru7907vghDuDjiZ6kdbsWPk1VG52+zNyocNA1wOnw34uIbTonNztCgaILkFcClwBXIVrg/gISNIytH8KC3L5eMFqKqqqyUhNCToc44fcDrDfOfDV0271uUScZ0jVTRUdXk20/Cs3DQZAaibk7+saVmvXF2/dwxZHaqIaTBAiEgJmqGp/4I74hJSc+nbIpapGWVCykf4dWwQdjvHLsGvcugGf3QOj/jfoaGDTmh3XDV8+EzaWuH2S4rrlbqsmGuR64PgwbbRpnBpMEKpaIyKzRaSLqv4Yr6CSUXhDtSWIJNaqKwwYC9Mfc2tuZ8e5U0JZiZvSYrH3WP2dt0Nc76q9Dt+eDPL7Q1qz+MZnGpVoJ+ubKyJfAptqN6qqrbe4C7q1aU5mWsgaqpuCQ66DWc/C1PvgyD/5e68NK2DJp7D4Y1j8KaxZ4LanZ7teRAPGQafBbrrozFx/YzFJJ5oEkSCriDduKSGhd36uNVQ3BXk9of+p8OVDbsbXrNaxu/b6ZTsmhLXfu+0ZuS4hDDoXuh0C+QOaxvgD46t6f4O82Vvbq+qHdbYPB5b5HVgy6luQw5tzVqKqiPUASW6HXg9zXoIvH3RLQu6udUt3TAg//eC2Z7SArge7rrXdDnENyyHr/GBiq6GvGHcBN0XYvtnbd2KEfaYBhQW5PPflUlZuKKeghdX9JrX2/dw0E1MfgKGXR1+989MSLyF4bQjrlrjtmS23zwDa7RA3atcSgvFZQwmim6p+XXejqk4XkW6+RZTEwhuqLUE0AYde76a5nv4IHHLtz/erugSw+BNXOlj8iZvkDdw6zV2HwdDLXEJo18+6mpq4ayhBZDawzz7ddkOffLei3LwVZRzRp33A0RjfdRzkJnL77F4Y8ivXY+inH3ZMCBuK3bFZbVxCOPhKlxDaFlpCMIFrKEFME5GLVfWh8I0ichE2knq35GSm0aV1FkXLraG6yRj+G3j0GLeozPpiKFvutmfluUTQ7Rr3M6+3JQSTcBpKENcAr4hI+NQag4F04BS/A0tWNuVGE9NlKPQ+DpbNcCWEbsOg26GQt7dNVWESXr0JQlVLgINF5HCgv7f5dVX9b1wiS1KFBbm8U1TC5q1VZKVbN8QmYdxzQUdgzG6JZsGg91X1Hu+xS8lBREaJyHwRWSgiP+vrJyIjRGS9iMzyHn8M29dSRCaKyLciMk9EDtqVeyeqwoJcVGH+ShswZ4xJbL59hRWRFOA+4CigGNemMdlboS7cx6p6QoRL/At4S1XHiEg6kOVXrPG0ffGgMvbr0irgaIwxpn5+tooNARaq6iJV3Qo8D5wczYkikgsMBx4BUNWtqrrOt0jjqFOrZuRkpFo7hDEm4fmZIDoCS8NeF3vb6jrImxDwTRHp523bCygFHhORr0TkYRFpHukmInKJiEwXkemlpaUxfQN+EBH6WEO1MaYR8DNBROqioXVezwS6quoA4B7gVW97KjAIeEBV98NNEhhxvgJVfVBVB6vq4LZtG8dynn0Lcvl2ZRk1NXX/OYwxJnH4mSCKgc5hrzsBy8MPUNUNqrrRe/4GkCYied65xar6hXfoRFzCSAqFBblsrKhi6U+bgw7FGGPq5WeCmAb0EpHuXiPzWGBy+AEiki/erHUiMsSLZ42qrgSWikhv79CRQN3G7UYrfMoNY4xJVL71YlLVKhG5EngbSAEeVdW5InKpt388MAa4TESqgC3AWFWtrXf5NfCMl1wWARf6FWu89c7PISRQtKKMUf0Lgg7HGGMi8nWklldt9EadbePDnt8L3FvPubNwI7eTTmZaCt3zmlsJwhiT0Gzyl4AUFtjiQcaYxGYJIiCFBbkU/7SFDeWVQYdijDERWYIISO2I6m9tjWpjTIKyBBGQvh2sJ5MxJrFZgghIu5wMWjdPt7UhjDEJyxJEQETErQ2x0hKEMSYxWYII0D4dWzJn2XrueGc+5ZXVQYdjjDE7sAQRoMtG9GD0wI7c/d+FHPuvj/ls4eqgQzLGmG0sQQSoRbM07jhzIE9fdCA1qpz18BdcP2E2azdtDTo0Y4yxBJEIDumVx9vXDOeKw3swadYyRv7zA16aUcz2WUeMMSb+LEEkiMy0FH5zTB9ev+pQ9mqbzfUvzubsh7/gh9Wbgg7NGNNEWYJIML3zc3jxVwdx2yn9+WbZeo656yPueW8BW6tqgg7NGNPEWIJIQKGQcPaBXXnvusM4qm97/vnudxx398dMW7w26NCMMU2IJYgE1i43k/vOGsRjFxzAlq3VnD7+c37/8tes32zzNxlj/GcJohE4vE873r1uOJcM34sJ04sZeccHTJq1zBqxjTG+sgTRSGSlp3LTcYVMvnIYHVs24+rnZ3H+Y9NYutaWLTXG+MMSRCPTr0MLXr58GH86sS8zFq/lqDs/ZPyH31NZbY3YxpjYsgTRCKWEhAuGdWfK9YcxvFdbbn/zW0685xO++vGnoEMzxiQRSxCNWEGLZjx43mD+fe7+rNtcyakPfMYfJ82xRYiMMTFhCSIJHNMvn3evG875B3XjqalLOOqOD3nzmxXWiG2M2SOWIJJETmYafzqpH69ePow2zTO47JmZXPzkdJat2xJ0aMaYRsoSRJIZ0Lklk68cxk3H9eHThWs46o4PeeSTH6iyRmxjzC6yBJGEUlNCXDK8B+9cO5wh3Vvzl9eKGH3/p8xZtj7o0IwxjYgliCTWuXUWj11wAPeetR8lGyo46d5P+MtrRWyqqAo6NGNMI2AJIsmJCCfs24Ep1x3G2CFdeOSTHzjqjg+ZUlQSdGjGmAQnydTTZfDgwTp9+vSgw0hoM5as5fcvf8N3JRvZq21zjipsz8jC9gzq0pLUFPu+YExTIyIzVHVwxH2WIJqerVU1TJi+lLfnrmTqojVUViutstI4vHc7Rha2Z/jeeeRkpgUdpjEmDixBmHqVlVfy0XereW9eCf+dv4p1mytJSxGG7tWGIwvbM7KwHZ1aZQUdpjHGJ5YgTFSqqmuY+eM6pswrYcq8EhaVutXs+uTnbEsWAzq1JBSSgCM1xsSKJQizWxaVbuS9eauYMq+E6Ut+orpGycvOYGSfdhzZtz2H9MyjWXpK0GEaY/ZAYAlCREYB/wJSgIdV9fY6+0cAk4AfvE0vq+qfvX2LgTKgGqiq7w2EswThn3Wbt/LB/FKmzCvhw/mllFVUkZEaYljPvG2li/a5mUGHaYzZRQ0liFQfb5oC3AccBRQD00RksqoW1Tn0Y1U9oZ7LHK6qq/2K0USvZVY6o/fryOj9OrK1qoZpi9fyblEJ731bwn+/XQWvwD4dW2xLFv065CJiVVHGNGa+JQhgCLBQVRcBiMjzwMlA3QRhGpl0r+QwrGcet5zYl+9KNjJlXgnvzSvhrve+484p31HQIpORhe04srA9Q/dqQ2aaVUUZ09j4mSA6AkvDXhcDB0Y47iARmQ0sB25Q1bnedgXeEREF/q2qD0a6iYhcAlwC0KVLl1jFbqIkIvTOz6F3fg5XHN6T1Rsr+O+3q5hSVMJLM5bx9NQfyUpP4dBerirqiD7taJOdEXTYxpgo+JkgItUv1G3wmAl0VdWNInIc8CrQy9s3TFWXi0g74F0R+VZVP/rZBV3ieBBcG0Tswje7Iy87gzMGd+aMwZ0pr6zm80VrmFJUwnvzVvH23BJEoHOrLELikosAiPtl2fYaEAFBqK2lqt0nwvZt3n7xTti23zveu/S2a6WEhDbZ6bTPzaR9bgbtczNpl5NJfgv3Oivdzz8HYxofP/8iioHOYa874UoJ26jqhrDnb4jI/SKSp6qrVXW5t32ViLyCq7L6WYIwiSszLYXDe7fj8N7t+OtoZe7yDUyZV8IPqzeh6r4tqKr71qCgKLV9JjTstXqvCXtN2Lnh1wo/d9tz73VVTQ1zl2/gvXmr2FJZ/bN4czJSaeclju2PjG0/2+Vk0i43g4xUqy4zTYOfCWIa0EtEugPLgLHAWeEHiEg+UKKqKiJDcHNDrRGR5kBIVcu850cDf/YxVuMzEaF/xxb079gi6FBQVTZWVFGyoYKSDeXewz1fVVbOyvXlfPnDWlaVlVNZ/fNCaevm6bTLyaiTQHZMKG2apyfF1CW1/1Zl5VVsKK9kw5Yqysortz3fsKWSsgr3c0N5pTtuSyUbyqsQICMthcy0EJmp3s+0FJqlpWzfnpYSYZ+3PS2FzNSw52mhHc5NTwlZRwif+ZYgVLVKRK4E3sZ1c31UVeeKyKXe/vHAGOAyEakCtgBjvWTRHnjF+89PBZ5V1bf8itU0LSJCTmYaOZlp9GyXXe9xqspPmysp2VDOyg3lrApLJLU/563YwOqNFdTUySMhgbY526uxcpulkhYKkZoipKWESPN+pqaESAsJaakhUkO1+9xx6d7P1FCI9FT3c/t2d3x6hPNqr58aChES2FhR5T7Mwz/Yd/gw//kHf1nF9m1131tdmWkhcjPTyG2WRk5mKi2z0unc2o2+L6+soaKqmvLKalZvrGJLpXteXllDRWU15VXVEZNwdP+P1Jt4MlJDZKSmuJ9p3s/abT/bH/Z8Z8d7z3c3OVXXKJXVNVTVKFXVNVRWu5JtVbXbXlnd8P6qmu3HVVXXUOkdl5GawlkHxr4N1gbKGbOHqqprWLNp67bEsT2ZbE8kZeVVVNWEfQCE/cEHLScjdduHu/ugTyUnM43cTLc9N9Pb97Pn7rj01D0rKVVV11BRVbND8iivrPYSi3u+JWy727f9+Y77XEKqqHLXrKisZmvt86pqKird860xWECrbkJJTw2hyrb/39r/79oP+sqaGvz6uM3LTmf6H47arXMDGQdhTFORmhLaVsW0q1T1598Kf/ZtccdvmO6Dp/b47cdUhn0ouXNqqFHIztjxAz23mZcIMtPIzkwlJeCpU1K9ElHzjPh9HNXUKFura7yEUb0tgZRXhiWTqrr7XcKpiJBwao8JiZAWElfyqy0d1pYUU7aXAmufp3nH/bwUGH7s9v3bSpS1z1OEtFCItD1M0vWxBGFMgERkW3WTiZ9QSMgMpXjjc2zm4vrYb6UxxpiILEEYY4yJyBKEMcaYiCxBGGOMicgShDHGmIgsQRhjjInIEoQxxpiILEEYY4yJKKmm2hCRUmDJbp6eBzS11evsPSe/pvZ+wd7zruqqqm0j7UiqBLEnRGR6NOteJxN7z8mvqb1fsPccS1bFZIwxJiJLEMYYYyKyBLFdxDWvk5y95+TX1N4v2HuOGWuDMMYYE5GVIIwxxkRkCcIYY0xETT5BiMgoEZkvIgtF5Mag4/GbiHQWkfdFZJ6IzBWRq4OOKV5EJEVEvhKR14KOJR5EpKWITBSRb73/74OCjslvInKt93s9R0SeE5FdX+YvwYnIoyKySkTmhG1rLSLvisgC72erWNyrSScIEUkB7gOOBfoC40Skb7BR+a4KuF5VC4GhwBVN4D3XuhqYF3QQcfQv4C1V7QMMIMnfu4h0BK4CBqtqfyAFGBtsVL54HBhVZ9uNwHuq2gt4z3u9x5p0ggCGAAtVdZGqbgWeB04OOCZfqeoKVZ3pPS/DfWh0DDYq/4lIJ+B44OGgY4kHEckFhgOPAKjqVlVdF2xUcZEKNBORVCALWB5wPDGnqh8Ba+tsPhl4wnv+BDA6Fvdq6gmiI7A07HUxTeDDspaIdAP2A74INpK4uAv4LVATdCBxshdQCjzmVas9LCLNgw7KT6q6DPgH8COwAlivqu8EG1XctFfVFeC+BALtYnHRpp4gJMK2JtHvV0SygZeAa1R1Q9Dx+ElETgBWqeqMoGOJo1RgEPCAqu4HbCJG1Q6Jyqt3PxnoDnQAmovIOcFG1bg19QRRDHQOe92JJCyS1iUiabjk8Iyqvhx0PHEwDDhJRBbjqhGPEJGngw3Jd8VAsarWlg4n4hJGMjsS+EFVS1W1EngZODjgmOKlREQKALyfq2Jx0aaeIKYBvUSku4ik4xq0Jgcck69ERHD10vNU9Y6g44kHVf29qnZS1W64/+P/qmpSf7NU1ZXAUhHp7W0aCRQFGFI8/AgMFZEs7/d8JEneMB9mMnC+9/x8YFIsLpoai4s0VqpaJSJXAm/jejw8qqpzAw7Lb8OAc4FvRGSWt+0mVX0jwJiMP34NPON9+VkEXBhwPL5S1S9EZCIwE9db7yuScNoNEXkOGAHkiUgxcAtwOzBBRC7CJcrTY3Ivm2rDGGNMJE29iskYY0w9LEEYY4yJyBKEMcaYiCxBGGOMicgShDHGmIgsQRizC0SkWkRmhT1iNjpZRLqFz9BpTNCa9DgIY3bDFlUdGHQQxsSDlSCMiQERWSwifxORL71HT297VxF5T0S+9n528ba3F5FXRGS296idEiJFRB7y1jR4R0SaBfamTJNnCcKYXdOsThXTmWH7NqjqEOBe3OyxeM+fVNV9gWeAu73tdwMfquoA3BxJtSP4ewH3qWo/YB1wms/vx5h62UhqY3aBiGxU1ewI2xcDR6jqIm8yxJWq2kZEVgMFqlrpbV+hqnkiUgp0UtWKsGt0A971Fn1BRH4HpKnqX/1/Z8b8nJUgjIkdred5fcdEUhH2vBprJzQBsgRhTOycGfbzc+/5Z2xf9vJs4BPv+XvAZbBtrezceAVpTLTs24kxu6ZZ2Cy44NZ8ru3qmiEiX+C+eI3ztl0FPCoiv8Gt8FY7o+rVwIPe7JvVuGSxwvfojdkF1gZhTAx4bRCDVXV10LEYEytWxWSMMSYiK0EYY4yJyEoQxhhjIrIEYYwxJiJLEMYYYyKyBGGMMSYiSxDGGGMi+v9nalgjW+FhFQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5hcVZ3v//enb+nu3C8NhDSYgBkFUQPGjB5mREScBIyBUTng4A/nFhllBn0UDfM74zDnnN95OOJtLgwRmAyMSJABGXI0IwEkOqKDSSCDCZeT6kwwnYR0kxCS6qTTl/r+/qjdSaXTl+qkq6u76vN6nnqq9tpr7fruJuxv7bX3XksRgZmZWb4qih2AmZmNLU4cZmY2JE4cZmY2JE4cZmY2JE4cZmY2JE4cZmY2JE4cZoOQdI+k/5ln3W2SPljomMyKyYnDzMyGxInDrExIqip2DFYanDisJCRdRDdJel5Sm6R/kHSqpH+VdEDSE5Km5tT/iKTNkvZJWivpnJx150t6Nmn3PaC213d9WNLGpO3PJb0jzxgvl/ScpP2Stku6pdf630q2ty9Z/6mkvE7S1yW9IukNST9Lyt4vqbmPv8MHk8+3SHpI0n2S9gOfkrRA0i+S79gl6e8k1eS0f5ukxyXtlbRb0p9LOk3SQUnTc+q9S1KrpOp89t1KixOHlZKPApcCvwEsBv4V+HNgBtl/638GIOk3gJXA54AGYDXwfyTVJAfRfwG+A0wD/jnZLknbC4AVwKeB6cC3gVWSxuURXxvw/wBTgMuBP5F0RbLdM5N4/zaJaR6wMWn3NeBdwH9JYvoSkMnzb7IEeCj5zu8C3cDnk7/Je4FLgM8kMUwEngB+BJwOvBl4MiJeBdYCV+Vs91rggYjozDMOKyFOHFZK/jYidkfEDuDfgGci4rmIOAw8Apyf1PuvwA8j4vHkwPc1oI7sgfk9QDXwrYjojIiHgHU53/HHwLcj4pmI6I6Ie4HDSbsBRcTaiPhVRGQi4nmyyeuiZPXvAU9ExMrke/dExEZJFcAfADdGxI7kO3+e7FM+fhER/5J856GI2BAR/x4RXRGxjWzi64nhw8CrEfH1iGiPiAMR8Uyy7l6yyQJJlcA1ZJOrlSEnDislu3M+H+pjeULy+XTglZ4VEZEBtgOzknU74tjRP1/J+fwm4AtJV88+SfuAM5J2A5L0m5KeSrp43gCuJ/vLn2QbTX00m0G2q6yvdfnY3iuG35D0A0mvJt1X/yuPGAAeBc6VdBbZs7o3IuKXJxiTjXFOHFaOdpJNAABIEtmD5g5gFzArKetxZs7n7cD/FxFTcl71EbEyj++9H1gFnBERk4HlQM/3bAfO7qPNa0B7P+vagPqc/agk282Vq/fw13cALwFzI2IS2a68wWIgItqBB8meGX0Sn22UNScOK0cPApdLuiS5uPsFst1NPwd+AXQBfyapStLvAgty2t4FXJ+cPUjS+OSi98Q8vncisDci2iUtAD6Rs+67wAclXZV873RJ85KzoRXANySdLqlS0nuTayr/F6hNvr8a+G/AYNdaJgL7gbSktwJ/krPuB8Bpkj4naZykiZJ+M2f9PwGfAj4C3JfH/lqJcuKwshMRL5Ptr/9bsr/oFwOLI6IjIjqA3yV7gHyd7PWQ7+e0XU/2OsffJetTSd18fAb475IOAF8hm8B6tvtr4DKySWwv2Qvj70xWfxH4FdlrLXuB/w1URMQbyTbvJnu21AYcc5dVH75INmEdIJsEv5cTwwGy3VCLgVeBLcDFOeufJntR/tnk+oiVKXkiJzPLl6QfA/dHxN3FjsWKx4nDzPIi6d3A42Sv0RwodjxWPO6qMrNBSbqX7DMen3PSMJ9xmJnZkPiMw8zMhqQsBj2bMWNGzJ49u9hhmJmNKRs2bHgtIno/G1QeiWP27NmsX7++2GGYmY0pkl7pq9xdVWZmNiROHGZmNiROHGZmNiRlcY2jL52dnTQ3N9Pe3l7sUAqqtraWxsZGqqs9346ZDY+yTRzNzc1MnDiR2bNnc+xAqKUjItizZw/Nzc3MmTOn2OGYWYko266q9vZ2pk+fXrJJA0AS06dPL/mzKjMbWWWbOICSTho9ymEfzWxklW1XlZmNjIggE5CJyL4y0JXJ0J0JujJx9L07+i7PZOjqjr7Le5a7+yk/Zn0GJCoEFcm7pCOfKySUs66iQsn6fOrnrk/KKo7WF9n9jyN/h57l3L9Nz98q+zcaUv3IqZ85tv6VFzQyZ8b4Yf1v6sRRJPv27eP+++/nM5/5zJDaXXbZZdx///1MmTKlQJGNbZlM0JnJ0NkddHZl6OzO0NGdLHdn6EjKjix3Z+jsypAp2pBtvQ9ugx/8jivvOdged3DN9NH+aHl3nweovg5WOQf96JUIMoPXt+KR4Pw3TXXiKBX79u3j7//+749LHN3d3VRWVvbbbvXq1YUObdhFBIc6u9l/qIv97Z3sP9SZvOcud3GgvZPDXX0d9Ps/8B8tyy53lcGRqrpSVFaIqoqK5F1H3yv7Kc+pP666igply/v7hdznL3AN8gu8Iv/6R/dBVFZUHI2xv/Jj1vdRXlGR7Hvf+1xVISoqst22vc+Ajkt8mQES5WBnAX0k4p5tVFQM4WylZ33FEOv32n6huqqdOIpk2bJlNDU1MW/ePKqrq5kwYQIzZ85k48aNvPDCC1xxxRVs376d9vZ2brzxRpYuXQocHT4lnU6zaNEifuu3fouf//znzJo1i0cffZS6urphjzXfA/9A5YMd0GurK5gwrppxVRXUVFVQXankPfuqq65kUm1VdrmqgprKbJ2e9T1tjiz3rK/KXT5adsxyZQUVRbwWdEwiyPPgZydOEpWCSvy3PFFOHMBf/Z/NvLBz/7Bu89zTJ/GXi9/W7/pbb72VTZs2sXHjRtauXcvll1/Opk2bjtw2u2LFCqZNm8ahQ4d497vfzUc/+lGmT59+zDa2bNnCypUrueuuu7jqqqt4+OGHufbaaweMq72zm71tHext6+D1g8l7Wwd7D3Ym7x28cbDzhA78k2qrmVRXzaTaKqaNr2H29PFMqqvKKa/utVzFpLpqJtZWMa6q/7MsMxtdnDhGiQULFhzzrMXf/M3f8MgjjwCwfft2tmzZclzimDNnDm97+zto7+zmvHecz0tbmtiTPnxcH3jL/nb+6NYf8/rBDg52dPf5/RJMqatm6vgaJtdV+8BvZv0qaOKQtBD4a6ASuDsibu21/ibg93JiOQdoiIi9kqYAdwPnAQH8QUT8QtI04HvAbGAbcFVEvH4ycQ50ZjBSxo8/evFq7dq1PLbmcX74xFpqauu4YtGH+HXLPk57rY2uTLBl9wEOpA8QFVW8uCt7pvRGexcHDx5ix75DAFTqaH93RYX4zbOmMa2+hqnja5g2voap9dn3aeOrmVpfw5T6GirdDWJmeShY4pBUCdwOXAo0A+skrYqIF3rqRMRtwG1J/cXA5yNib7L6r4EfRcTHJNUA9Un5MuDJiLhV0rJk+cuF2o9CmThxIgcO9D0D52t7Xqdm/ET2Hhb/ufl5Nqz/Je2d3XR2ZwCoq6mkoq6GqsoKZk2po7JCTBtfQ606OWfmJCqTi3A9OveM4xtXnTMi+2Vmpa+QZxwLgFREbAWQ9ACwBHihn/rXACuTupOA9wGfAoiIDqAjqbcEeH/y+V5gLWMwcUyfPp0LL7yQ8847j7q6Ok499dQj6973gQ/yrb+7nU8s+m3e+pa38t73vIczp49n7qkTqaoQjVPrSVdnqKoQ0yeMA2BcdSWdyQVfM7NCKmTimAVsz1luBn6zr4qS6oGFwA1J0VlAK/CPkt4JbABujIg24NSI2AUQEbsknVKg+Avu/vvv77M8Kqv5++88xNtOn3xc99G2bdsAmDFjBps2bTpS/sUvfrFgcZqZ5Srkz9O+Osz7uzVnMfB0TjdVFXABcEdEnA+0ke2Syv/LpaWS1kta39raOpSmRXe4K0NNZYWvOZjZqFTIxNEMnJGz3Ajs7Kfu1STdVDltmyPimWT5IbKJBGC3pJkAyXtLXxuMiDsjYn5EzG9oOG7K3FHtcGc346p9l5KZjU6FTBzrgLmS5iQXt68GVvWuJGkycBHwaE9ZRLwKbJf0lqToEo5eG1kFXJd8vi63XSmICA53ZRhX5WsVZjY6FewaR0R0SboBeIzs7bgrImKzpOuT9cuTqlcCa5LrF7n+FPhuknS2Ar+flN8KPCjpD4FfAx8v1D4UQ2d3hkyEE4eZjVoFfY4jIlYDq3uVLe+1fA9wTx9tNwLz+yjfQ/YMpCQd7srecuuuKjMbrfyzdpRp78wmjlqfcZjZKOWjU5H0jI7b2+GubiqTwe36861vfYuDBw8WMjwzs345cRRJv4mjM0NtVeWAwyE7cZhZMXmQwyLJHVb90ksv5ZRTTuHBBx9kf9shLvvwR/jmV/8XbW1tXHXVVTQ3N9Pd3c1f/MVfsHv3bnbu3MnFF1/MjBkzeOqpp4q9K2ZWZpw4AP51Gbz6q+Hd5mlvh0W39rs6d1j1NWvW8NBDD/HzX/w7m3e+wZeWXstPf/pTWltbOf300/nhD38IwBtvvMHkyZP5xje+wVNPPcWMGTOGN2Yzszy4q2oUWLNmDWvWrOFd77qAqxddRGrL/2XLli28/e1v54knnuDLX/4y//Zv/8bkyZOLHaqZmc84gAHPDEZCRHDzzTfzsWs/xY7XD/HW0yZSk8xvsWHDBlavXs3NN9/Mhz70Ib7yla8UNVYzM59xFEnusOq/8zu/w4oVK9j7+n4qJFpe3UVLSws7d+6kvr6ea6+9li9+8Ys8++yzx7U1MxtpPuMoktxh1RctWsQnPvEJPvyh90PAtCmTuO+++0ilUtx0001UVFRQXV3NHXfcAcDSpUtZtGgRM2fO9MVxMxtxihh4LulSMH/+/Fi/fv0xZS+++CLnnDO6Jjd6add+6muqOHN6/eCVh2A07quZjX6SNkTEcSN4uKtqlMhkgo7uDOOq/Z/EzEY3H6VGicNd3QAe3NDMRr2yPkqNpm66Qg1uOJr20cxKQ9kmjtraWvbs2TNqDqztnRkEjBvGOcMjgj179lBbWzts2zQzK9u7qhobG2lubma0TCu7p62Dzq4MLx8Y3oN8bW0tjY2Nw7pNMytvZZs4qqurmTNnTrHDOOJ3vvlTGqfW8Q+f8t1PZja6lW1X1WjS1Z3hP19r482nTCh2KGZmg3LiGAW2v36Iju4MZztxmNkY4MQxCjS1pAE4u8GJw8xGv4ImDkkLJb0sKSVpWR/rb5K0MXltktQtaVqybpukXyXr1ue0uUXSjpx2lxVyH0ZCqjWbONxVZWZjQcEujkuqBG4HLgWagXWSVkXECz11IuI24Lak/mLg8xGxN2czF0fEa31s/psR8bVCxT7SUi1pGiaOY3JddbFDMTMbVCHPOBYAqYjYGhEdwAPAkgHqXwOsLGA8o1ZTa5qzG8YXOwwzs7wUMnHMArbnLDcnZceRVA8sBB7OKQ5gjaQNkpb2anKDpOclrZA0tZ9tLpW0XtL60fKsRl8iglRL2t1UZjZmFDJxqI+y/h7TXgw83aub6sKIuABYBHxW0vuS8juAs4F5wC7g631tMCLujIj5ETG/oaHhhHZgJLQeOMyB9i7e7AvjZjZGFDJxNANn5Cw3Ajv7qXs1vbqpImJn8t4CPEK264uI2B0R3RGRAe7qKR+rei6M+1ZcMxsrCpk41gFzJc2RVEM2OazqXUnSZOAi4NGcsvGSJvZ8Bj4EbEqWZ+Y0v7KnfKzquRXXXVVmNlYU7K6qiOiSdAPwGFAJrIiIzZKuT9YvT6peCayJiLac5qcCj0jqifH+iPhRsu6rkuaR7fbaBny6UPswElItacbXVHLaJA9EaGZjQ0HHqoqI1cDqXmXLey3fA9zTq2wr8M5+tvnJYQ1yIC0vwYGdUFENFVVQmbz3+bkaKipzPldll9XXpZ6jUq1pzj5lAhqknpnZaFG2gxzmZd1dsO7uk9vGMUmnMruc8/l/vN5BbU0NfHtiP4mpGiqr+vk8WPLK+Xzc9/f3PdWgikETnpUAVQzyb63a/w5Gk0w3HD7Qx2v/wGWXfAVOnzesoThxDOS9N8B5H4NMJ2S6oLsr53Nn9j9kpjP53JVT3vtzZ9L22M+dnYd5qXUHb51WBxPGHdum81De2zkSk9lwU0WePzyG8GOnmD9MVHmCP9Dy+dE1QNtMBjp6Hdzb9w9+0M99dbYNvn8ANRNg3MSjr67Dw/5ndOIYyLQ52VeBbN6+j8889zTf/sC7OOttp53cxiIGSGRJkjvyOScJ9pXoont4dtBGr4jk30x/P3wG+JGSz4+mjoM5P2q6j/13WKwfORHZf9u9fwSOhh9dqkgO9JOOHvDrp8HUNx1ffsyrV3nNhGyiKjAnjiIa1sENpewvncoqqK47+e2ZlYuIAXoMBvjR1W8PQx9tVQG1vQ/+OcvV9WOqW9CJo4hSrWmqKsSbptcXOxSz8iVlu5Qqq/2jK08eVr2IUi1pZs8YT/UwzjNuZlZoPmIVkQc3NLOxyImjSDq6Mryy56CfGDezMceJo0he2dNGdyacOMxszHHiKJKmVk8Xa2ZjkxNHkaQ8z7iZjVFOHEWSaklz+uRaxo/zHdFmNrY4cRRJz+CGZmZjjRNHEWQyQVNLm7upzGxMcuIogl372znU2e07qsxsTHLiKIKUZ/0zszHMiaMIhnVwQzOzEebEUQSp1jST66qZMaGm2KGYmQ1ZQROHpIWSXpaUkrSsj/U3SdqYvDZJ6pY0LVm3TdKvknXrc9pMk/S4pC3J+9RC7kMhpFrSvNnTxZrZGFWwxCGpErgdWAScC1wj6dzcOhFxW0TMi4h5wM3ATyJib06Vi5P183PKlgFPRsRc4MlkeUzZ6sENzWwMK+QZxwIgFRFbI6IDeABYMkD9a4CVeWx3CXBv8vle4IqTinKE7TvYwWvpDl8YN7Mxq5CJYxawPWe5OSk7jqR6YCHwcE5xAGskbZC0NKf81IjYBZC8n9LPNpdKWi9pfWtr60nsxvDyHVVmNtYVMnH01YEf/dRdDDzdq5vqwoi4gGxX12clvW8oXx4Rd0bE/IiY39DQMJSmBeXBDc1srCtk4mgGzshZbgR29lP3anp1U0XEzuS9BXiEbNcXwG5JMwGS95ZhjLngUi1paqoqaJzq6WLNbGwqZOJYB8yVNEdSDdnksKp3JUmTgYuAR3PKxkua2PMZ+BCwKVm9Crgu+XxdbruxINWS5qwZ46ms8B1VZjY2FWxo1ojoknQD8BhQCayIiM2Srk/WL0+qXgmsiYi2nOanAo8kt6tWAfdHxI+SdbcCD0r6Q+DXwMcLtQ+FkGpN847GKcUOw8zshBV0TO+IWA2s7lW2vNfyPcA9vcq2Au/sZ5t7gEuGM86R0t7ZTfPrh/jd8xuLHYqZ2Qnzk+MjaGtrGxG+o8rMxjYnjhGUavWtuGY29jlxjKCmljQSzJnhp8bNbOxy4hhBqdY0Z0ytp7a6stihmJmdMCeOEdSUDG5oZjaWOXGMkO5MsPW1Ng9uaGZjnhPHCGl+/SAdXRmfcZjZmOfEMUI8uKGZlQonjhHiwQ3NrFQ4cYyQVEuaGRNqmFLv6WLNbGzLK3FIeljS5ZKcaE5QqiXtsw0zKwn5JoI7gE8AWyTdKumtBYyp5ERENnH4+oaZlYC8EkdEPBERvwdcAGwDHpf0c0m/L6m6kAGWgtfSHexv7+LNPuMwsxKQd9eTpOnAp4A/Ap4D/ppsInm8IJGVEN9RZWalJK9h1SV9H3gr8B1gcc+c38D3JK0vVHClomdwQ3dVmVkpyHc+jr+LiB/3tSIi5g9jPCWpqSVNfU0lp0+uLXYoZmYnLd+uqnMkHZm2TtJUSZ8pUEwlp6k1e0dVMqOhmdmYlm/i+OOI2NezEBGvA39cmJBKT8qDG5pZCck3cVQo5+eypEpg0CfZJC2U9LKklKRlfay/SdLG5LVJUrekabnfI+k5ST/IKbtF0o6cdpfluQ9FkT7cxa432j24oZmVjHyvcTwGPChpORDA9cCPBmqQJJfbgUuBZmCdpFUR8UJPnYi4Dbgtqb8Y+HxE7M3ZzI3Ai8CkXpv/ZkR8Lc/Yi2qrZ/0zsxKT7xnHl4EfA38CfBZ4EvjSIG0WAKmI2BoRHcADwJIB6l8DrOxZkNQIXA7cnWeMo5JvxTWzUpPvA4CZiLgjIj4WER+NiG9HRPcgzWYB23OWm5Oy40iqBxYCD+cUf4tscsr00eQGSc9LWiFpaj/bXCppvaT1ra2tg4RaOE2taSorxJnT3FVlZqUh37Gq5kp6SNILkrb2vAZr1kdZ9FN3MfB0TzeVpA8DLRGxoY+6dwBnA/OAXcDX+9pgRNwZEfMjYn5DQ8MgoRZOqiXNm6bXU1PlYb7MrDTkezT7R7IH7C7gYuCfyD4MOJBm4Iyc5UZgZz91ryanmwq4EPiIpG1ku7g+IOk+gIjYHRHdEZEB7iLbJTZqpVrSHmrEzEpKvomjLiKeBBQRr0TELcAHBmmzDpgraY6kGrLJYVXvSpImAxcBj/aURcTNEdEYEbOTdj+OiGuT+jNzml8JbMpzH0ZcZ3eGV/Yc9BPjZlZS8r2rqj0ZUn2LpBuAHcApAzWIiK6k7mNAJbAiIjZLuj5ZvzypeiWwJiLa8ozlq5Lmke322gZ8Os92I+6VPQfpyoTPOMyspOSbOD4H1AN/BvwPst1V1w3WKCJWA6t7lS3vtXwPcM8A21gLrM1Z/mSeMRed76gys1I0aOJInse4KiJuAtLA7xc8qhLRM13sWX74z8xKyKDXOJLbbt+V++S45aepJc1pk2qZWOspS8ysdOTbVfUc8KikfwaOXIuIiO8XJKoSkWr1GFVmVnryTRzTgD0ceydVAE4c/YgImlrSfHz+GYNXNjMbQ/JKHBHh6xpD9Or+dto6uj24oZmVnHxnAPxH+njqOyL+YNgjKhE9d1T5GQ4zKzX5dlX9IOdzLdlnL/p7CtzwrbhmVrry7arKHXwQSSuBJwoSUYloak0zsbaKhgnjih2KmdmwOtGR9+YCZw5nIKWmZ9Y/38VsZqUm32scBzj2GserZOfosH6kWtq4+C3FG5XXzKxQ8u2qmljoQErJGwc7eS192BfGzawk5Tsfx5XJKLY9y1MkXVG4sMa2VM90sR7c0MxKUL7XOP4yIt7oWYiIfcBfFiaksa/Jd1SZWQnLN3H0VS/fW3nLTqo1TU1lBY1T64odipnZsMs3cayX9A1JZ0s6S9I3gb6mdTWyZxxzZoynqtLTxZpZ6cn3yPanQAfwPeBB4BDw2UIFNdZ5cEMzK2X53lXVBiwrcCwlob2zm+17D7Jk3qxih2JmVhD53lX1uKQpOctTJT1WuLDGrm172sgEHtzQzEpWvl1VM5I7qQCIiNcZZM5xAEkLJb0sKSXpuDMWSTdJ2pi8NknqljQtZ32lpOck/SCnbFqSyLYk71Pz3IcR4TGqzKzU5Zs4MpKODDEiaTZ9jJabK5ly9nZgEXAucI2kc3PrRMRtETEvIuYBNwM/iYi9OVVuBF7stellwJMRMRd4klHWhZZqSSPBWTOcOMysNOWbOP5f4GeSviPpO8BPyB7oB7IASEXE1ojoAB4AlgxQ/xpgZc+CpEbgcuDuXvWWAPcmn+8FRtWDiE2tbcyaUkddTWWxQzEzK4i8EkdE/AiYD7xM9s6qL5C9s2ogs4DtOcvNSdlxJNUDC4HcUXi/BXwJyPSqfmpE7Eri2kU/XWaSlkpaL2l9a2vrIKEOn57BDc3MSlW+F8f/iGy30BeS13eAWwZr1kdZf91bi4Gne7qpJH0YaImIE35WJCLujIj5ETG/oWFkBhvszgRbW9MeasTMSlq+XVU3Au8GXomIi4HzgcF+xjcDuRNuN9L/5E9Xk9NNBVwIfETSNrJdXB+QdF+ybrekmQDJe0ue+1BwO14/xOGujAc3NLOSlm/iaI+IdgBJ4yLiJeAtg7RZB8yVNEdSDdnksKp3pWTwxIuAR3vKIuLmiGiMiNlJux9HxLXJ6lXAdcnn63LbFVtTq++oMrPSl+94U83Jcxz/Ajwu6XUGmTo2Irok3QA8BlQCKyJis6Trk/XLk6pXAmuShwzzcSvwoKQ/BH4NfDzPdgV35FZcd1WZWQnL98nxK5OPt0h6CpgM/CiPdquB1b3Klvdavge4Z4BtrAXW5izvAS7JJ+6RlmpJM218DVPH1xQ7FDOzghnyCLcR8ZNCBFIKmnxh3MzKgIdvHSYRQao17QvjZlbynDiGyZ62DvYd7PSFcTMreU4cw6Rn1j8Pbmhmpc6JY5ikfCuumZUJJ45hkmpJU1ddyemTPV2smZU2J45h0tTaxlkN46mo6GukFTOz0uHEMUyaPLihmZUJJ45h0Ha4ix37DvkZDjMrC04cw2Bra3a0FD/DYWblwIljGHhwQzMrJ04cwyDVkqayQrxpen2xQzEzKzgnjmGQaklz5rR6xlV5ulgzK31OHMOgqTXN2b4wbmZlwonjJHV1Z9i2p83XN8ysbDhxnKRX9h6kszucOMysbDhxnCQPbmhm5caJ4yT1DG7oZzjMrFwUNHFIWijpZUkpScv6WH+TpI3Ja5OkbknTJNVK+qWk/5C0WdJf5bS5RdKOnHaXFXIfBpNqSXPqpHFMqq0uZhhmZiNmyFPH5ktSJXA7cCnQDKyTtCoiXuipExG3Abcl9RcDn4+IvZIEfCAi0pKqgZ9J+teI+Pek6Tcj4muFin0omlrbfEeVmZWVQp5xLABSEbE1IjqAB4AlA9S/BlgJEFnppLw6eUUBYz0hEeHBDc2s7BQyccwCtucsNydlx5FUDywEHs4pq5S0EWgBHo+IZ3Ka3CDpeUkrJE3tZ5tLJa2XtL61tfVk96VPu/cfJn24y4nDzMpKIRNHXxNT9HfWsBh4OiL2HqkY0R0R84BGYIGk85JVdwBnA/OAXcDX+9pgRNwZEfMjYn5DQ8OJ7sOAUkfuqHLiMLPyUcjE0QyckbPcCOzsp+7VJN1UvUXEPmAt2TMSImJ3klQywF1ku8SKwoMbmlk5KmTiWAfMlTRHUg3Z5LCqdyVJk4GLgEdzyhokTUk+1wEfBF5KlmfmNL8S2FSwPRhEqiXNxHFVnDJxXLFCMDMbcf4LboUAAAtrSURBVAW7qyoiuiTdADwGVAIrImKzpOuT9cuTqlcCayKiLaf5TODe5M6sCuDBiPhBsu6rkuaR7fbaBny6UPswmFRLmrNOmUD2JjAzs/JQsMQBEBGrgdW9ypb3Wr4HuKdX2fPA+f1s85PDGuRJaGpN89tzC3P9xMxstPKT4ydof3snLQcO+/qGmZUdJ44T1HNHlROHmZUbJ44T5MENzaxcOXGcoFRrmprKCs6c5ulizay8OHGcoKaWNLNn1FNV6T+hmZUXH/VOkAc3NLNy5cRxAg53dfOKp4s1szLlxHECtr12kEz4jiozK09OHCfAgxuaWTlz4jgBPYMbnuVbcc2sDDlxnIBUS5pZU+qorynoiC1mZqOSE8cJSLWkOdvXN8ysTDlxDFEmE2x9Lc2bfX3DzMqUE8cQ7dh3iPbOjO+oMrOy5cQxRCnP+mdmZc6JY4g8uKGZlTsnjiFqak0ztb6a6RM8XayZlScnjiFKtaTdTWVmZa2giUPSQkkvS0pJWtbH+pskbUxemyR1S5omqVbSLyX9h6TNkv4qp800SY9L2pK8Ty3kPvTmwQ3NrNwVLHFIqgRuBxYB5wLXSDo3t05E3BYR8yJiHnAz8JOI2AscBj4QEe8E5gELJb0nabYMeDIi5gJPJssjYm9bB3vbOnzGYWZlrZBnHAuAVERsjYgO4AFgyQD1rwFWAkRWOimvTl6RLC8B7k0+3wtcMdyB9+fIGFVOHGZWxgqZOGYB23OWm5Oy40iqBxYCD+eUVUraCLQAj0fEM8mqUyNiF0Dyfko/21wqab2k9a2trSe9M5Azz7i7qsysjBUycaiPsuijDGAx8HTSTZWtGNGddGE1AgsknTeUL4+IOyNifkTMb2hoGErTfjW1pqmtrmDWlLph2Z6Z2VhUyMTRDJyRs9wI7Oyn7tUk3VS9RcQ+YC3ZMxKA3ZJmAiTvLcMRbD5SLWnOmjGBioq+cqKZWXkoZOJYB8yVNEdSDdnksKp3JUmTgYuAR3PKGiRNST7XAR8EXkpWrwKuSz5fl9uu0Dy4oZlZARNHRHQBNwCPAS8CD0bEZknXS7o+p+qVwJqIaMspmwk8Jel5sgno8Yj4QbLuVuBSSVuAS5PlgjvU0c2OfYd8fcPMyl5BJ5SIiNXA6l5ly3st3wPc06vseeD8fra5B7hkOOPMR5PHqDIzA/zkeN6cOMzMspw48tTUkqZCMHtGfbFDMTMrKieOPKVa05w5rZ5xVZXFDsXMrKicOPLkwQ3NzLKcOPLQ1Z1h22sHPbihmRlOHHnZ/vohOrozfobDzAwnjrwcGaPKicPMzIkjH0dGxXVXlZmZE0c+mlrTNEwcx+S66mKHYmZWdE4ceUi1pD3UiJlZwoljEBFBU0uas08ZX+xQzMxGBSeOQbQeOMyBw10+4zAzSzhxDOLoHVUTixyJmdno4MQxiFRrzzzj7qoyMwMnjkE1taSZMK6K0ybVFjsUM7NRwYljEKnWNGc3jEfydLFmZuDEMShPF2tmdiwnjgEcaO9k9/7DfmLczCxHQROHpIWSXpaUkrSsj/U3SdqYvDZJ6pY0TdIZkp6S9KKkzZJuzGlzi6QdOe0uK1T8Ta3ZadA9RpWZ2VEFm3NcUiVwO3Ap0Aysk7QqIl7oqRMRtwG3JfUXA5+PiL2SxgFfiIhnJU0ENkh6PKftNyPia4WKvYcHNzQzO14hzzgWAKmI2BoRHcADwJIB6l8DrASIiF0R8Wzy+QDwIjCrgLH2KdWSpqpCnDnN08WamfUoZOKYBWzPWW6mn4O/pHpgIfBwH+tmA+cDz+QU3yDpeUkrJE3tZ5tLJa2XtL61tfWEdmD29Ho+ekEj1ZW+FGRm1qOQR8S+7l+NfuouBp6OiL3HbECaQDaZfC4i9ifFdwBnA/OAXcDX+9pgRNwZEfMjYn5DQ8OJxM/VC87kf3/sHSfU1sysVBUycTQDZ+QsNwI7+6l7NUk3VQ9J1WSTxncj4vs95RGxOyK6IyID3EW2S8zMzEZIIRPHOmCupDmSasgmh1W9K0maDFwEPJpTJuAfgBcj4hu96s/MWbwS2FSA2M3MrB8Fu6sqIrok3QA8BlQCKyJis6Trk/XLk6pXAmsioi2n+YXAJ4FfSdqYlP15RKwGvippHtlur23Apwu1D2ZmdjxF9HfZoXTMnz8/1q9fX+wwzMzGFEkbImJ+73LfLmRmZkPixGFmZkPixGFmZkPixGFmZkNSFhfHJbUCr5xg8xnAa8MYzljgfS4P3ufycDL7/KaIOO4J6rJIHCdD0vq+7iooZd7n8uB9Lg+F2Gd3VZmZ2ZA4cZiZ2ZA4cQzuzmIHUATe5/LgfS4Pw77PvsZhZmZD4jMOMzMbEicOMzMbEieOAUhaKOllSSlJy4odT6FJOkPSU5JelLRZ0o3FjmkkSKqU9JykHxQ7lpEgaYqkhyS9lPy3fm+xYyo0SZ9P/k1vkrRSUm2xYxpuyYyoLZI25ZRNk/S4pC3Je58zpg6VE0c/JFUCtwOLgHOBaySdW9yoCq4L+EJEnAO8B/hsGewzwI1k57UvF38N/Cgi3gq8kxLfd0mzgD8D5kfEeWSnebi6uFEVxD1kp+DOtQx4MiLmAk8myyfNiaN/C4BURGyNiA7gAWBJkWMqqIjYFRHPJp8PkD2g9DlPfKmQ1AhcDtxd7FhGgqRJwPvITpRGRHRExL7iRjUiqoA6SVVAPf3PRjpmRcRPgb29ipcA9yaf7wWuGI7vcuLo3yxge85yMyV+EM0laTZwPvBMcSMpuG8BXwIyxQ5khJwFtAL/mHTP3S1pfLGDKqSI2AF8Dfg1sAt4IyLWFDeqEXNqROyC7A9D4JTh2KgTR//UR1lZ3LssaQLZ+d4/FxH7ix1PoUj6MNASERuKHcsIqgIuAO6IiPOBNoap+2K0Svr1lwBzgNOB8ZKuLW5UY5sTR/+agTNylhspwdPb3iRVk00a342I7xc7ngK7EPiIpG1kuyI/IOm+4oZUcM1Ac0T0nEk+RDaRlLIPAv8ZEa0R0Ql8H/gvRY5ppOyWNBMgeW8Zjo06cfRvHTBX0hxJNWQvpq0qckwFJUlk+75fjIhvFDueQouImyOiMSJmk/3v++OIKOlfohHxKrBd0luSokuAF4oY0kj4NfAeSfXJv/FLKPEbAnKsAq5LPl8HPDocG60ajo2UoojoknQD8BjZuzBWRMTmIodVaBcCnwR+JWljUvbnEbG6iDHZ8PtT4LvJD6KtwO8XOZ6CiohnJD0EPEv2zsHnKMGhRyStBN4PzJDUDPwlcCvwoKQ/JJtAPz4s3+UhR8zMbCjcVWVmZkPixGFmZkPixGFmZkPixGFmZkPixGFmZkPixGE2ykl6f7mM3GtjgxOHmZkNiROH2TCRdK2kX0raKOnbyTwfaUlfl/SspCclNSR150n6d0nPS3qkZ54ESW+W9ISk/0janJ1sfkLOHBrfTZ6ANisKJw6zYSDpHOC/AhdGxDygG/g9YDzwbERcAPyE7NO8AP8EfDki3gH8Kqf8u8DtEfFOsuMp7UrKzwc+R3ZumLPIPuVvVhQecsRseFwCvAtYl5wM1JEdUC4DfC+pcx/wfUmTgSkR8ZOk/F7gnyVNBGZFxCMAEdEOkGzvlxHRnCxvBGYDPyv8bpkdz4nDbHgIuDcibj6mUPqLXvUGGuNnoO6nwzmfu/H/u1ZE7qoyGx5PAh+TdAocmev5TWT/H/tYUucTwM8i4g3gdUm/nZR/EvhJMvdJs6Qrkm2Mk1Q/onthlgf/ajEbBhHxgqT/BqyRVAF0Ap8lO1HS2yRtAN4gex0EskNcL08SQ+4ItZ8Evi3pvyfbGJbRTM2Gk0fHNSsgSemImFDsOMyGk7uqzMxsSHzGYWZmQ+IzDjMzGxInDjMzGxInDjMzGxInDjMzGxInDjMzG5L/H8ogbZ1kDRVHAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -162,19 +169,32 @@ "# fit the model\n", "history = model.fit(X, y, epochs=training_steps, batch_size=batch_size, verbose=0, validation_split=0.3, callbacks=[es])\n", "\n", - "# plot learning curves\n", + "# summarize history for loss\n", "pyplot.title('Learning Curves')\n", "pyplot.xlabel('Epoch')\n", - "pyplot.ylabel('Cross Entropy')\n", + "pyplot.ylabel('Cross Entropy (loss)')\n", "pyplot.plot(history.history['loss'], label='train')\n", "pyplot.plot(history.history['val_loss'], label='val')\n", "pyplot.legend()\n", - "pyplot.show()" + "pyplot.show()\n", + "\n", + "\n", + "# summarize history for accuracy\n", + "import matplotlib.pyplot as plt\n", + "\n", + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.title('model accuracy')\n", + "plt.ylabel('accuracy')\n", + "plt.xlabel('epoch')\n", + "plt.legend(['train', 'test'], loc='upper left')\n", + "plt.show()\n", + "\n" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -182,15 +202,15 @@ "output_type": "stream", "text": [ "distribution of values:\n", - " equal to 1: 79.2%\n", - " equal to 0: 20.8%\n", + " equal to 1: 0.0%\n", + " equal to 0: 100.0%\n", "\n", "checking answers:\n", "none of the answers matches the output. Answer starts with: \n", - " '0 0 1 ...' -> matches [21]: 20.79% of values\n", - " '1 0 1 ...' -> matches [47]: 46.53% of values\n", - " '1 1 0 ...' -> matches [80]: 79.21% of values\n", - " '2 1 0 ...' -> matches [66]: 65.35% of values\n" + " '0 0 1 ...' -> matches [80]: 79.21% of values\n", + " '1 0 1 ...' -> matches [55]: 54.46% of values\n", + " '1 1 0 ...' -> matches [21]: 20.79% of values\n", + " '2 1 0 ...' -> matches [15]: 14.85% of values\n" ] } ], @@ -240,13 +260,6 @@ " print (\" '2 1 0 ...' -> matches [\"+ str(num_matches)+\"]: \"+ str(percentage) +\"% of values\")\n", " " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From fc50ae7a849f2323b12be7633b2a0326fecaa0ef Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Mon, 17 Aug 2020 13:15:21 +0200 Subject: [PATCH 10/13] Add files via upload notebook using tensorflow.keras --- ...yer_Perceptron_with_tensorflow.keras.ipynb | 4176 +++++++++++++++++ 1 file changed, 4176 insertions(+) create mode 100644 tensorflow_v2/notebooks/3_NeuralNetworks/Advanced_Multilayer_Perceptron_with_tensorflow.keras.ipynb diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Advanced_Multilayer_Perceptron_with_tensorflow.keras.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Advanced_Multilayer_Perceptron_with_tensorflow.keras.ipynb new file mode 100644 index 00000000..5bf974fa --- /dev/null +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Advanced_Multilayer_Perceptron_with_tensorflow.keras.ipynb @@ -0,0 +1,4176 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Based on: https://github.com/buomsoo-kim/Easy-deep-learning-with-Keras" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced MLP\n", + "- Advanced techniques for training neural networks\n", + " - Weight Initialization\n", + " - Nonlinearity (Activation function)\n", + " - Optimizers\n", + " - Batch Normalization\n", + " - Dropout (Regularization)\n", + " - Model Ensemble" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.utils import to_categorical" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Dataset\n", + "- MNIST dataset\n", + "- source: http://yann.lecun.com/exdb/mnist/" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAOYElEQVR4nO3dbYxc5XnG8euKbUwxJvHGseMQFxzjFAg0Jl0ZkBFQoVCCIgGKCLGiiFBapwlOQutKUFoVWtHKrRIiSimSKS6m4iWQgPAHmsSyECRqcFmoAROHN+MS4+0aswIDIfZ6fffDjqsFdp5dZs68eO//T1rNzLnnzLk1cPmcmeeceRwRAjD5faDTDQBoD8IOJEHYgSQIO5AEYQeSmNrOjR3i6XGoZrRzk0Aqv9Fb2ht7PFatqbDbPkfS9ZKmSPrXiFhVev6hmqGTfVYzmwRQsDE21K01fBhve4qkGyV9TtLxkpbZPr7R1wPQWs18Zl8i6fmI2BoReyXdJem8atoCULVmwn6kpF+Nery9tuwdbC+33We7b0h7mtgcgGY0E/axvgR4z7m3EbE6InojoneapjexOQDNaCbs2yXNH/X445J2NNcOgFZpJuyPSlpke4HtQyR9SdK6atoCULWGh94iYp/tFZJ+rJGhtzUR8XRlnQGoVFPj7BHxgKQHKuoFQAtxuiyQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJNDWLK7qfp5b/E0/5yOyWbv+ZPz+6bm34sP3FdY9auLNYP+wbLtb/97pD6tYe7/1+cd1dw28V6yffs7JYP+bPHinWO6GpsNveJukNScOS9kVEbxVNAaheFXv234+IXRW8DoAW4jM7kESzYQ9JP7H9mO3lYz3B9nLbfbb7hrSnyc0BaFSzh/FLI2KH7TmS1tv+ZUQ8PPoJEbFa0mpJOsI90eT2ADSoqT17ROyo3e6UdJ+kJVU0BaB6DYfd9gzbMw/cl3S2pM1VNQagWs0cxs+VdJ/tA69zR0T8qJKuJpkpxy0q1mP6tGJ9xxkfKtbfPqX+mHDPB8vjxT/9dHm8uZP+49czi/V/+OdzivWNJ95Rt/bi0NvFdVcNfLZY/9hPD75PpA2HPSK2Svp0hb0AaCGG3oAkCDuQBGEHkiDsQBKEHUiCS1wrMHzmZ4r16269sVj/5LT6l2JOZkMxXKz/9Q1fLdanvlUe/jr1nhV1azNf3ldcd/qu8tDcYX0bi/VuxJ4dSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JgnL0C05/ZUaw/9pv5xfonpw1U2U6lVvafUqxvfbP8U9S3LvxB3drr+8vj5HP/6T+L9VY6+C5gHR97diAJwg4kQdiBJAg7kARhB5Ig7EAShB1IwhHtG1E8wj1xss9q2/a6xeAlpxbru88p/9zzlCcPL9af+MYN77unA67d9bvF+qNnlMfRh197vViPU+v/APG2bxVX1YJlT5SfgPfYGBu0OwbHnMuaPTuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJME4exeYMvvDxfrwq4PF+ot31B8rf/r0NcV1l/z9N4v1OTd27ppyvH9NjbPbXmN7p+3No5b12F5v+7na7awqGwZQvYkcxt8q6d2z3l8paUNELJK0ofYYQBcbN+wR8bCkdx9Hnidpbe3+WknnV9wXgIo1+gXd3Ijol6Ta7Zx6T7S93Haf7b4h7WlwcwCa1fJv4yNidUT0RkTvNE1v9eYA1NFo2Adsz5Ok2u3O6loC0AqNhn2dpItr9y+WdH817QBolXF/N972nZLOlDTb9nZJV0taJelu25dKeknSha1scrIb3vVqU+sP7W58fvdPffkXxforN00pv8D+8hzr6B7jhj0iltUpcXYMcBDhdFkgCcIOJEHYgSQIO5AEYQeSYMrmSeC4K56tW7vkxPKgyb8dtaFYP+PCy4r1md9/pFhH92DPDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJMM4+CZSmTX7168cV131p3dvF+pXX3las/8UXLyjW478/WLc2/+9+XlxXbfyZ8wzYswNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEkzZnNzgH55arN9+9XeK9QVTD21425+6bUWxvujm/mJ939ZtDW97smpqymYAkwNhB5Ig7EAShB1IgrADSRB2IAnCDiTBODuKYuniYv2IVduL9Ts/8eOGt33sg39UrP/O39S/jl+Shp/b2vC2D1ZNjbPbXmN7p+3No5ZdY/tl25tqf+dW2TCA6k3kMP5WSeeMsfx7EbG49vdAtW0BqNq4YY+IhyUNtqEXAC3UzBd0K2w/WTvMn1XvSbaX2+6z3TekPU1sDkAzGg37TZIWSlosqV/Sd+s9MSJWR0RvRPRO0/QGNwegWQ2FPSIGImI4IvZLulnSkmrbAlC1hsJue96ohxdI2lzvuQC6w7jj7LbvlHSmpNmSBiRdXXu8WFJI2ibpaxFRvvhYjLNPRlPmzinWd1x0TN3axiuuL677gXH2RV9+8exi/fXTXi3WJ6PSOPu4k0RExLIxFt/SdFcA2orTZYEkCDuQBGEHkiDsQBKEHUiCS1zRMXdvL0/ZfJgPKdZ/HXuL9c9/8/L6r33fxuK6Byt+ShoAYQeyIOxAEoQdSIKwA0kQdiAJwg4kMe5Vb8ht/2nln5J+4cLylM0nLN5WtzbeOPp4bhg8qVg/7P6+pl5/smHPDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJMM4+ybn3hGL92W+Vx7pvXrq2WD/90PI15c3YE0PF+iODC8ovsH/cXzdPhT07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOPtBYOqCo4r1Fy75WN3aNRfdVVz3C4fvaqinKlw10FusP3T9KcX6rLXl353HO427Z7c93/aDtrfYftr2t2vLe2yvt/1c7XZW69sF0KiJHMbvk7QyIo6TdIqky2wfL+lKSRsiYpGkDbXHALrUuGGPiP6IeLx2/w1JWyQdKek8SQfOpVwr6fxWNQmgee/rCzrbR0s6SdJGSXMjol8a+QdB0pw66yy33We7b0h7musWQMMmHHbbh0v6oaTLI2L3RNeLiNUR0RsRvdM0vZEeAVRgQmG3PU0jQb89Iu6tLR6wPa9WnydpZ2taBFCFcYfebFvSLZK2RMR1o0rrJF0saVXt9v6WdDgJTD36t4v1139vXrF+0d/+qFj/kw/dW6y30sr+8vDYz/+l/vBaz63/VVx31n6G1qo0kXH2pZK+Iukp25tqy67SSMjvtn2ppJckXdiaFgFUYdywR8TPJI05ubuks6ptB0CrcLoskARhB5Ig7EAShB1IgrADSXCJ6wRNnffRurXBNTOK6359wUPF+rKZAw31VIUVL59WrD9+U3nK5tk/2Fys97zBWHm3YM8OJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0mkGWff+wflny3e+6eDxfpVxzxQt3b2b73VUE9VGRh+u27t9HUri+se+1e/LNZ7XiuPk+8vVtFN2LMDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBJpxtm3nV/+d+3ZE+9p2bZvfG1hsX79Q2cX6x6u9+O+I4699sW6tUUDG4vrDhermEzYswNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEo6I8hPs+ZJuk/RRjVy+vDoirrd9jaQ/lvRK7alXRUT9i74lHeGeONlM/Aq0ysbYoN0xOOaJGRM5qWafpJUR8bjtmZIes72+VvteRHynqkYBtM5E5mfvl9Rfu/+G7S2Sjmx1YwCq9b4+s9s+WtJJkg6cg7nC9pO219ieVWed5bb7bPcNaU9TzQJo3ITDbvtwST+UdHlE7JZ0k6SFkhZrZM//3bHWi4jVEdEbEb3TNL2ClgE0YkJhtz1NI0G/PSLulaSIGIiI4YjYL+lmSUta1yaAZo0bdtuWdIukLRFx3ajl80Y97QJJ5ek8AXTURL6NXyrpK5Kesr2ptuwqSctsL5YUkrZJ+lpLOgRQiYl8G/8zSWON2xXH1AF0F86gA5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJDHuT0lXujH7FUn/M2rRbEm72tbA+9OtvXVrXxK9NarK3o6KiI+MVWhr2N+zcbsvIno71kBBt/bWrX1J9NaodvXGYTyQBGEHkuh02Fd3ePsl3dpbt/Yl0Vuj2tJbRz+zA2ifTu/ZAbQJYQeS6EjYbZ9j+xnbz9u+shM91GN7m+2nbG+y3dfhXtbY3ml786hlPbbX236udjvmHHsd6u0a2y/X3rtNts/tUG/zbT9oe4vtp21/u7a8o+9doa+2vG9t/8xue4qkZyV9VtJ2SY9KWhYRv2hrI3XY3iapNyI6fgKG7dMlvSnptog4obbsHyUNRsSq2j+UsyLiii7p7RpJb3Z6Gu/abEXzRk8zLul8SV9VB9+7Ql9fVBvet07s2ZdIej4itkbEXkl3STqvA310vYh4WNLguxafJ2lt7f5ajfzP0nZ1eusKEdEfEY/X7r8h6cA04x197wp9tUUnwn6kpF+Nerxd3TXfe0j6ie3HbC/vdDNjmBsR/dLI/zyS5nS4n3cbdxrvdnrXNONd8941Mv15szoR9rGmkuqm8b+lEfEZSZ+TdFntcBUTM6FpvNtljGnGu0Kj0583qxNh3y5p/qjHH5e0owN9jCkidtRud0q6T903FfXAgRl0a7c7O9zP/+umabzHmmZcXfDedXL6806E/VFJi2wvsH2IpC9JWteBPt7D9ozaFyeyPUPS2eq+qajXSbq4dv9iSfd3sJd36JZpvOtNM64Ov3cdn/48Itr+J+lcjXwj/4Kkv+xED3X6+oSkJ2p/T3e6N0l3auSwbkgjR0SXSvqwpA2Snqvd9nRRb/8u6SlJT2okWPM61NtpGvlo+KSkTbW/czv93hX6asv7xumyQBKcQQckQdiBJAg7kARhB5Ig7EAShB1IgrADSfwfs4RxaLJFjqkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label: 5\n" + ] + } + ], + "source": [ + "plt.imshow(X_train[0]) # show first number in the dataset\n", + "plt.show()\n", + "print('Label: ', y_train[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANh0lEQVR4nO3df6zddX3H8dfL/sJeYFKwtSuVKqKxOsHlCppuSw3DAYYUo2w0GekSZskGCSxmG2ExkmxxjIiETWdSR2clCFOBQLRzksaNkLHKhZRSKFuRdVh71wvUrUXgtqXv/XG/LJdyz+dezvd7zve07+cjuTnnfN/ne77vfHtf/X7v+XzP+TgiBODY95a2GwDQH4QdSIKwA0kQdiAJwg4kMbufG5vreXGchvq5SSCVV/QLHYhxT1WrFXbb50u6RdIsSX8XETeUnn+chnSOz62zSQAFm2NTx1rXp/G2Z0n6qqQLJC2XtNr28m5fD0Bv1fmb/WxJT0fEMxFxQNKdklY10xaAptUJ+xJJP530eFe17HVsr7U9YnvkoMZrbA5AHXXCPtWbAG+49jYi1kXEcEQMz9G8GpsDUEedsO+StHTS41Ml7a7XDoBeqRP2hyWdYftdtudKulTSfc20BaBpXQ+9RcQh21dJ+idNDL2tj4gnGusMQKNqjbNHxEZJGxvqBUAPcbkskARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IIlaUzbb3ilpv6RXJR2KiOEmmgLQvFphr3w8Ip5v4HUA9BCn8UASdcMekn5o+xHba6d6gu21tkdsjxzUeM3NAehW3dP4FRGx2/ZCSffbfioiHpj8hIhYJ2mdJJ3oBVFzewC6VOvIHhG7q9sxSfdIOruJpgA0r+uw2x6yfcJr9yV9QtK2phoD0Kw6p/GLJN1j+7XX+VZE/KCRrgA0ruuwR8Qzks5ssBcAPcTQG5AEYQeSIOxAEoQdSIKwA0k08UGYFF747Mc61t552dPFdZ8aW1SsHxifU6wvuaNcn7/rxY61w1ueLK6LPDiyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASjLPP0J/88bc61j499PPyyqfX3PjKcnnnoZc61m557uM1N370+vHYaR1rQzf9UnHd2Zseabqd1nFkB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkHNG/SVpO9II4x+f2bXtN+sVnzulYe/5D5f8zT9pe3sc/f7+L9bkf+p9i/cYP3t2xdt5bXy6u+/2Xji/WPzm/82fl63o5DhTrm8eHivWVxx3setvv+f4Vxfp71z7c9Wu3aXNs0r7YO+UvFEd2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCz7PP0NB3Nxdq9V77xHqr62/esbJj7S9WLCtv+1/K33l/48r3dNHRzMx++XCxPrR1tFg/+YG7ivVfmdv5+/bn7yx/F/+xaNoju+31tsdsb5u0bIHt+23vqG5P6m2bAOqayWn8NySdf8SyayVtiogzJG2qHgMYYNOGPSIekLT3iMWrJG2o7m+QdHHDfQFoWLdv0C2KiFFJqm4Xdnqi7bW2R2yPHNR4l5sDUFfP342PiHURMRwRw3M0r9ebA9BBt2HfY3uxJFW3Y821BKAXug37fZLWVPfXSLq3mXYA9Mq04+y279DEN5efYnuXpC9IukHSt21fLulZSZf0skmUHfrvPR1rQ3d1rknSq9O89tB3X+iio2bs+f2PFesfmFv+9f3S3vd1rC37+2eK6x4qVo9O04Y9IlZ3KB2d30IBJMXlskAShB1IgrADSRB2IAnCDiTBR1zRmtmnLS3Wv3LdV4r1OZ5VrH/nlt/sWDt59KHiuscijuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATj7GjNU3+0pFj/yLzyVNZPHChPR73gyZfedE/HMo7sQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+zoqfFPfqRj7dHP3DzN2uUZhP7g6quL9bf+64+nef1cOLIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKMs6Onnr2g8/HkeJfH0Vf/53nF+vwfPFasR7Gaz7RHdtvrbY/Z3jZp2fW2f2Z7S/VzYW/bBFDXTE7jvyHp/CmW3xwRZ1U/G5ttC0DTpg17RDwgaW8fegHQQ3XeoLvK9tbqNP+kTk+yvdb2iO2RgxqvsTkAdXQb9q9JOl3SWZJGJd3U6YkRsS4ihiNieM40H2wA0DtdhT0i9kTEqxFxWNLXJZ3dbFsAmtZV2G0vnvTwU5K2dXougMEw7Ti77TskrZR0iu1dkr4gaaXtszQxlLlT0hU97BED7C0nnFCsX/brD3as7Tv8SnHdsS++u1ifN/5wsY7XmzbsEbF6isW39qAXAD3E5bJAEoQdSIKwA0kQdiAJwg4kwUdcUcuO6z9QrH/vlL/tWFu149PFdedtZGitSRzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJxtlR9L+/+9Fifevv/HWx/pNDBzvWXvyrU4vrztNosY43hyM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOHtys5f8crF+zef/oVif5/Kv0KWPXdax9vZ/5PPq/cSRHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJz9GOfZ5X/iM7+3q1i/5PgXivXb9y8s1hd9vvPx5HBxTTRt2iO77aW2f2R7u+0nbF9dLV9g+37bO6rbk3rfLoBuzeQ0/pCkz0XE+yV9VNKVtpdLulbSpog4Q9Km6jGAATVt2CNiNCIere7vl7Rd0hJJqyRtqJ62QdLFvWoSQH1v6g0628skfVjSZkmLImJUmvgPQdKUf7zZXmt7xPbIQY3X6xZA12YcdtvHS7pL0jURsW+m60XEuogYjojhOZrXTY8AGjCjsNueo4mg3x4Rd1eL99heXNUXSxrrTYsAmjDt0JttS7pV0vaI+PKk0n2S1ki6obq9tycdop4z31cs//nC22q9/Fe/eEmx/rbHHqr1+mjOTMbZV0i6TNLjtrdUy67TRMi/bftySc9KKv+rA2jVtGGPiAcluUP53GbbAdArXC4LJEHYgSQIO5AEYQeSIOxAEnzE9Rgwa/l7O9bW3lnv8ofl668s1pfd9m+1Xh/9w5EdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JgnP0Y8NQfdv5i34vmz/hLhaZ06j8fKD8hotbro384sgNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoyzHwVeuejsYn3TRTcVqvObbQZHLY7sQBKEHUiCsANJEHYgCcIOJEHYgSQIO5DETOZnXyrpm5LeIemwpHURcYvt6yV9VtJz1VOvi4iNvWo0s90rZhXr75zd/Vj67fsXFutz9pU/z86n2Y8eM7mo5pCkz0XEo7ZPkPSI7fur2s0R8aXetQegKTOZn31U0mh1f7/t7ZKW9LoxAM16U3+z214m6cOSNleLrrK91fZ621N+N5LttbZHbI8c1HitZgF0b8Zht328pLskXRMR+yR9TdLpks7SxJF/ygu0I2JdRAxHxPAczWugZQDdmFHYbc/RRNBvj4i7JSki9kTEqxFxWNLXJZU/rQGgVdOG3bYl3Sppe0R8edLyxZOe9ilJ25pvD0BTZvJu/ApJl0l63PaWatl1klbbPksToy87JV3Rkw5Ry1++sLxYf+i3lhXrMfp4g92gTTN5N/5BSZ6ixJg6cBThCjogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Trl7ohfEOT63b9sDstkcm7Qv9k41VM6RHciCsANJEHYgCcIOJEHYgSQIO5AEYQeS6Os4u+3nJP3XpEWnSHq+bw28OYPa26D2JdFbt5rs7bSIePtUhb6G/Q0bt0ciYri1BgoGtbdB7Uuit271qzdO44EkCDuQRNthX9fy9ksGtbdB7Uuit271pbdW/2YH0D9tH9kB9AlhB5JoJey2z7f977aftn1tGz10Ynun7cdtb7E90nIv622P2d42adkC2/fb3lHdTjnHXku9XW/7Z9W+22L7wpZ6W2r7R7a3237C9tXV8lb3XaGvvuy3vv/NbnuWpP+QdJ6kXZIelrQ6Ip7sayMd2N4paTgiWr8Aw/ZvSHpR0jcj4oPVshsl7Y2IG6r/KE+KiD8dkN6ul/Ri29N4V7MVLZ48zbikiyX9nlrcd4W+flt92G9tHNnPlvR0RDwTEQck3SlpVQt9DLyIeEDS3iMWr5K0obq/QRO/LH3XobeBEBGjEfFodX+/pNemGW913xX66os2wr5E0k8nPd6lwZrvPST90PYjtte23cwUFkXEqDTxyyNpYcv9HGnaabz76Yhpxgdm33Uz/XldbYR9qu/HGqTxvxUR8auSLpB0ZXW6ipmZ0TTe/TLFNOMDodvpz+tqI+y7JC2d9PhUSbtb6GNKEbG7uh2TdI8GbyrqPa/NoFvdjrXcz/8bpGm8p5pmXAOw79qc/ryNsD8s6Qzb77I9V9Klku5roY83sD1UvXEi20OSPqHBm4r6PklrqvtrJN3bYi+vMyjTeHeaZlwt77vWpz+PiL7/SLpQE+/I/0TSn7XRQ4e+3i3psernibZ7k3SHJk7rDmrijOhySSdL2iRpR3W7YIB6u03S45K2aiJYi1vq7dc08afhVklbqp8L2953hb76st+4XBZIgivogCQIO5AEYQeSIOxAEoQdSIKwA0kQdiCJ/wNGNvRIqiy+UgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Label: 7\n" + ] + } + ], + "source": [ + "plt.imshow(X_test[0]) # show first number in the dataset\n", + "plt.show()\n", + "print('Label: ', y_test[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# reshaping X data: (n, 28, 28) => (n, 784)\n", + "X_train = X_train.reshape((X_train.shape[0], -1))\n", + "X_test = X_test.reshape((X_test.shape[0], -1))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# use only 33% of training data to expedite the training process\n", + "X_train, _ , y_train, _ = train_test_split(X_train, y_train, test_size = 0.67, random_state = 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# converting y data into categorical (one-hot encoding)\n", + "y_train = to_categorical(y_train)\n", + "y_test = to_categorical(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(19800, 784) (10000, 784) (19800, 10) (10000, 10)\n" + ] + } + ], + "source": [ + "print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "from sklearn.utils.multiclass import unique_labels\n", + "import numpy as np\n", + "def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues):\n", + " \"\"\"\n", + " This function prints and draws the confusion matrix.\n", + " Normalization can be applied by setting normalize = True.\n", + " \"\"\"\n", + " if not isinstance(y_pred[0], (np.int64, np.uint8)):\n", + " _y_pred = np.eye(y_pred.shape[1])[y_pred.argmax(1)]\n", + " _y_pred = [np.argmax(x) for x in _y_pred]\n", + " _y_pred = np.rint(_y_pred)\n", + " _y_pred = np.array([int(x) for x in _y_pred])\n", + " else:\n", + " _y_pred = y_pred.copy()\n", + " if not isinstance(y_pred[0], (np.int64, np.uint8)):\n", + " _y_true = [np.argmax(x) for x in y_true]\n", + " _y_true = np.rint(_y_true)\n", + " _y_true = np.array([int(x) for x in _y_true])\n", + " else:\n", + " _y_true = y_true.copy()\n", + " \n", + " if not title:\n", + " if normalize:\n", + " title = 'Normalized Confusion Matrix'\n", + " else:\n", + " title = 'Confusion Matrix, without normalization.'\n", + "\n", + " cm = confusion_matrix(_y_true, _y_pred)\n", + " classes = classes[unique_labels(_y_true, _y_pred)]\n", + " if normalize:\n", + " cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", + " print('Normalized Confusion Matrix')\n", + " else:\n", + " print('Confusion Matrix, without normalization.')\n", + "\n", + " print(cm)\n", + "\n", + " fig, ax = plt.subplots()\n", + " im = ax.imshow(cm, interpolation='nearest', cmap=cmap)\n", + " ax.figure.colorbar(im, ax=ax)\n", + " ax.set(xticks=np.arange(cm.shape[1]),\n", + " yticks=np.arange(cm.shape[0]),\n", + " xticklabels=classes, yticklabels=classes,\n", + " title=title,\n", + " ylabel='True Label',\n", + " xlabel='Predicted Label')\n", + "\n", + " plt.setp(ax.get_xticklabels(), rotation=45, ha=\"right\",\n", + " rotation_mode=\"anchor\")\n", + "\n", + " fmt = '.2f' if normalize else 'd'\n", + " thresh = cm.max() / 2.\n", + " for i in range(cm.shape[0]):\n", + " for j in range(cm.shape[1]):\n", + " ax.text(j, i, format(cm[i, j], fmt),\n", + " ha=\"center\", va=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + " fig.tight_layout()\n", + " return ax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Basic MLP model\n", + "- Naive MLP model without any alterations" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Activation, Dense\n", + "from tensorflow.keras import optimizers" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model.add(Dense(50, input_shape = (784, )))\n", + "model.add(Activation('sigmoid'))\n", + "model.add(Dense(50))\n", + "model.add(Activation('sigmoid'))\n", + "model.add(Dense(50))\n", + "model.add(Activation('sigmoid'))\n", + "model.add(Dense(50))\n", + "model.add(Activation('sigmoid'))\n", + "model.add(Dense(10))\n", + "model.add(Activation('softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sgd = optimizers.SGD(lr = 0.001)\n", + "model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "55/55 [==============================] - 0s 9ms/step - loss: 2.4289 - accuracy: 0.0875 - val_loss: 2.4191 - val_accuracy: 0.0921\n", + "Epoch 2/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.4051 - accuracy: 0.0875 - val_loss: 2.3983 - val_accuracy: 0.0921\n", + "Epoch 3/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3866 - accuracy: 0.0875 - val_loss: 2.3815 - val_accuracy: 0.0921\n", + "Epoch 4/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3716 - accuracy: 0.0875 - val_loss: 2.3679 - val_accuracy: 0.0921\n", + "Epoch 5/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3594 - accuracy: 0.0875 - val_loss: 2.3570 - val_accuracy: 0.0921\n", + "Epoch 6/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3496 - accuracy: 0.0875 - val_loss: 2.3481 - val_accuracy: 0.0921\n", + "Epoch 7/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3416 - accuracy: 0.0875 - val_loss: 2.3409 - val_accuracy: 0.0921\n", + "Epoch 8/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3351 - accuracy: 0.0875 - val_loss: 2.3348 - val_accuracy: 0.0921\n", + "Epoch 9/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3297 - accuracy: 0.0874 - val_loss: 2.3298 - val_accuracy: 0.0921\n", + "Epoch 10/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3252 - accuracy: 0.0877 - val_loss: 2.3258 - val_accuracy: 0.0956\n", + "Epoch 11/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3215 - accuracy: 0.0932 - val_loss: 2.3223 - val_accuracy: 0.0896\n", + "Epoch 12/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3184 - accuracy: 0.0931 - val_loss: 2.3194 - val_accuracy: 0.0870\n", + "Epoch 13/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3158 - accuracy: 0.0999 - val_loss: 2.3169 - val_accuracy: 0.0928\n", + "Epoch 14/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3136 - accuracy: 0.1014 - val_loss: 2.3148 - val_accuracy: 0.0929\n", + "Epoch 15/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3117 - accuracy: 0.1014 - val_loss: 2.3132 - val_accuracy: 0.0929\n", + "Epoch 16/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3103 - accuracy: 0.1014 - val_loss: 2.3117 - val_accuracy: 0.0929\n", + "Epoch 17/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3090 - accuracy: 0.1014 - val_loss: 2.3105 - val_accuracy: 0.0929\n", + "Epoch 18/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3079 - accuracy: 0.1014 - val_loss: 2.3094 - val_accuracy: 0.0929\n", + "Epoch 19/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3069 - accuracy: 0.1014 - val_loss: 2.3085 - val_accuracy: 0.0929\n", + "Epoch 20/100\n", + "55/55 [==============================] - 1s 12ms/step - loss: 2.3061 - accuracy: 0.1014 - val_loss: 2.3077 - val_accuracy: 0.0929\n", + "Epoch 21/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3054 - accuracy: 0.1014 - val_loss: 2.3070 - val_accuracy: 0.0934\n", + "Epoch 22/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3048 - accuracy: 0.1065 - val_loss: 2.3064 - val_accuracy: 0.1170\n", + "Epoch 23/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3043 - accuracy: 0.1478 - val_loss: 2.3060 - val_accuracy: 0.1414\n", + "Epoch 24/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3039 - accuracy: 0.1336 - val_loss: 2.3055 - val_accuracy: 0.1212\n", + "Epoch 25/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3035 - accuracy: 0.1190 - val_loss: 2.3052 - val_accuracy: 0.1125\n", + "Epoch 26/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3032 - accuracy: 0.1146 - val_loss: 2.3048 - val_accuracy: 0.1118\n", + "Epoch 27/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3029 - accuracy: 0.1143 - val_loss: 2.3045 - val_accuracy: 0.1118\n", + "Epoch 28/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3027 - accuracy: 0.1143 - val_loss: 2.3043 - val_accuracy: 0.1118\n", + "Epoch 29/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3025 - accuracy: 0.1143 - val_loss: 2.3041 - val_accuracy: 0.1118\n", + "Epoch 30/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3023 - accuracy: 0.1143 - val_loss: 2.3039 - val_accuracy: 0.1118\n", + "Epoch 31/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3021 - accuracy: 0.1143 - val_loss: 2.3038 - val_accuracy: 0.1118\n", + "Epoch 32/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3020 - accuracy: 0.1143 - val_loss: 2.3036 - val_accuracy: 0.1118\n", + "Epoch 33/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3019 - accuracy: 0.1143 - val_loss: 2.3035 - val_accuracy: 0.1118\n", + "Epoch 34/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3018 - accuracy: 0.1143 - val_loss: 2.3034 - val_accuracy: 0.1118\n", + "Epoch 35/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3016 - accuracy: 0.1143 - val_loss: 2.3033 - val_accuracy: 0.1118\n", + "Epoch 36/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3016 - accuracy: 0.1143 - val_loss: 2.3032 - val_accuracy: 0.1118\n", + "Epoch 37/100\n", + "55/55 [==============================] - 0s 9ms/step - loss: 2.3015 - accuracy: 0.1143 - val_loss: 2.3031 - val_accuracy: 0.1118\n", + "Epoch 38/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3014 - accuracy: 0.1143 - val_loss: 2.3030 - val_accuracy: 0.1118\n", + "Epoch 39/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3013 - accuracy: 0.1143 - val_loss: 2.3029 - val_accuracy: 0.1118\n", + "Epoch 40/100\n", + "55/55 [==============================] - 1s 9ms/step - loss: 2.3013 - accuracy: 0.1143 - val_loss: 2.3028 - val_accuracy: 0.1118\n", + "Epoch 41/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3012 - accuracy: 0.1143 - val_loss: 2.3027 - val_accuracy: 0.1118\n", + "Epoch 42/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3011 - accuracy: 0.1143 - val_loss: 2.3027 - val_accuracy: 0.1118\n", + "Epoch 43/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3011 - accuracy: 0.1143 - val_loss: 2.3026 - val_accuracy: 0.1118\n", + "Epoch 44/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3010 - accuracy: 0.1143 - val_loss: 2.3026 - val_accuracy: 0.1118\n", + "Epoch 45/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3010 - accuracy: 0.1143 - val_loss: 2.3026 - val_accuracy: 0.1118\n", + "Epoch 46/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3009 - accuracy: 0.1143 - val_loss: 2.3025 - val_accuracy: 0.1118\n", + "Epoch 47/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3009 - accuracy: 0.1143 - val_loss: 2.3025 - val_accuracy: 0.1118\n", + "Epoch 48/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3009 - accuracy: 0.1143 - val_loss: 2.3024 - val_accuracy: 0.1118\n", + "Epoch 49/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3008 - accuracy: 0.1143 - val_loss: 2.3024 - val_accuracy: 0.1118\n", + "Epoch 50/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3008 - accuracy: 0.1143 - val_loss: 2.3024 - val_accuracy: 0.1118\n", + "Epoch 51/100\n", + "55/55 [==============================] - 1s 9ms/step - loss: 2.3007 - accuracy: 0.1143 - val_loss: 2.3023 - val_accuracy: 0.1118\n", + "Epoch 52/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3007 - accuracy: 0.1143 - val_loss: 2.3023 - val_accuracy: 0.1118\n", + "Epoch 53/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3007 - accuracy: 0.1143 - val_loss: 2.3022 - val_accuracy: 0.1118\n", + "Epoch 54/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.3006 - accuracy: 0.1143 - val_loss: 2.3022 - val_accuracy: 0.1118\n", + "Epoch 55/100\n", + "55/55 [==============================] - 1s 11ms/step - loss: 2.3006 - accuracy: 0.1143 - val_loss: 2.3021 - val_accuracy: 0.1118\n", + "Epoch 56/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3005 - accuracy: 0.1143 - val_loss: 2.3021 - val_accuracy: 0.1118\n", + "Epoch 57/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3005 - accuracy: 0.1143 - val_loss: 2.3021 - val_accuracy: 0.1118\n", + "Epoch 58/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3005 - accuracy: 0.1143 - val_loss: 2.3020 - val_accuracy: 0.1118\n", + "Epoch 59/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3004 - accuracy: 0.1143 - val_loss: 2.3020 - val_accuracy: 0.1118\n", + "Epoch 60/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.3004 - accuracy: 0.1143 - val_loss: 2.3019 - val_accuracy: 0.1118\n", + "Epoch 61/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3003 - accuracy: 0.1143 - val_loss: 2.3019 - val_accuracy: 0.1118\n", + "Epoch 62/100\n", + "55/55 [==============================] - 0s 4ms/step - loss: 2.3003 - accuracy: 0.1143 - val_loss: 2.3019 - val_accuracy: 0.1118\n", + "Epoch 63/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.3003 - accuracy: 0.1143 - val_loss: 2.3018 - val_accuracy: 0.1118\n", + "Epoch 64/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3002 - accuracy: 0.1143 - val_loss: 2.3018 - val_accuracy: 0.1118\n", + "Epoch 65/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3002 - accuracy: 0.1143 - val_loss: 2.3018 - val_accuracy: 0.1118\n", + "Epoch 66/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3002 - accuracy: 0.1143 - val_loss: 2.3017 - val_accuracy: 0.1118\n", + "Epoch 67/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3002 - accuracy: 0.1143 - val_loss: 2.3017 - val_accuracy: 0.1118\n", + "Epoch 68/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3001 - accuracy: 0.1143 - val_loss: 2.3016 - val_accuracy: 0.1118\n", + "Epoch 69/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3001 - accuracy: 0.1143 - val_loss: 2.3016 - val_accuracy: 0.1118\n", + "Epoch 70/100\n", + "55/55 [==============================] - 1s 9ms/step - loss: 2.3000 - accuracy: 0.1143 - val_loss: 2.3016 - val_accuracy: 0.1118\n", + "Epoch 71/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3000 - accuracy: 0.1143 - val_loss: 2.3016 - val_accuracy: 0.1118\n", + "Epoch 72/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.3000 - accuracy: 0.1143 - val_loss: 2.3015 - val_accuracy: 0.1118\n", + "Epoch 73/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.2999 - accuracy: 0.1143 - val_loss: 2.3015 - val_accuracy: 0.1118\n", + "Epoch 74/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.2999 - accuracy: 0.1143 - val_loss: 2.3015 - val_accuracy: 0.1118\n", + "Epoch 75/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.2999 - accuracy: 0.1143 - val_loss: 2.3014 - val_accuracy: 0.1118\n", + "Epoch 76/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.2998 - accuracy: 0.1143 - val_loss: 2.3014 - val_accuracy: 0.1118\n", + "Epoch 77/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2998 - accuracy: 0.1143 - val_loss: 2.3013 - val_accuracy: 0.1118\n", + "Epoch 78/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.2998 - accuracy: 0.1143 - val_loss: 2.3013 - val_accuracy: 0.1118\n", + "Epoch 79/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2998 - accuracy: 0.1143 - val_loss: 2.3012 - val_accuracy: 0.1118\n", + "Epoch 80/100\n", + "55/55 [==============================] - 0s 7ms/step - loss: 2.2997 - accuracy: 0.1143 - val_loss: 2.3012 - val_accuracy: 0.1118\n", + "Epoch 81/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2997 - accuracy: 0.1143 - val_loss: 2.3012 - val_accuracy: 0.1118\n", + "Epoch 82/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.2997 - accuracy: 0.1143 - val_loss: 2.3011 - val_accuracy: 0.1118\n", + "Epoch 83/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.2996 - accuracy: 0.1143 - val_loss: 2.3011 - val_accuracy: 0.1118\n", + "Epoch 84/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2996 - accuracy: 0.1143 - val_loss: 2.3011 - val_accuracy: 0.1118\n", + "Epoch 85/100\n", + "55/55 [==============================] - 0s 6ms/step - loss: 2.2996 - accuracy: 0.1143 - val_loss: 2.3011 - val_accuracy: 0.1118\n", + "Epoch 86/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2995 - accuracy: 0.1143 - val_loss: 2.3011 - val_accuracy: 0.1118\n", + "Epoch 87/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2995 - accuracy: 0.1143 - val_loss: 2.3010 - val_accuracy: 0.1118\n", + "Epoch 88/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2995 - accuracy: 0.1143 - val_loss: 2.3010 - val_accuracy: 0.1118\n", + "Epoch 89/100\n", + "55/55 [==============================] - 0s 4ms/step - loss: 2.2994 - accuracy: 0.1143 - val_loss: 2.3009 - val_accuracy: 0.1118\n", + "Epoch 90/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2994 - accuracy: 0.1143 - val_loss: 2.3009 - val_accuracy: 0.1118\n", + "Epoch 91/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2994 - accuracy: 0.1143 - val_loss: 2.3009 - val_accuracy: 0.1118\n", + "Epoch 92/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2993 - accuracy: 0.1143 - val_loss: 2.3008 - val_accuracy: 0.1118\n", + "Epoch 93/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2993 - accuracy: 0.1143 - val_loss: 2.3008 - val_accuracy: 0.1118\n", + "Epoch 94/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2993 - accuracy: 0.1143 - val_loss: 2.3008 - val_accuracy: 0.1118\n", + "Epoch 95/100\n", + "55/55 [==============================] - 0s 4ms/step - loss: 2.2992 - accuracy: 0.1143 - val_loss: 2.3007 - val_accuracy: 0.1118\n", + "Epoch 96/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2992 - accuracy: 0.1143 - val_loss: 2.3007 - val_accuracy: 0.1118\n", + "Epoch 97/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2992 - accuracy: 0.1143 - val_loss: 2.3007 - val_accuracy: 0.1118\n", + "Epoch 98/100\n", + "55/55 [==============================] - 0s 5ms/step - loss: 2.2991 - accuracy: 0.1143 - val_loss: 2.3006 - val_accuracy: 0.1118\n", + "Epoch 99/100\n", + "55/55 [==============================] - 0s 4ms/step - loss: 2.2991 - accuracy: 0.1143 - val_loss: 2.3006 - val_accuracy: 0.1118\n", + "Epoch 100/100\n", + "55/55 [==============================] - 0s 8ms/step - loss: 2.2991 - accuracy: 0.1143 - val_loss: 2.3006 - val_accuracy: 0.1118\n" + ] + } + ], + "source": [ + "history = model.fit(X_train, y_train, batch_size = 256, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD6CAYAAACvZ4z8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3Rc5Xnv8e8zo9HdsmVbNsYy2CQO+IKNjTBuCXfIMSQNhHCoIWlK04RAQglp09Y0XSGkp6s5LYtFchbECwhpTkuhXpCAm+NAQopDOAeoDRjHV2zAxsIXyVfJ0kgaaZ7zxx7JY2kkjWyNRt7z+6ylpdnXebcEP7969jvvNndHRETCK5LvBoiISG4p6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOSyCnozW2JmW81su5kty7D9HDN71czazeybvbbtMLPfmdk6M1s7XA0XEZHsFA22g5lFgYeAq4F6YI2ZrXT3TWm7HQTuAq7v5zSXu/v+bBs1ceJEnz59era7i4gUvDfeeGO/u9dk2jZo0AOLgO3u/h6AmT0FXAf0BL27NwANZvbJYWgv06dPZ+1adf5FRLJlZjv725ZN6WYqsCttuT61LlsO/NLM3jCz24ZwnIiIDINsevSWYd1Q5k24yN13m9kk4FdmtsXdX+7zJsE/ArcBnHHGGUM4vYiIDCSbHn09MC1tuRbYne0buPvu1PcG4GcEpaBM+z3i7nXuXldTk7HMJCIiJyCbHv0aYKaZzQA+BJYCt2RzcjOrACLu3px6/QnguyfS0EQiQX19PW1tbSdyuPRSWlpKbW0tsVgs300RkRwbNOjdvdPM7gReAKLA4+6+0cxuT21fbmanAWuBKiBpZncDs4GJwM/MrPu9/s3dnz+RhtbX1zNmzBimT59O6nxygtydAwcOUF9fz4wZM/LdHBHJsWx69Lj7KmBVr3XL017vJSjp9NYEzD+ZBnZra2tTyA8TM2PChAk0NjbmuykiMgJOqU/GKuSHj36WIoXjlAp6yV4y6Rxs6UAPlhERBX2WDh8+zMMPPzzk46699loOHz484D7f/va3efHFF0+0aRk1t3dSf6iVtkTXsJ5XRE49Cvos9Rf0XV0DB+mqVasYN27cgPt897vf5aqrrjqp9vXW3ZPvTKpHL1LoFPRZWrZsGe+++y7nnXceF1xwAZdffjm33HIL5557LgDXX389559/PnPmzOGRRx7pOW769Ons37+fHTt2MGvWLL785S8zZ84cPvGJTxCPxwG49dZbefrpp3v2v/fee1m4cCHnnnsuW7ZsAaCxsZGrr76ahQsX8pWvfIUzzzyT/fv7nz6oO9+7FPQiBS+rUTejzX3/sZFNu5uG9ZyzT6/i3j+Y0+/2733ve2zYsIF169axevVqPvnJT7Jhw4ae4YmPP/4448ePJx6Pc8EFF/DZz36WCRMmHHeObdu28eSTT/Loo49y00038cwzz/D5z3++z3tNnDiRN998k4cffpj777+fxx57jPvuu48rrriCe+65h+eff/64f0wy6e7RK+hFRD36E7Ro0aLjxqD/4Ac/YP78+SxevJhdu3axbdu2PsfMmDGD8847D4Dzzz+fHTt2ZDz3DTfc0GefV155haVLlwKwZMkSqqurB2xfd7x36WasSME7JXv0A/W8R0pFRUXP69WrV/Piiy/y6quvUl5ezmWXXZbxE7wlJSU9r6PRaE/ppr/9otEonZ2dAEMePeMq3YhIinr0WRozZgzNzc0Ztx05coTq6mrKy8vZsmULr7322rC//8c//nFWrFgBwC9/+UsOHTo04P6OSjciEjgle/T5MGHCBC666CLmzp1LWVkZkydP7tm2ZMkSli9fzrx58zj77LNZvHjxsL//vffey80338y///u/c+mllzJlyhTGjBnT7/7q0YtINxuNH6ipq6vz3g8e2bx5M7NmzcpTi/Kvvb2daDRKUVERr776KnfccQfr1q3rd/+9R9poaG6jsqSIs2oqM+5T6D9TkTAxszfcvS7TNvXoTxEffPABN910E8lkkuLiYh599NEB91fpRkS6KehPETNnzuStt97Kev+e0s0o/ItNREaWbsaGlGr0ItJNQR9S6aWb0XgfRkRGjoI+pNKzXb16kcKmoA+p44JePXqRgqagz5HKymBI4+7du7nxxhsz7nPZZZfRexhpbw8++CCtra09y9lMewzHSjegHr1IoVPQ59jpp5/eMzPliegd9NlMewwq3YjIMQr6LP31X//1cfPRf+c73+G+++7jyiuv7JlS+Lnnnutz3I4dO5g7dy4A8XicpUuXMm/ePP7wD//wuLlu7rjjDurq6pgzZw733nsvEEyUtnv3bi6//HIuv/xy4Ni0xwAPPPAAc+fOZe7cuTz44IM97zdr1iyWfeNObrjy9/jKLTdwtKUVESlcp+Y4+l8sg72/G95znnYuXPO9fjcvXbqUu+++m69+9asArFixgueff55vfOMbVFVVsX//fhYvXsynP/3pfp/H+sMf/pDy8nLWr1/P+vXrWbhwYc+2v//7v2f8+PF0dXVx5ZVXsn79eu666y4eeOABXnrpJSZOnHjcud544w1+/OMf8/rrr+PuXHjhhVx66aVUV1ezbds2/umhH/Gdf/o+X//yH/Psz37KHV/6k2H4IYnIqUg9+iwtWLCAhoYGdu/ezdtvv011dTVTpkzhb/7mb5g3bx5XXXUVH374Ifv27ev3HC+//HLP/PPz5s1j3rx5PdtWrFjBwoULWbBgARs3bmTTpk0DtueVV17hM5/5DBUVFVRWVnLDDTfw29/+FgimQ541dx5FkQizzp3Pzp07h+EnICKnqlOzRz9AzzuXbrzxRp5++mn27t3L0qVLeeKJJ2hsbOSNN94gFosxffr0jNMTp8vU23///fe5//77WbNmDdXV1dx6662DnmegsfElJSVEPcGkZCOxaIREoj27CxSRUFKPfgiWLl3KU089xdNPP82NN97IkSNHmDRpErFYjJdeemnQnvMll1zCE088AcCGDRtYv349AE1NTVRUVDB27Fj27dvHL37xi55j+pse+ZJLLuHZZ5+ltbWVlpYWfvazn3HxxRf3bC/xOOXeQsySaHSlSGHLKujNbImZbTWz7Wa2LMP2c8zsVTNrN7NvZtgeNbO3zOznw9HofJkzZw7Nzc1MnTqVKVOm8LnPfY61a9dSV1fHE088wTnnnDPg8XfccQdHjx5l3rx5/OM//iOLFi0CYP78+SxYsIA5c+bwxS9+kYsuuqjnmNtuu41rrrmm52Zst4ULF3LrrbeyaNEiLrzwQr70pS+xYMGCnu2WSvcITlJJL1LQBp2m2MyiwDvA1UA9sAa42d03pe0zCTgTuB445O739zrHnwN1QJW7f2qwRmma4pO3b88uJvt+9kSnEI9UZpyqWD9TkfAYaJribHr0i4Dt7v6eu3cATwHXpe/g7g3uvgZIZHjzWuCTwGNDbrmcsO4efdRc4+hFClw2QT8V2JW2XJ9al60Hgb8CkkM4Rk6SpX7cRSjoRQpdNkGfaVB4VslhZp8CGtz9jSz2vc3M1prZ2sbGxoz7aBbG7HUHfdQ841w3+lmKFI5sgr4emJa2XAvszvL8FwGfNrMdBCWfK8zsXzPt6O6PuHudu9fV1NT02V5aWsqBAwcUUFnqXbpJ/7m5OwcOHKC0tDRfzROREZTNOPo1wEwzmwF8CCwFbsnm5O5+D3APgJldBnzT3T9/Ig2tra2lvr6e/nr7crzWww000EZHUSsNiTKiR0qJRI79cVZaWkptbW0eWygiI2XQoHf3TjO7E3gBiAKPu/tGM7s9tX25mZ0GrAWqgKSZ3Q3Mdvem4WpoLBZjxowZw3W6UHN3fv7tu/mD6Gtsn76UL2/5NL/5y8s4c0JFvpsmInmQ1Sdj3X0VsKrXuuVpr/cSlHQGOsdqYPWQWyhD1pV0SukAoNyDT9geifcZECUiBUKfjA2hRJdTRjDtQamCXqTgKehDqKMrSZkFPfqSZDAVsoJepHAp6EMo0ZWkLFW6iXUFc9Er6EUKl4I+hDq7nJJU0Bcp6EUKnoI+hBJdScosqNFbooXiaIQjrQp6kUKloA+hjrTSjXW0UFUWU49epIAp6EMoqNGnHjbS0cLYsiIFvUgBU9CHUCLRRaklcItAopVxpVEFvUgBU9CHUGd7cAM2UVwNQE1pUkEvUsAU9CHU1dECQGfpeAAmlXYq6EUKmII+hLw9+JBUZ9lEACbGFPQihUxBH0LJVI++KxX01bEOmts69QASkQKloA+hZCKo0SfLJwBQHQt6881t6tWLFCIFfQglO4LSDeVBj35sNBhqqfKNSGFS0IdRqkfvFcGTuqoiwYenDuvTsSIFSUEfQt7do68IevRjIurRixQyBX0YpXr00cpJAFRYMCd9k2r0IgVJQR9GiaBHHxkTlG7K9PARkYKmoA+hSGcQ9NGKCWARyjxYbop35rNZIpInCvoQslTQx0rLobiSoq5WiiKmHr1IgVLQh1BP0BeXQ3EF1tHC2LKYavQiBUpBH0LRzjitXkIkGoHiitRUxZqTXqRQKehDKNLVRhvFwUIq6MeUxWhS0IsUpKyC3syWmNlWM9tuZssybD/HzF41s3Yz+2ba+lIz+y8ze9vMNprZfcPZeMks2tlGm5UEC8WVPT16Bb1IYRo06M0sCjwEXAPMBm42s9m9djsI3AXc32t9O3CFu88HzgOWmNnik261DCjS1UY73UFfAR1HqSrVU6ZEClU2PfpFwHZ3f8/dO4CngOvSd3D3BndfAyR6rXd3P5pajKW+NIVijhUl22i39KDvvhmr4ZUihSiboJ8K7Epbrk+ty4qZRc1sHdAA/MrdXx9aE2WoiroyB/2ReAJ3/TsrUmiyCXrLsC7rtHD3Lnc/D6gFFpnZ3IxvYnabma01s7WNjY3Znl4yiCXb6OhVo68qi9GVdFo7uvLbOBEZcdkEfT0wLW25Ftg91Ddy98PAamBJP9sfcfc6d6+rqakZ6uklTVGyjQ4rDRZSNfqxpUWApkEQKUTZBP0aYKaZzTCzYmApsDKbk5tZjZmNS70uA64CtpxoYyU7xcl2EpG00o13Ma44+CNMQS9SeIoG28HdO83sTuAFIAo87u4bzez21PblZnYasBaoApJmdjfBCJ0pwE9SI3ciwAp3/3mOrkVSYt6WFvSVAFQXBXPSa4ilSOEZNOgB3H0VsKrXuuVpr/cSlHR6Ww8sOJkGytAVJ9vpjKSVboBxqaBXj16k8OiTsSFU4m10RsuChVTQV6UeJ6ghliKFR0EfNskuYnTS2at0o6dMiRQuBX3YpB460rtHX06qR6+gFyk4CvqwSQV9V/T4Gn000cKYEk2DIFKIFPRhk3pebLI76GNB0Hd/aEo9epHCo6APm+4efdHxpRs6jgZBr4ePiBQcBX3YdPfoY72DvoWxZSrdiBQiBX3YpHr0RPsGfVVpTA8IFylACvqwSQW9x1I1+kgUisqC+W70OEGRgqSgD5tU6ca7a/TQM1VxlYJepCAp6EPGu4M+Vn5sZdqc9PFEFx2dyTy1TkTyQUEfMl3tQdBbLL1HXwmJVsaWxQA08kakwCjoQ6arI3Uztk+P/ihVZcEcdhpLL1JYFPQhk+xoAcCKM5duQPPdiBQaBX3IJDvidLkRjZUcW9l9M7ZUQS9SiBT0IeMdLcQpobgo7VdbXNkzvBI0VbFIocnqwSNy6vCOOG0UE4umB71KNyKFTD36kPFEK+0UU5Qh6Ku6e/QKepGCoqAPm444cS+hOGrH1hVXQmcbpRGnuCiioBcpMAr6sEm0Es9UugFIpOa70Th6kYKioA+bzjhxSjIHvWawFClICvqQsUScNu/dow+eG6v5bkQKk4I+ZCKpHn1xUXqN/tjDR8aWaapikUKjoA8Z62rrv0bf3qypikUKUFZBb2ZLzGyrmW03s2UZtp9jZq+aWbuZfTNt/TQze8nMNpvZRjP7+nA2XvqKdMaJezFFkbRfbeXk4PvRBt2MFSlAgwa9mUWBh4BrgNnAzWY2u9duB4G7gPt7re8E/sLdZwGLga9lOFaGUbSrjbbepZuqKcH3pg9TpZsEyaTnp4EiMuKy6dEvAra7+3vu3gE8BVyXvoO7N7j7GiDRa/0ed38z9boZ2AxMHZaWS0bRznjf0k1JVXBDtmkPVWVFJB2OdqhOL1Iosgn6qcCutOV6TiCszWw6sAB4fajHSpa6EkS8s++oGzMYM6WnRw/6dKxIIckm6C3DuiH93W9mlcAzwN3u3tTPPreZ2VozW9vY2DiU00u31PNi+4yjB6g6HZp2a74bkQKUTdDXA9PSlmuB3dm+gZnFCEL+CXf/aX/7ufsj7l7n7nU1NTXZnl7SpYK+jWKK+wT9VGje0zNVsYZYihSObIJ+DTDTzGaYWTGwFFiZzcnNzIAfAZvd/YETb6ZkJfW82LiXECvq9YdY1RRo3svY0uBXfqi1Y6RbJyJ5MmjQu3sncCfwAsHN1BXuvtHMbjez2wHM7DQzqwf+HPhbM6s3syrgIuCPgCvMbF3q69qcXU2h6ynd9BpeCUHpxrs4q6yFaMTYsidjBU1EQiir+ejdfRWwqte65Wmv9xKUdHp7hcw1fsmF42r0vXv0wf3zsngDH5s8hrd2HR7p1olInuiTsWHSGQR9IlJCUDVLM+bYWPrzpo3l7V2HcddYepFCoKAPk1SPvjNS2ndbqkdP8x7m146jqa2THQdaR7BxIpIvCvowSd2MTWQK+vIJEC2Gpg+ZP20cAG+rfCNSEBT0YdLdo4+W9d0WicCY06BpNzMnVVIWi7JOQS9SEBT0YZLq0Xu0JPP2qqnQtIeiaIRzp47l7XoFvUghUNCHSXePvihDjx56pkEAmD9tLBt3N9HRmRyp1olInijow6Qj6NFnvBkLwVj65j3gzvxp4+joTLJ1b/MINlBE8kFBHyaJVjqJEikqzry9aip0tkH8EPNrgxuy61S+EQk9BX2YJOJ0WAnFRf38WtPmpa+tLmNCRbFG3ogUAAV9mCRaaLfSvjNXduseS9+0BzNj/rRxCnqRAqCgD5NEnHbLMP1Bt6rTg+/dN2Rrx7G98SjNerSgSKgp6MMkEact01z03SonAxbckCUYeeMO/2f9Hjq7NPpGJKyymtRMThGJVtqspO9c9N2isSDsUz36BWdUM2lMCct++jv+4RdbuPzsGk4b28/QTBHJuYriKH925cxhP6+CPkw6Wol7CUX9lW4guCHbFDw3ZmxZjJe+eRm/3dbIrzY18Jt3Gmhq0wNJRPKlprJEQS+DSLQOXLqB4IbsgXd7FitKilgydwpL5k4ZgQaKSD6oRh8miTitmR4jmC717FgRKRwK+jBJxIl78cA9+jFToP0ItB8duXaJSF4p6MMk0UJLpufFpkubl15ECoOCPkwScVoG69F3j6U/sH1k2iQieaegD4tkEjrbaE3GBq7RT54TPITk6T+FN/8F9DhBkdDTqJuwSD0v9mhykOGV5ePhK7+FZ2+HlXfCthfgo1ePUCNFZECxMph307CfVkEfFqkpilu8mAkD9egBxk6FP3oOXv1f8Ou/g83/MQINFJFBVUxS0MsAUk+XamOQGn23SAQu+jqcf6tG4IiMFpabanpWQW9mS4DvA1HgMXf/Xq/t5wA/BhYC33L3+9O2PQ58Cmhw97nD1XDpJfV0qbgPMAVCJqVjgy8RCa1BE8HMosBDwDXAbOBmM5vda7eDwF3A/fT1z8CSk2umDCrRAkArA8xeKSIFKZuu3yJgu7u/5+4dwFPAdek7uHuDu68B+sx36+4vE/xDILnU3aOnhFh/Dx4RkYKUTSJMBXalLden1slokgr6tsHG0YtIwckmETLVAYZ98LWZ3WZma81sbWNj43CfPvxSN2PjKt2ISC/ZBH09MC1tuRYY9lmx3P0Rd69z97qamprhPn34pYZXtg42e6WIFJxsEmENMNPMZphZMbAUWJnbZsmQdffoVboRkV4GTQR37wTuBF4ANgMr3H2jmd1uZrcDmNlpZlYP/Dnwt2ZWb2ZVqW1PAq8CZ6fW/2muLqagddfoGeLwShEJvazG0bv7KmBVr3XL017vJSjpZDr25pNpoGSpZ9SNevQicjwlQlgkWkhGYnRSpJuxInIcBX1YJOIko6UAGkcvIsdRIoRFopWuaBkAsYh+rSJyjBIhLBJxOnt69CrdiMgxCvqw6Gils7tHr5uxIpJGiRAWiVY6I0GPXsMrRSSdEiEsEnE6IiUAlOhmrIikUSKERaKVI50xxpQUMbGyJN+tEZFRREEfFolW9rdHmTWlikhEN2NF5BgFfUh4Ik5DW4TZp1fluykiMsoo6EMi2d5Kc1eMWVPG5LspIjLKKOjDItFCnBJmT9HzX0XkeAr6MEh2EU120EYJMydX5rs1IjLKKOjDIDVzZUVlFaWxaJ4bIyKjjYI+DFJBXz1WZRsR6UtBHwKHDh8CoKZ6XJ5bIiKjkYI+BN7fsx+AyTXj89wSERmNFPQhsHNfEPRTaybkuSUiMhop6EOgvuEAAGMqNYZeRPpS0IfA3v0HgxfFFfltiIiMSgr6U1xboovDR5qChVhZfhsjIqOSgv4Ut23fUUq8LVhQ0ItIBkX5bkAhWfW7PWzbd3RYztXR1cWh1gRb9zZzjnUEK2Plw3JuEQkXBf0IeXHTPr76xJvDdr5oxKguj1FdXkzd6SXQiIJeRDLKKujNbAnwfSAKPObu3+u1/Rzgx8BC4Fvufn+2xxaCI/EE33r2d5xz2hie/dpFw/KoPzMwS807/5vX4SVUuhGRjAYNejOLAg8BVwP1wBozW+num9J2OwjcBVx/AseG3j+s2kxjczuPfqEuN3PRJFohEoNobPjPLSKnvGy6louA7e7+nrt3AE8B16Xv4O4N7r4GSAz12LB7Zdt+nlqzi9su+QjzanM0RUEirrKNiPQrm6CfCuxKW65PrcvGyRx7yuvsSrLsp+s5a2IFd181M3dv1NECxQp6Ecksm6DP9ABSz/L8WR9rZreZ2VozW9vY2Jjl6Ue3nQdbqT8U5/ZLP5Lb6YMTcdXnRaRf2QR9PTAtbbkW2J3l+bM+1t0fcfc6d6+rqanJ8vSj2wcHWgE4qybHn1hV6UZEBpBN0K8BZprZDDMrBpYCK7M8/8kce8rbeaAFgDMm5DiEEy3q0YtIvwYddePunWZ2J/ACwRDJx919o5ndntq+3MxOA9YCVUDSzO4GZrt7U6Zjc3Uxo83Og62UF0epqSzJ7RupRy8iA8hqHL27rwJW9Vq3PO31XoKyTFbHFoqdB1o5Y3z5sfHuuZJohTLNRS8imWmumxzaeaCFM3NdtgHdjBWRASnoc6Qr6ew6GGf6hBGYOrijVaUbEemXgj5H9ja10dGVzP2NWAhKNxpHLyL9UNDnSPeImzPHj0CPXqUbERmAgj5HusfQ57xGn+yCrnaVbkSkXwr6HNl5sJVY1JgytjS3b5QI/kFRj15E+qOgz5GdB1qorS6naBimJB5QIh58V49eRPqhoM+R7jH0OdfTo1fQi0hmCvoTdeRDWPEFiB/us8nd+eBA68iNoQeVbkSkXwr6E7Xhadj0HHzwap9Nh1oTNLd3cuZIjaEH9ehFpF8K+hP17kvB9/3v9Nm0o2do5QiWbjSOXkT6oaA/EYm2Yz35DEE/YkMrQTdjRWRQCvoTses16GyDaAns39Zn885U0E8b0ZuxqtGLSGYK+hPx3mqIFMHs66BxK/jxD83aebCFKWNLc/tUqW4KehEZhIL+RLy3GmovgNMXQNthaD1w3OYRG1oJaUE/Ajd+ReSUpKAfqtaDsHsdnHU5TPxYsK5XnX7nSA2tTCahMfXe6tGLSD+yevCIpHn/ZcDhrMtgzGkAHP5gI9f+W5yqshhn1VSw/2h75qGVySR4cpjasRpevA/2rofpF0Nx5fCcV0RCR0E/VO+thuIxMPV8sAgUlbJ/x+/YfeR0zphQzqbdTZTFopx/ZnWw/1v/Cjv+L+zbENTzu9qHry3jzoDPPALn/neI6I8zEclMQT9U770EMy6GaOpHN2EmdmA70cgSfvLFRZQURXH34PGBRz6E574G5RNhynyYcQmUjhuedlRNCQK+KMfPoxWRU164gv691cG0vbkSPwSHdsDirx5bN3EmY7a+xoyJFZQUBaNsep4R27g5+H7TT2D6x3PXLhGRAYQr6J+8+dgolJwx+OhVxxYnfowJG59ldk1x310btwbfa2bluE0iIv0LV9B/YeXw3ezsT9k4mPCRnsWOcR+hmCQXVB3qu2/D5qBsUzEht20SERlAuIJ+2gUj/pYfRGv5KDCneF/fjY1boeacEW+TiEg6DdU4SRviEwE40z88foN7KujPzkOrRESOySrozWyJmW01s+1mtizDdjOzH6S2rzezhWnbvm5mG8xso5ndPZyNHw02H+ziQ59IdeuO4zc074X2IzBJ9XkRya9Bg97MosBDwDXAbOBmM5vda7drgJmpr9uAH6aOnQt8GVgEzAc+ZWYzh631o8A7e5vZG5tG5ECvyc26R9yoRy8ieZZNj34RsN3d33P3DuAp4Lpe+1wH/G8PvAaMM7MpwCzgNXdvdfdO4DfAZ4ax/Xn3zr6jNFeeFcximT65Wc+IG9XoRSS/sgn6qcCutOX61Lps9tkAXGJmE8ysHLgWmJbpTczsNjNba2ZrGxsbs21/Xh1t7+TDw3GomQmJFmjafWxj4xYoq4aKmvw1UESE7ILeMqzzbPZx983A/wR+BTwPvA10ZnoTd3/E3evcva6m5tQIx237mgGoOD1Vh9+34djGxq3B+HnL9KMRERk52QR9Pcf3wmuB3dnu4+4/cveF7n4JcBDo+6SOU9Q7qaCfNPtiKBkLG54JNrgHY+hVnxeRUSCboF8DzDSzGWZWDCwFVvbaZyXwhdTom8XAEXffA2Bmk1LfzwBuAJ4cttbn2Tv7jlIaizCtZjyc+1nYtBLamuBoQzBPverzIjIKDPqBKXfvNLM7gReAKPC4u280s9tT25cDqwjq79uBVuBP0k7xjJlNABLA19w9w0dIT03v7Gtm5qQxRCIG530O1j4Om54LZpUE9ehFZFTI6pOx7r6KIMzT1y1Pe+3A1/o59uKTaeBo9s6+ZseZAKsAAATgSURBVC76aPCBKaaeDxNmwrp/gzmpgUUaQy8io4A+GXuCjrQm2NfUztmTxwQrzOC8W+CD/wdbV0HpWKicnN9GiogQsrluVqzZRWey94CgkxeNwLjyYqrLi4kYrNt1mFe27wfgY91BDzB/Kfzn3wVz1k+7UCNuRGRUCFXQ37tyI/FEDuejT1NbXcaN59dy4Vnjj62sOj14luy7v1Z9XkRGjVAF/W/+8rI+A/yHQ6IryeHWBIdaO+joTDJ36lgmV5Vm3vm8W1JBr/q8iIwOoQr6Sf2F7zCorc5yx1l/AL//ZzDn+py1RURkKEIV9KNCUQl84n/kuxUiIj006kZEJOQU9CIiIaegFxEJOQW9iEjIKehFREJOQS8iEnIKehGRkFPQi4iEnLnnYtKAk2NmjcDOEzx8IrB/GJtzKijEa4bCvO5CvGYozOse6jWf6e4Zn8M6KoP+ZJjZWnevy3c7RlIhXjMU5nUX4jVDYV73cF6zSjciIiGnoBcRCbkwBv0j+W5AHhTiNUNhXnchXjMU5nUP2zWHrkYvIiLHC2OPXkRE0oQm6M1siZltNbPtZrYs3+3JFTObZmYvmdlmM9toZl9PrR9vZr8ys22p79k+KuWUYWZRM3vLzH6eWi6Eax5nZk+b2ZbU7/z3wn7dZvaN1H/bG8zsSTMrDeM1m9njZtZgZhvS1vV7nWZ2TyrftprZfxvKe4Ui6M0sCjwEXAPMBm42s9n5bVXOdAJ/4e6zgMXA11LXugz4tbvPBH6dWg6brwOb05YL4Zq/Dzzv7ucA8wmuP7TXbWZTgbuAOnefC0SBpYTzmv8ZWNJrXcbrTP0/vhSYkzrm4VTuZSUUQQ8sAra7+3vu3gE8BVyX5zblhLvvcfc3U6+bCf7Hn0pwvT9J7fYTIFTPMjSzWuCTwGNpq8N+zVXAJcCPANy9w90PE/LrJnjyXZmZFQHlwG5CeM3u/jJwsNfq/q7zOuApd2939/eB7QS5l5WwBP1UYFfacn1qXaiZ2XRgAfA6MNnd90DwjwEwKX8ty4kHgb8Ckmnrwn7NZwGNwI9TJavHzKyCEF+3u38I3A98AOwBjrj7LwnxNffS33WeVMaFJegtw7pQDycys0rgGeBud2/Kd3tyycw+BTS4+xv5bssIKwIWAj909wVAC+EoWfQrVZO+DpgBnA5UmNnn89uqUeGkMi4sQV8PTEtbriX4cy+UzCxGEPJPuPtPU6v3mdmU1PYpQEO+2pcDFwGfNrMdBGW5K8zsXwn3NUPw33W9u7+eWn6aIPjDfN1XAe+7e6O7J4CfAr9PuK85XX/XeVIZF5agXwPMNLMZZlZMcNNiZZ7blBNmZgQ1283u/kDappXAH6de/zHw3Ei3LVfc/R53r3X36QS/2/90988T4msGcPe9wC4zOzu16kpgE+G+7g+AxWZWnvpv/UqC+1BhvuZ0/V3nSmCpmZWY2QxgJvBfWZ/V3UPxBVwLvAO8C3wr3+3J4XV+nOBPtvXAutTXtcAEgrv021Lfx+e7rTm6/suAn6deh/6agfOAtanf97NAddivG7gP2AJsAP4FKAnjNQNPEtyHSBD02P90oOsEvpXKt63ANUN5L30yVkQk5MJSuhERkX4o6EVEQk5BLyIScgp6EZGQU9CLiIScgl5EJOQU9CIiIaegFxEJuf8P9vanocF+h+AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Training and validation accuracy seems to improve after around 60 epochs" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 1ms/step - loss: 2.2997 - accuracy: 0.1135\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.11349999904632568\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2debhd49n/P9+cJDIQIRFDIiREQgxJRCg1dFCJauloVlrFW9FJfy19WxStqtZLXzRUDa2ipYYgFa6+jaklIYIEIWLIRARJkGgG9++PZx322dln73XOXsvezz73J9e6svdaz/que0/3edYzfWVmOI7jNDKdah2A4zhO3niicxyn4fFE5zhOw+OJznGchscTneM4DY8nOsdxGh5PdHWCpCmSjk8eHynpnoz1t5ZkkjpnqZvy2t0l3SFpmaSbqtDJ/H2pBZL+LulrtY6jI9FhEp2klyS9Jqlnwb7jJU2pYVglMbM/m9lnPurrSjpC0qOS3pG0KPlBfjwD6S8DmwJ9zOwr7RXJ632RtF/yR+CWov27JPunpNQ5S9J1lcqZ2Tgzu7ad4TrtoMMkuoTOwHeqFVGgod47Sd8HLgJ+QUhKA4HLgIMzkN8KeM7M1mSglRevA3tK6lOw72vAc1ldoBG/N9FgZh1iA14CTgPeBHon+44HphSU2ROYBixL/t+z4NgU4OfAQ8BKYFvAgG8BzwNvA+cA2wD/BpYDfwW6JudvBNxJ+EG9lTweUKR/fPL4WODB5PEPgXcKttXANcmxDYE/AIuABcC5QFNyrAn4NbAEmAucnMTbucR7s2Gi/ZUy7996hES4MNkuAtZLju0HzAdOBRYn8RyXHPsZsCqJ+x3gG8BZwHUF2lsXxpa8/rnJe/oicGTx+5Ly8zon+bzeBu4B+rby2prjnwCcXPD+zQfOoOV35GJgXvL5PgbsnewfW/Q6nyjzvSn8rH8H3Fygfz7wD0C1/s000lbzAD6yFxoS3aeBW4Bzk30fJDpgY0ICOppQ8zs8ed4nOT4FeAUYnhzvkvw4JwK9kv3/Sb6kg5Pk8TTwteT8PsCXgB7ABsBNwG0F8RV++Vv8oAvKbElIMgcmz28DLgd6Av2AqcCJybGTgGeTczYG/knriW4ssKbUsYIyZwMPJ9fZBPgXcE5ybL/k/LOT9+VAYAWwUXL8LFomtuLnWzfHlryW5cDQ5NjmwPDi9yXl5/UCsB3QPXn+y1Ze236EpLYn8Eiy70BgMuv+MTwq+Sw7ExL7q0C3Uq+rzPem8LPuQag1HgvsTfjDNKC1z8G39m0dsRp9BnCKpE2K9n8WeN7M/mRma8zsBkKi+FxBmWvMbFZyfHWy73wzW25ms4CZwD1mNtfMlgF/B0YCmNkbZvY3M1thZm8T/srvmzZoSd0Jie1iM5skaVNgHPBdM3vXzBYD/wMclpzyVeAiM5tnZm8C55WR7wMssfK3lkcCZ5vZYjN7nVBTO7rg+Ork+Gozm0So1QxN+/qKeB/YUVJ3M1uUvLfFpPm8rjaz58xsJaF2PaLcRc3sX8DGkoYCxwB/LFHmuuSzXGNmvyHUdCu9zlLfm2a9FYTkeSFwHXCKmc2voOe0kQ6X6MxsJuG28bSiQ1sALxftexnoX/B8XgnJ1woeryzxfH0AST0kXS7pZUnLgfuB3pKaUob+B2C2mZ2fPN+KUDtYJGmppKWE2l2/gtdTGG/xayvkDaBvhR7Z4vfn5WTfBxpFiXIFyWtvC2b2LnAooUa6SNJdkoaliKc5psLP69V2xPMnYDzwCeDW4oOSTpX0TNKDvJRQc+9bQbPU9+YDzGwq4VZdhITsZEyHS3QJZwLfpOWPYiEheRQykND21Uw1S72cSvjLv7uZ9QL2Sfar0omSTkvO/UbB7nmEW+W+ZtY72XqZ2fDk+CLCbWszA8tc4t/Ae8AhZcoUvz8Dk33t4V3CLVszmxUeNLPJZrY/4bb1WeD3KeJpjmlBibJt4U+EdtdJSW3rAyTtDfyIUFveyMx6E9oHmz/D1r4fZb83kk4m1AwXEtpknYzpkInOzOYAfwG+XbB7ErBdMsSis6RDgR0Itb8s2IBQw1sqaWNCsq2IpHFJnIckt2DNr2ERoYH9N5J6SeokaRtJzbfDfwW+LWmApI1YtwZLgdYywi39pZIOSWqfXSSNk/SrpNgNwE8kbSKpb1K+4lCKVpgB7CNpoKQNgdMLXu+mkj6fDAP6D+EWeG0JjVw+LzN7kdCk8N8lDm9AaIt8Hegs6QxC+2wzrwFbt6VnVdJ2hE6kowhNAT+UVPYW22k7HTLRJZxNaPgGQhsacBCh5vUG4S/rQWa2JKPrXURoFF9CaNS/O+V5hxIa/59Jxre9I2lCcuwYoCuh0+Mt4GZCLQhCLWgy8AQwndAJ0ypmdiHwfeAnhB/yPMIt3G1JkXOBR4EngacSzXNTvobia91L+EPzJKHnsjA5dSJ8BgsJPeT7EmpYxRq5fV5m9qCZlaqtTia0uz5HuE1+j5a3pc2Dod+QNL3SdZKmgusI7bxPmNnzwI+BP0lar5rX4LREZr7wpuM4jU1HrtE5jtNB8ETnOE7dIOkqSYslzWzluCT9VtIcSU9KGpVG1xOd4zj1xDWEAeytMQ4YkmwnEGaWVMQTneM4dYOZ3U/ohGqNg4E/WuBhwljUzcuUB8KUlLqhb9++ttVWW2eu+/gzr2SuCTBy+3JD0xyn/nj55ZdYsmRJxbGbbaGp11Zma1ZWLgjYytdnEXqrm7nCzK5ow+X607Kne36yb1G5k+oq0W211dY89MijmetutNv4zDUBHnrkklx0HScv9tp9dOaatmYl6w39aqqy78249D0zqyaIUkm64tCRukp0juPEiOCjW31qPi1n/AwgxQwdb6NzHKc6BHRqSrdVz0TgmKT3dQ9gWTJLqCxeo3Mcp3qUTbOfpBsIy2b1lTSfMFWyC4CZTSBM/TsQmENYqOG4NLqe6BzHqZLsbl3N7PAKx42wiGyb8ETnOE71ZFSjy4u6a6O7Z/Ld7Dx8KMOHbcsFv/rlOsfNjO9/99sMH7Ytu43cmcenT6947oQzj+Tlf5zHozf9uNXr/uaHX2bm7Wcy9S+nM2LYgA/277/n9jxx60+ZefuZ/OC4/XOP1XXz1Y0p1jx1M0WEGl2arVbkuXwxYYTzbML99GmVyo8cOcoGDR5sT89+wZa9+x/baaedbfoTs2zlavtgu3XiXfaZA8bailXv25QH/m2jdxtjK1ebvfPemlbP/dTXL7Q9DjvPZj6/wLqNOHmd7eDxl9rdD860biNOtn2OvsCmPvmidRtxsvUYNd5eeGWxDfvsGbbB6G/bE7Pn2YgvnmPdRpxs6+3yX7nEWu6Y61anG1OseemOGrWrZf07V8/NrNseP0q1AY/mmXNa23JLscnKuZcSpmzsABwuaYdy57z77rtss822DBo8mK5du/KVQw/jzjtub1Hmzom3c8RRxyCJ3ffYg2XLlrJo0SKmTZ3a6rkPTX+BN5etKHVJAA7ad2euv3MqAFOfeokNN+jOZn17sduOW/PCvCW8tOANVq9Zy02Tp3PQfjsDYCsW5xJruWOuW51uTLHmqZsLH12va/vCy1F7DDDHgn/CKuBGKljnrV69mgEDPhwi07//ABYsaLlg7MKFC9Yps3DBgpL7i89tjS369Wb+q2998HzBa0vZol9vtui3IfNfK9z/Fv032RAAW/1OLrGmeR2u2z7dmGLNUzd7VPe3rnleubWpGi2QdEJimvzo8reXryOiokbOUuvnSWp1fxpKFTMzVGIQdrkh2FnEmuZ1uG77dGOKNU/dzBHhR5RmqxF59rqmmqqRzHO7AmDo0GE2f/6HuXHBgvlsscUWLcr37z+A4jKbb7EFq1atWmd/8bmtseC1pQzYbKMPr7Fpbxa9voyuXTozYNPC/Rux8PVl4cV1Wb/i9doTa6lzXDcb3ZhizVM3F+rclzvP6No8VaNnz57MmfM8L734IqtWreKmv9zIZw/6fIsyn/3c57n+uj9iZjzy8MP06rUhm2++OaN3263iua1x131PccRBYwAYs9PWLH9nJa8uWc6js15m24GbsNUWfejSuYmvHDCKu6Y8CYB69Msl1jSvw3XbpxtTrHnqZk/937rmWaObBgyRNIjgzHQYcES5EyTxPxdfwuc+ewBr167la8d+nR2GD+f3lweLhG+eeBJjxx3I5L9PYviwbenRvQeXX3l1eCGdO5c8F+Da845l712H0Lf3+sy5+xzOmTCJLp1Dw+iVNz/I3Q/O4oCPD2fWxDNZ8d5qTjwreL6sXfs+3zv/r9xx2ck0dRLX3v4wz8x9NYm1Uy6xtnbMdbPRjSnWvHRzoVN9j6PL1TNC0oEEU5gm4Coz+3m58rvuOtpiWr3krWm+eokTF3vtPprHHns006zUqVd/W2+3dJMV3vu//37Mqlu9pF3kOjPCgmP7pDyv4ThOrflIVy9pFz4FzHGc6qnzKWCe6BzHqR6v0TmO09DUeIxcGjzROY5TPTWc3pUGT3SO41SJd0Y4jtMR8FtXx3Eamub16OoYT3SO41SJ37o6jtMR8FtXx3EaHu91dRynoZHfujqO0xGo81vXukvD7gLmunnqxhRrnrpZIynVVjPyct0BrgIWAzPTnuMuYHE5SsWmG1OsMbmAdeq9lfX40lWpNhrNBQy4hmB3mBp3AYvPUSom3ZhizVM3c9SGrUbklujM7H7gzbac4y5g8TlKxaQbU6x56maP6NSpU6qtVtS8M0LSCcAJAH369i11vMXzPFyP3AWsY+jGFGueunlQ0/a3FNQ80Zm7gEXtKBWTbkyx5qmbB/We6Oqq19VdwOJzlIpJN6ZY89TNnAja6GpeoyvEXcDic5SKTTemWGNxARM1HjqSgtxcwCTdAOwH9AVeA840sz+UO8ddwBwnX/JwAevcZ7D1OvDcVGXfuu7IxnIBM7PD89J2HKe+qPcaXV3dujqOEyE1bn9Lgyc6x3Gqpt5rdHXV6+o4Tnw0d0ZkMddV0lhJsyXNkXRaieMbSrpD0hOSZkk6Lk2Mnugcx6maLBKdpCbgUmAcsANwuKQdioqdDDxtZrsQOjt/I6lrpfg80TmOUx0CdVKqrQJjgDlmNtfMVgE3AgcXlTFgA4WsuT5hmumaSsLeRuc4TtW0oY2ur6TCMWRXJLOjAPoD8wqOzQd2Lzr/EmAisBDYADjUzN6vdFFPdI7jVE0bEt2SMuPoSokUD/Q9AJgBfBLYBrhX0gNmtrzcRf3W1XGcqsiwM2I+sGXB8wGEmlshxwG3WGAO8CIwrJKwJzrHcaonm7mu04AhkgYlHQyHEW5TC3kF+BSApE2BocDcSsJ+6+o4TnUom3F0ZrZG0nhgMtAEXGVmsySdlByfAJwDXCPpqXBlfmRmSyppe6JzHKdqslpU08wmAZOK9k0oeLwQ+ExbdT3ROY5TPfU9MaL+2ujcBcx189SNKdY8dbOmI7uAbQn8E3gGmAV8p9I57gIWl6NUbLoxxRqTC1jXftvawFMmptpoQBewNcCpZrY9sAdwconpHC1wF7D4HKVi0o0p1jx186Dea3R5uoAtMrPpyeO3CTW7/uXOcRew+BylYtKNKdY8dfOg3hPdR9IZIWlrYCTwSIlj7gJWcG6a1+G67dONKdY8dfMgxTzWmpJ7opO0PvA34LtWYpqGuQtY1I5SMenGFGueupmT0Ti6PMm111VSF0KS+7OZ3VKpvLuAxecoFZNuTLHmqZs1ItwVpdlqRW41umQZlT8Az5jZhSnPcRewyBylYtONKdZYXMDo4C5gHwceAJ4CmpdR+bGFkc8lcRcwx8mXPFzAum22nQ085repyj5/wbiGcwF7kLofL+04TtUIOnX0zgjHcRob4YnOcZwOQJ030Xmicxyneuq9M8ITneM41VHjoSNp8ETnOE5VhHF09Z3pPNE5jlMl8s4Ix3EaH6/ROY7T2HgbneM4jY630TmO0yGo8zznic5xnOqp9xqdm+MkuDlOx9CNKdY8dTMlmeuaZqsZeZlRAN2AqcATBHOcn1U6x81x4jJaiU03plhjMsfp2X872/28Kak2GtAc5z/AJ81sF2AEMFbSHuVOcHOc+IxWYtKNKdY8dbMnnV9Eo5rjmJm9kzztkmxlF79zc5z4jFZi0o0p1jx186DeVxjOeyn1JkkzgMXAvWa2jjlOCo0Wz/MwA3FznI6hG1OseermQb3X6HLtdTWztcAISb2BWyXtaGYzC8sUuoD123TTmpiBuDlOx9CNKdY8dbNGESy8+ZH0uprZUmAKMLbEsSvMbLSZje6/RX83x4nMaCUm3ZhizVM3DzpsjU7SJsBqM1sqqTvwaeD8Cue4OU5kRiux6cYUazzmOPU/YDhPc5ydgWuBJkLN8a9mdna5c9wcx3HyJQ9znA22HGa7nnpVqrL3fW+vhjPHeRIYmZe+4zh1gk/qdxyn0VEEvq6e6BzHqZom73V1HKfRyWrAsKSxkmZLmiPptFbK7CdphqRZku5LE5/X6BzHqYqQxKqv0UlqAi4F9gfmA9MkTTSzpwvK9AYuA8aa2SuS+qXRbjXRSRpV7kQzm17uuOM4HYeM7lzHAHPMbC6ApBuBg4GnC8ocAdxiZq8AmNniNMLlanS/KXPMgE+muYDjOI1PRp0R/YF5Bc/nA7sXldkO6CJpCrABcLGZ/bGScKuJzsw+0fY4HcfpiLQhz/WVVDhY9gozu6JZpkT54oG+nYFdgU8B3YF/S3rYzJ4rd9GKbXSSegDfBwaa2QmShgBDzezOSuc6jtP4CGhKn+mWlBkwPB/YsuD5AGBhiTJLzOxd4F1J9wO7AGUTXZpe16uBVcCeBRc6N8V5juN0BFLOc01xezsNGCJpkKSuwGHAxKIytwN7S+qcVMJ2B56pJJym13UbMztU0uEAZrZS9T460HGcj5QsMoKZrZE0HphMmDp6lZnNknRScnyCmT0j6W7gSeB94MriFZFKkSbRrUom5RuApG0Iqwc7juMgoFNGdR8zmwRMKto3oej5BcAFbdFNk+jOBO4GtpT0Z2Av4Ni2XMRxnMam3u/xKrbRmdm9wBcJye0GYLSZTckrIHcBc908dWOKNU/dLGleeDN6FzBCoruQMLbuC21x3yHcaz8O3FmprLuAxeUoFZtuTLHG5AK20dbb21evmZ5qo15dwCRdBpwEPAXMBE6UdGkbcul3SNErAu4CBvE5SsWkG1OseermgVJutSLN8JJ9gQPM7Gozuxo4ENgvjbikAcBngSvTlHcXsPgcpWLSjSnWPHXzoN6XUk+T6GYDAwueb0no2k3DRcAPCd3AJZF0gqRHJT26/O3lpY63eF5qRWR3AXPdNLoxxZqnbtaEXtd0W60oN6n/DsLvekPgGUlTk+e7A/+qJCzpIGCxmT0mab/WylmY/nEFwNChw8xdwOJylIpJN6ZY89TNnBrX1tJQrkb3a0LnwxnAOMIwk7OSx+ek0N4L+Lykl4AbgU9Kuq7cCT179nQXsMgcpWLSjSnWPHXzoN57XctN6k+1oF2Z808HToewUB7wAzM7qtw57gIWn6NUbLoxxRqLC1jzrWs9U9EFTNIewP8C2wNdCcNF3jWzXqkv8mGiO6hcOXcBc5x8ycMFrO/g4fa5X9yYquw1h+9cty5glxAm194EjAaOAYa05SIWBhhPaWNsjuNEQp1X6NItpW5mcyQ1mdla4GpJFTsjHMfpGEjZzXXNizSJbkWyZMoMSb8CFgE98w3LcZyYqPM8l2oc3dFJufHAu4RxdF/MMyjHceIi2l7XZszs5eThe8DPACT9BTg0x7gcx4kEoYa4dS3FxzKNwnGceEnp2VpL3NfVcZyqqfeZEe3xdRXQJZ9wHMeJkTSN/bWkvb6uz2YdiOM4cSIirtGZ+7o6jpOSznVepfM2OsdxqkKKuEbnOI6Tlnqf1O+JznGcqqnzCl0qzwhJOkrSGcnzgZLG5BWQu4C5bp66McWap26WNPu6ptlqRgoXr98BlwLPJM83Aqalcd4BXiKY6swghfuPu4DF5SgVm25MscbkArbZtsPtx5Nmp9rS5IE8tjR9Jbub2cmEKWCY2VuEdenS8gkzG5FmDSp3AYvPUSom3ZhizVM3a5SyNlfLGl2aRLdaUhOJL4ykTShjdlMN7gIWn6NUTLoxxZqnbh5I6bZakSbR/Ra4Fegn6efAg8AvUuobcI+kxySdUKqAu4C1PDc2R6mYdGOKNU/dPIjWBawZM/uzpMeATxHaHQ8xs1SG1MBeZrZQUj/gXknPmtn9RfruAhaxo1RMujHFmqdu1jR3RtQzaXpdBwIrgDuAicC7yb6KmNnC5P/FhFph2d5adwGLz1EqJt2YYs1TNw/q/dY1zTi6uwh3bAK6AYMIptZlLYUk9QQ6mdnbyePPAGdXOMddwCJzlIpNN6ZYY3EBQ9BU5zW6ii5g65wQVjU50cxOrFBuMKEWByGhXm9mPy93jruAOU6+5OECNmDoTjb+d7elKnv6p7atWxewFpjZdEm7pSg3F9ilXVE5jhMV0U8Bk/T9gqedgFHA67lF5DhOdDTCpP4NCh6vIbTZ/S2fcBzHiY3Q61rrKMpTNtElA4XXN7P/9xHF4zhObGTYoyppLHAx0ARcaWYlJ+kmzWcPA4ea2c2VdMstpd7ZzNaUWVLdcRwHAZ0zqNIlFatLgf2B+cA0SRPN7OkS5c4HJqfVLlejm0poj5shaSJwE8HXFQAzuyX1K3Acp6HJqEY3BpiTdGQi6UbgYODponKnEJrPKnaKNpOmjW5j4A3gk3w4ns4AT3SO4wCiU4npkq3QV1LhGLIrktlRAP2BeQXH5gO7t7iS1B/4AiEfZZLo+iU9rjP5MME107bBd47jNCzBHCd18SVlxtGVUinONRcBPzKztW3p6S2X6JqA9VNe3HGcjkp2E/bnA1sWPB8ALCwqMxq4MUlyfYEDJa0xs7IjlsslukVmVnbKluM4joCmbDLdNGCIpEHAAuAw4IjCAmY26IPrStcAd1ZKclA+0dX5yBjHceqFLFYvSUZ5jCf0pjYBV5nZLEknJccntFe7XKL7VHtFHcfpWGQ1js7MJgGTivaVTHBmdmxa3XIG1m+mFXEcp+Mi0q3gW0vqLj53AXPdPHVjijVP3UxJDKzTbDUjT+cdoDdwM/As8AzwsXLl3QUsLkep2HRjijUmF7Ctt9/Jrp32SqqNOnYBq4aLgbvNbBhhyaayS7C7C1h8jlIx6cYUa566WSPCwptptlqRW6KT1AvYB/gDgJmtMrOl5c5xF7D4HKVi0o0p1jx186Del1LPs0Y3mLBu3dWSHpd0ZbKkegvcBazluWleh+u2TzemWPPUzZ507XO1bKNr8wrDbdQeBZxiZo9Iuhg4DfhpYSFzF7CoHaVi0o0p1jx1s6aj97rOB+ab2SPJ85sJia9V3AUsPkepmHRjijVP3TzosDU6M3tV0jxJQ81sNmEAcvFyKy1wF7D4HKVi040p1mhcwKj/aVRtdgFrk7g0ArgS6ArMBY4zs7daK+8uYI6TL3m4gG07fBf71fV3pyr7pRFbxOEC1hbMbAZhtQHHcRqYRjDHcRzHKUt9pzlPdI7jZECdV+g80TmOUx1heEl9ZzpPdI7jVI3X6BzHaXCUycKbeeKJznGcqvBbV8dxGp8aT9hPgyc6x3GqxhOd4zgNT6mVfuoJT3SO41RF88Kb9YwnOsdxqqbO85wnOsdxqqfeb13rbr08dwFz3Tx1Y4o1T90sEdBJ6baakZfrDjAUmFGwLQe+W+4cdwGLy1EqNt2YYo3JBWzo8BF2/+w3U200mguYmc02sxFmNgLYFVgB3FruHHcBi89RKibdmGLNUzdzUhrjNKo5TiGfAl4ws5fLFXIXsPgcpWLSjSnWPHWzpkPbHRZxGHBDqQPuAtby3NgcpWLSjSnWPHXzQCm3WpF7r6ukrsDngdNLHTd3AYvaUSom3ZhizVM3F+q70zW/zoiCTomDgXvSlB05cpRtPWiQPfPc3A8aUB+bMbNF4+stt9/ZovF119G72crVZm+vXN3qud1GnGzbjftpq50Rh4y/rEVnxLSnQmdEz11PsbnzXrehB37YGTGyoDMij1jLHXPd6nRjijUv3Tw6I4btOMIenrM01UaNOiM+ikR3I8EUp2LZUaN2tVsn3mXbDhligwYPtrPOPtdWrjb77SW/s99e8jtbudpsxar37cSTvmWDBg+24cN3tAf/Pa1FD1TxuStXm/3l79Ns4eKltmrVGpv/6pt24lnX2fhzb7Dx597wQbL73Y332QuvLLannltgex5xfose2edees1eeGWxnfG/E1skyDxibe2Y62ajG1OseejmlegeeWFpqq1WiS5vF7AewDxgsJktq1TeXcAcJ1/ycAHbfqeR9sfbp6QqO2ab3g3pArYC6JPnNRzHqS3CXcAcx2l0IliPru6mgDmOEx9ZDS+RNFbSbElzJJ1W4viRkp5Mtn9J2iVNfF6jcxynejKo0UlqAi4F9gfmA9MkTTSzpwuKvQjsa2ZvSRpHGJq2eyVtT3SO41SJslq9ZAwwx8zmAki6kTA87YNEZ2b/Kij/MDCAFPitq+M4VZHh6iX9CaM0mpmf7GuNbwB/TxOj1+gcx6me9BW6vpIKx5BdYWF2VGsqJce/SfoEIdF9PM1FPdE5jlM1bbh1XVJmHN18YMuC5wOAhetcS9oZuBIYZ2ZvpLmo37o6jlM1GS3TNA0YImlQMkf+MGBiy+toIHALcLSZPZc2Pq/ROY5TNVl0RZjZGknjgclAE3CVmc2SdFJyfAJwBmESwmXJIOU1aWZaeKJzHKc6MlyDycwmAZOK9k0oeHw8cHxbdT3ROY5TFaHXtb6nRtRdG52b47hunroxxZqnbtbU+8KbeS/R9D1gFjCTsMJwt3Ll3RwnLqOV2HRjijUv3TyWaRq+80h7euE7qTYazRxHUn/g28BoM9uR0Lh4WLlz3BwnPqOVmHRjijVP3TxQyn+1Iu9b185Ad0mdgR6UGBNTiJvjxGe0EpNuTLHmqZsHHdYFzMwWAL8GXgEWAcvM7J626rg5jutmpRtTrHnq5kG9t9Hl1usqaSPChNxBwFLgJklHmdl1ReVOAE4A6LfppjUxA3FznI6hG1OseepmTQwLb+bZES6P1PwAAAvvSURBVPEV4A8Fz48BLqvUGeHmOPEYrcSmG1Oseenm0Rmx4y4j7fnXVqTaaDRzHMIaUbMIbXMCrgVOKXeOm+PEZbQSo25Mseahm1eim/PailRbrRJd3uY4PwMOBdYAjwPHm9l/Wivv5jiOky95mOPsNGKU3XbvQ6nKbtuvR0Oa45wJnJnnNRzHqTW1HTqSBp8C5jhOVTQvvFnPeKJzHKd6PNE5jtPo+K2r4zgNT70Po/NE5zhO1dR5nvNE5zhOldR4HmsaPNE5jlMVMUwB80TnOE7V1Hea80TnOE4G1HmFzhOd4zjV48NLHMdpfOo7z3micxyneuo8z7kLWDPuAtYxdGOKNU/dLJGC3WGarWbkutgdfIfgADYL+G6l8u4CFpejVGy6McWal24e69HtMnKULX57daqNBnQB2xH4JjAG2AU4SNKQcue4C1h8jlIx6cYUa566eVDvnhF53rpuDzxsZivMbA1wH/CFcie4C1h8jlIx6cYUa566edBhXcAIt6z7SOojqQdwILBlcSFJJ0h6VNKjy99evo6Iu4C5bla6McWap272pHV1rV2my63X1cyekXQ+cC/wDvAEYUn14nJXAFcADB06zNwFLC5HqZh0Y4o1T92sCVPAcpHOjo+qMRD4BfCtSp0R7gIWj6NUbLoxxZqXbh6dESNG7mpvrViTaqPRXMCS5NYv+X8g8CywUbny7gIWl6NUjLoxxZqHbl6JbumKtam2WiW6vF3AHgD6AKuB75vZP8qVdxcwx8mXPFzARu462u57aGqqsht2b2pIF7C989R3HKf21HroSBp8CpjjONVT55nOE53jOFVT0+ldKai7ua6O48RHVjMjJI2VNFvSHEmnlTguSb9Njj8paVSa+DzROY5TPRlkOklNwKXAOGAH4HBJOxQVGwcMSbYTgN+lCc8TneM4VZPRzIgxwBwzm2tmq4AbgYOLyhwM/NECDwO9JW1eSbiu2uimT39sSfcuejlF0b7AkhxCaJNu9y6X5qLbBmLSjSnWRtbdKusLPz79sck9uqpvyuLdJBWOIbvCwuwogP7AvIJj84Hdi84vVaY/sKjcResq0ZnZJmnKSXo0j7E4rpufbkyxum7bMLOxGUmVqvIVD/RNU2Yd/NbVcZx6YT4tF/4YACxsR5l18ETnOE69MA0YImmQpK7AYcDEojITgWOS3tc9gGVmVva2Fers1rUNXFG5iOvWmW5MsbpuDTCzNZLGA5OBJuAqM5sl6aTk+ARgEmHJtznACuC4NNq5znV1HMepB/zW1XGchscTneM4DY8nOmcdlN+a25kiqWdOupvF8h446Ygq0UkaKuljkrok00Wy1s9UU9K2kkZLWi9j3eGS9pXUJ0PNj0s6GsDMLKsfuqTPSfpOFlpFugcD50vql7HuAcCtlPA3qUJzD0lHJ/93zVB3SPL9asrj99BQ1GK1z/ZswBcJqxT/A/gj8G2gV0ba2xU8bspI8yDgSeCfwA2F16hSd1yiextwF7BZlXqdgPUJ3rtPAycVHqtS+zPADGD/jL8L+ybfhax1m+N9Cbg4I83PJ5/XtcDNwJCMdA8h+LD8DbgY+BbQM8v3o5G2mgeQ8kPtAvwF2Ct5/iXgAuDcapNdkpBWANcX7Ksq2QF7Jj/Ekcnzywhd5dW+D/sBzwFjkue3Ap/O6D3+IXBq8kfkexno7Qm8VhDrhoTpRz0y0P4+8IPk8RbA/oSpQhtWoflpwpCF4cn37R5gnyrj7EMYKrFj8vwq4CtAP6Bblbp/B3ZInn+dMAbtJ8AGWXwfGm2L6da1F2HFAgg/8DuBrsAR7b3NStp4xgPfBVZJug7AzNZmcCvwSzN7PHl8JrBxBrewrwEnmtlUSZsRftzjJV0u6ctV3m6uIdyuXQuMkXShpPOSgZnt+Z68QVhCf/PkFvs2wkoT12QUazM3E37o44FLJW1U+pSKNAHHmNksoCcwm5D0qmmzXAN0B4ZJ6kX4Q3UMcBHwkyraGNcQauGbAZjZVcDLwCaEP9xOMbXOtG34K7Y/YVT03snzJuAI4DqS8YDt1N2C8KXpS/jRXJdBrE0kNc3k8QDgcWCTZF+fDK7x38BPksfHEWq8m1Shtw1wWvL4VEIt99IqY9wFmEuYtvNNwm3y1wm38htXobsjIRHdCByX7BsMTAAOqDLmTsn/Y4FXgZ2q1Psy8BjwMPDTZN8ngWuAXarQPQn4E3A08PPkd3AiGdw5NOIWU43uAcLtxNGS9jGztWZ2PSFR7dJeUTNbaGbvmNkSwhele3PNTtIoScPaobnWzJrduAUsBd40s9clHQmcK6l7e2NOrvFzMzs3eXw1sAHVNaCvBIZK+ibhR/RLYKCkE6uI8QlCDeM8M/u9mb1vofaxEcEZrr26M4EfEGq0g5J9cwl/VFItDFFG+/3k/7sJsw0OqqJWi5ndTLgtfoDwxw4z+z/C51XNSiI3AHcTkmYPMzvKzC4H+iW1R6eAaKaAmdl7kv5MWKng9CQB/QfYlApLtLThGm8kP+wLJD1L+OF8okrNNcA7kuZJOo/Q4H2sma1sr6YkWfJnPXn+JcL7UHFyc5k4F0qaB/wUONnM7pD0CUK7Vbsxs6cJnRyFsW5C9Z/Z3wlNAmdJHyztNZKQoLPiCeB7wK/MbG17RczsLUn/B3xV0iqgGyFBP1mF5jLgz5JuaE7Oko4BNgbaHWvDUusqZVs3QrvcJwi3LdeQNPhnfI3vkcFtS6KlJOYXgFfIqNct0V4P+Aahx3THDPS2BHYteF5Vr2uJ9+HrhKQ3PEPdUQRz9N9k8XmV0P8rsHUGOr0JIwXuI3RQtPu2tRX95vc28/egEbZo57omnQVmyV+zDHU3Iny5TzWzdv/FLaF7LDDNQmN3VppdCG2XL5jZ7Ax1W9QYs9IkDAt51cyezVI7D/J4DxLdDQhtyssrFm6b7lZAFzOrqgbeqESb6PJEUjczey9jzVx+OI7jVMYTneM4DU9Mva6O4zjtwhOd4zgNjyc6x3EaHk90juM0PJ7oIkHSWkkzJM2UdJOkHlVoXSPpy8njK7WuG3ph2f0k7dmOa7wkrev12dr+VjSOlXRJFtd1Ojae6OJhpZmNMLMdgVWEaVof0N5FCMzseAuzF1pjP8JKJI4TLZ7o4uQBYNuktvVPSdcDTyULMF4gaZqkJ5vnqSZzNS+R9LSkuwjLBJEcmyJpdPJ4rKTpkp6Q9A9JWxMS6veS2uTekjaR9LfkGtMk7ZWc20fSPZIel3Q5pY2GSyJpjKR/Jef+S9LQgsNbSrpb0mxJZxacc5SkqUlcl7c30Tsdg2jmujoBSZ0Ji2/enewaQ5j+9aKkEwg+l7spLAn1kKR7CHNAhwI7EebEPk1YG61QdxPg94Q12F6UtLGZvSlpAvCOmf06KXc98D9m9qCkgYTpTNsT5p0+aGZnS/oscEIbXtazyXXXSPo0YUrXlwpfH2E1lWlJon4XOJSwPuFqSZcBRxLW0nOcdfBEFw/dJc1IHj8A/IFwSznVzF5M9n8G2Lm5/Y2w2OUQYB/gBgsT0xcmE8yL2QO4v1nLzN5sJY5PAzvowyXaeiXTmvYhrAKNmd0l6a02vLYNgWslDSEs2tCl4Ni9ZvYGgKRbgI8T1mPblZD4IKz5trgN13M6GJ7o4mGlmY0o3JH8yN8t3AWcYmaTi8odSEgg5VCKMhCaOz5mRauvJLG0d5rNOcA/zewLye3ylIJjxZqWxHqtmZ3ezus5HQxvo2ssJgP/lUz2R9J2CqvY3g8clrThbU7ppaf+DewraVBy7sbJ/rcJa6c1cw9hNV+Scs3J937C7SOSxhHWnEvLhsCC5PGxRcf2l7Sxwvp9hwAPEXxDvqzEGCc5Xs3abk6D44musbiS0P42XdJM4HJCrf1W4HngKcJy5vcVn2hmrxPa1W6R9ARhxWKAO4AvNHdGEJYaGp10djzNh72/PwP2kTSdcAv9Spk4n5Q0P9kuBH4FnCfpIcIagIU8SFhJdwbwNzN7NOkl/glwj6QngXuBzVO+R04HxCf1O47T8HiNznGchscTneM4DY8nOsdxGh5PdI7jNDye6BzHaXg80TmO0/B4onMcp+H5/x4+J4+KOjBMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Weight Initialization\n", + "- Changing weight initialization scheme can significantly improve training of the model by preventing vanishing gradient problem up to some degree\n", + "- He normal or Xavier normal initialization schemes are SOTA at the moment\n", + "- Doc: https://keras.io/initializers/" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "# from now on, create a function to generate (return) models\n", + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, ), kernel_initializer='he_normal')) # use he_normal initializer\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50, kernel_initializer='he_normal')) # use he_normal initializer\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50, kernel_initializer='he_normal')) # use he_normal initializer\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50, kernel_initializer='he_normal')) # use he_normal initializer\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(10, kernel_initializer='he_normal')) # use he_normal initializer\n", + " model.add(Activation('softmax'))\n", + " \n", + " sgd = optimizers.SGD(lr = 0.001)\n", + " model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.4546 - accuracy: 0.1143 - val_loss: 2.3962 - val_accuracy: 0.1118\n", + "Epoch 2/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.3637 - accuracy: 0.1143 - val_loss: 2.3358 - val_accuracy: 0.1120\n", + "Epoch 3/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.3219 - accuracy: 0.1143 - val_loss: 2.3100 - val_accuracy: 0.1121\n", + "Epoch 4/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.3047 - accuracy: 0.1144 - val_loss: 2.3007 - val_accuracy: 0.1120\n", + "Epoch 5/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2986 - accuracy: 0.1143 - val_loss: 2.2978 - val_accuracy: 0.1120\n", + "Epoch 6/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2963 - accuracy: 0.1143 - val_loss: 2.2965 - val_accuracy: 0.1118\n", + "Epoch 7/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2950 - accuracy: 0.1143 - val_loss: 2.2958 - val_accuracy: 0.1118\n", + "Epoch 8/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2940 - accuracy: 0.1143 - val_loss: 2.2948 - val_accuracy: 0.1118\n", + "Epoch 9/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2931 - accuracy: 0.1143 - val_loss: 2.2938 - val_accuracy: 0.1118\n", + "Epoch 10/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2922 - accuracy: 0.1143 - val_loss: 2.2929 - val_accuracy: 0.1120\n", + "Epoch 11/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2912 - accuracy: 0.1143 - val_loss: 2.2920 - val_accuracy: 0.1120\n", + "Epoch 12/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2903 - accuracy: 0.1143 - val_loss: 2.2911 - val_accuracy: 0.1120\n", + "Epoch 13/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2893 - accuracy: 0.1143 - val_loss: 2.2901 - val_accuracy: 0.1118\n", + "Epoch 14/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2883 - accuracy: 0.1143 - val_loss: 2.2891 - val_accuracy: 0.1118\n", + "Epoch 15/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2874 - accuracy: 0.1143 - val_loss: 2.2883 - val_accuracy: 0.1118\n", + "Epoch 16/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2864 - accuracy: 0.1144 - val_loss: 2.2874 - val_accuracy: 0.1118\n", + "Epoch 17/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2855 - accuracy: 0.1143 - val_loss: 2.2866 - val_accuracy: 0.1118\n", + "Epoch 18/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2845 - accuracy: 0.1143 - val_loss: 2.2856 - val_accuracy: 0.1120\n", + "Epoch 19/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2836 - accuracy: 0.1144 - val_loss: 2.2847 - val_accuracy: 0.1120\n", + "Epoch 20/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2826 - accuracy: 0.1144 - val_loss: 2.2837 - val_accuracy: 0.1121\n", + "Epoch 21/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2817 - accuracy: 0.1144 - val_loss: 2.2826 - val_accuracy: 0.1130\n", + "Epoch 22/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2808 - accuracy: 0.1146 - val_loss: 2.2818 - val_accuracy: 0.1135\n", + "Epoch 23/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2799 - accuracy: 0.1149 - val_loss: 2.2808 - val_accuracy: 0.1136\n", + "Epoch 24/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2789 - accuracy: 0.1152 - val_loss: 2.2797 - val_accuracy: 0.1135\n", + "Epoch 25/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2779 - accuracy: 0.1178 - val_loss: 2.2787 - val_accuracy: 0.1125\n", + "Epoch 26/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2768 - accuracy: 0.1160 - val_loss: 2.2777 - val_accuracy: 0.1125\n", + "Epoch 27/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2758 - accuracy: 0.1151 - val_loss: 2.2767 - val_accuracy: 0.1145\n", + "Epoch 28/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2747 - accuracy: 0.1167 - val_loss: 2.2757 - val_accuracy: 0.1148\n", + "Epoch 29/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2737 - accuracy: 0.1215 - val_loss: 2.2746 - val_accuracy: 0.1131\n", + "Epoch 30/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2726 - accuracy: 0.1161 - val_loss: 2.2736 - val_accuracy: 0.1150\n", + "Epoch 31/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2714 - accuracy: 0.1240 - val_loss: 2.2725 - val_accuracy: 0.1138\n", + "Epoch 32/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2703 - accuracy: 0.1159 - val_loss: 2.2713 - val_accuracy: 0.1207\n", + "Epoch 33/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2691 - accuracy: 0.1315 - val_loss: 2.2703 - val_accuracy: 0.1180\n", + "Epoch 34/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2680 - accuracy: 0.1209 - val_loss: 2.2690 - val_accuracy: 0.1209\n", + "Epoch 35/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2668 - accuracy: 0.1272 - val_loss: 2.2678 - val_accuracy: 0.1210\n", + "Epoch 36/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2656 - accuracy: 0.1330 - val_loss: 2.2668 - val_accuracy: 0.1226\n", + "Epoch 37/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.2644 - accuracy: 0.1296 - val_loss: 2.2656 - val_accuracy: 0.1278\n", + "Epoch 38/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2631 - accuracy: 0.1332 - val_loss: 2.2642 - val_accuracy: 0.1342\n", + "Epoch 39/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2619 - accuracy: 0.1430 - val_loss: 2.2628 - val_accuracy: 0.1382\n", + "Epoch 40/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2605 - accuracy: 0.1449 - val_loss: 2.2614 - val_accuracy: 0.1429\n", + "Epoch 41/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2592 - accuracy: 0.1558 - val_loss: 2.2601 - val_accuracy: 0.1448\n", + "Epoch 42/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2578 - accuracy: 0.1542 - val_loss: 2.2587 - val_accuracy: 0.1468\n", + "Epoch 43/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2564 - accuracy: 0.1538 - val_loss: 2.2572 - val_accuracy: 0.1589\n", + "Epoch 44/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2549 - accuracy: 0.1644 - val_loss: 2.2557 - val_accuracy: 0.1668\n", + "Epoch 45/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2533 - accuracy: 0.1689 - val_loss: 2.2541 - val_accuracy: 0.1727\n", + "Epoch 46/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2518 - accuracy: 0.1753 - val_loss: 2.2526 - val_accuracy: 0.1721\n", + "Epoch 47/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2501 - accuracy: 0.1862 - val_loss: 2.2511 - val_accuracy: 0.1717\n", + "Epoch 48/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2484 - accuracy: 0.1790 - val_loss: 2.2494 - val_accuracy: 0.1859\n", + "Epoch 49/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2467 - accuracy: 0.1899 - val_loss: 2.2476 - val_accuracy: 0.1934\n", + "Epoch 50/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2450 - accuracy: 0.1942 - val_loss: 2.2458 - val_accuracy: 0.1976\n", + "Epoch 51/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2432 - accuracy: 0.2026 - val_loss: 2.2440 - val_accuracy: 0.1966\n", + "Epoch 52/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2413 - accuracy: 0.1998 - val_loss: 2.2422 - val_accuracy: 0.1992\n", + "Epoch 53/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2394 - accuracy: 0.1994 - val_loss: 2.2401 - val_accuracy: 0.2040\n", + "Epoch 54/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2373 - accuracy: 0.2115 - val_loss: 2.2381 - val_accuracy: 0.2047\n", + "Epoch 55/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2351 - accuracy: 0.2041 - val_loss: 2.2359 - val_accuracy: 0.2116\n", + "Epoch 56/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2329 - accuracy: 0.2244 - val_loss: 2.2337 - val_accuracy: 0.2071\n", + "Epoch 57/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2307 - accuracy: 0.2152 - val_loss: 2.2315 - val_accuracy: 0.2167\n", + "Epoch 58/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2285 - accuracy: 0.2207 - val_loss: 2.2291 - val_accuracy: 0.2268\n", + "Epoch 59/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2260 - accuracy: 0.2294 - val_loss: 2.2267 - val_accuracy: 0.2290\n", + "Epoch 60/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2235 - accuracy: 0.2453 - val_loss: 2.2241 - val_accuracy: 0.2274\n", + "Epoch 61/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2208 - accuracy: 0.2360 - val_loss: 2.2215 - val_accuracy: 0.2256\n", + "Epoch 62/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2182 - accuracy: 0.2294 - val_loss: 2.2188 - val_accuracy: 0.2438\n", + "Epoch 63/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2154 - accuracy: 0.2385 - val_loss: 2.2159 - val_accuracy: 0.2500\n", + "Epoch 64/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2125 - accuracy: 0.2536 - val_loss: 2.2130 - val_accuracy: 0.2451\n", + "Epoch 65/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2094 - accuracy: 0.2488 - val_loss: 2.2100 - val_accuracy: 0.2549\n", + "Epoch 66/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.2063 - accuracy: 0.2660 - val_loss: 2.2069 - val_accuracy: 0.2461\n", + "Epoch 67/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.2030 - accuracy: 0.2535 - val_loss: 2.2035 - val_accuracy: 0.2581\n", + "Epoch 68/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.1996 - accuracy: 0.2670 - val_loss: 2.2001 - val_accuracy: 0.2643\n", + "Epoch 69/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.1962 - accuracy: 0.2883 - val_loss: 2.1966 - val_accuracy: 0.2512\n", + "Epoch 70/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.1926 - accuracy: 0.2644 - val_loss: 2.1930 - val_accuracy: 0.2559\n", + "Epoch 71/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.1888 - accuracy: 0.2683 - val_loss: 2.1893 - val_accuracy: 0.2663\n", + "Epoch 72/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1849 - accuracy: 0.2799 - val_loss: 2.1855 - val_accuracy: 0.2625\n", + "Epoch 73/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1808 - accuracy: 0.2807 - val_loss: 2.1813 - val_accuracy: 0.2722\n", + "Epoch 74/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1766 - accuracy: 0.2770 - val_loss: 2.1771 - val_accuracy: 0.2852\n", + "Epoch 75/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1723 - accuracy: 0.2988 - val_loss: 2.1728 - val_accuracy: 0.2891\n", + "Epoch 76/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1678 - accuracy: 0.3036 - val_loss: 2.1684 - val_accuracy: 0.2825\n", + "Epoch 77/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1632 - accuracy: 0.2910 - val_loss: 2.1638 - val_accuracy: 0.2911\n", + "Epoch 78/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1584 - accuracy: 0.3032 - val_loss: 2.1590 - val_accuracy: 0.3000\n", + "Epoch 79/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1534 - accuracy: 0.3144 - val_loss: 2.1540 - val_accuracy: 0.3034\n", + "Epoch 80/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1482 - accuracy: 0.3113 - val_loss: 2.1488 - val_accuracy: 0.3074\n", + "Epoch 81/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1428 - accuracy: 0.3128 - val_loss: 2.1433 - val_accuracy: 0.3224\n", + "Epoch 82/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 2.1371 - accuracy: 0.3268 - val_loss: 2.1377 - val_accuracy: 0.3163\n", + "Epoch 83/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.1313 - accuracy: 0.3369 - val_loss: 2.1318 - val_accuracy: 0.3051\n", + "Epoch 84/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1253 - accuracy: 0.3108 - val_loss: 2.1258 - val_accuracy: 0.3221\n", + "Epoch 85/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1190 - accuracy: 0.3326 - val_loss: 2.1196 - val_accuracy: 0.3274\n", + "Epoch 86/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1126 - accuracy: 0.3279 - val_loss: 2.1131 - val_accuracy: 0.3428\n", + "Epoch 87/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.1060 - accuracy: 0.3549 - val_loss: 2.1064 - val_accuracy: 0.3332\n", + "Epoch 88/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.0990 - accuracy: 0.3566 - val_loss: 2.0996 - val_accuracy: 0.3320\n", + "Epoch 89/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 2.0918 - accuracy: 0.3411 - val_loss: 2.0923 - val_accuracy: 0.3348\n", + "Epoch 90/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0844 - accuracy: 0.3338 - val_loss: 2.0851 - val_accuracy: 0.3551\n", + "Epoch 91/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0768 - accuracy: 0.3552 - val_loss: 2.0776 - val_accuracy: 0.3598\n", + "Epoch 92/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.0690 - accuracy: 0.3706 - val_loss: 2.0699 - val_accuracy: 0.3596\n", + "Epoch 93/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0610 - accuracy: 0.3595 - val_loss: 2.0619 - val_accuracy: 0.3680\n", + "Epoch 94/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.0528 - accuracy: 0.3697 - val_loss: 2.0537 - val_accuracy: 0.3707\n", + "Epoch 95/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.0444 - accuracy: 0.3757 - val_loss: 2.0452 - val_accuracy: 0.3697\n", + "Epoch 96/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.0357 - accuracy: 0.3799 - val_loss: 2.0367 - val_accuracy: 0.3731\n", + "Epoch 97/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 2.0268 - accuracy: 0.3824 - val_loss: 2.0279 - val_accuracy: 0.3715\n", + "Epoch 98/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0176 - accuracy: 0.3743 - val_loss: 2.0187 - val_accuracy: 0.3764\n", + "Epoch 99/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.0082 - accuracy: 0.3894 - val_loss: 2.0093 - val_accuracy: 0.3778\n", + "Epoch 100/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.9987 - accuracy: 0.3851 - val_loss: 2.0000 - val_accuracy: 0.3830\n" + ] + } + ], + "source": [ + "model = mlp_model()\n", + "history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD6CAYAAACvZ4z8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhV1bn48e+bkzkkISQEQgKEIUwJYQqDgAgICk4oKOI8IdVWrV7bqtVbq71ttddaa6vlh4haqyAXRFEBQQQBmRKmMEOAkAHIRCYyn3PW748TIYEAB0hykpP38zx5krPXWvu8K4Q3K2vvvZYYY1BKKeW+PFwdgFJKqYaliV4ppdycJnqllHJzmuiVUsrNaaJXSik3p4leKaXcnFOJXkQmiMh+EUkRkecvUG+wiNhE5PZLbauUUqphyMXuoxcRC3AAGA9kAInAXcaYPXXUWwGUA3OMMQucbXu2sLAwEx0dfVkdUkqplmjLli25xpi2dZV5OtF+CJBijDkMICLzgEnA2cn6SWAhMPgy2tYSHR1NUlKSE6EppZQCEJGj5ytzZuomEkiv8Tqj+ljNN4gEbgNmXmpbpZRSDcuZRC91HDt7vuct4DljjO0y2joqiswQkSQRScrJyXEiLKWUUs5wZuomA+hY43UUcOysOgnAPBEBCANuEBGrk20BMMbMAmYBJCQk6AI8SilVT5xJ9IlAjIh0ATKBacDdNSsYY7r89LWIfAh8bYz5QkQ8L9bWWVVVVWRkZFBeXn45zdVZfH19iYqKwsvLy9WhKKUa2EUTvTHGKiJPAN8CFhx31OwWkceqy8+el79o28sJNCMjg8DAQKKjo6n+y0FdJmMMeXl5ZGRk0KVLl4s3UEo1a86M6DHGLAGWnHWszgRvjHnwYm0vR3l5uSb5eiIihIaGotdClGoZmtWTsZrk649+L5VqOZpVoldKKXey/0Qxaw82/F/WmuidVFBQwLvvvnvJ7W644QYKCgouWOd3v/sd33333eWGppRqpn67aCf3vb+ZTzad91mneqGJ3knnS/Q229mPDtS2ZMkSWrdufcE6r776KuPGjbui+JRSzUtBaSXb0vIJ8vXkxUW7+HRTWoO9lyZ6Jz3//PMcOnSI/v37M3jwYMaMGcPdd99N3759Abj11lsZNGgQsbGxzJo163S76OhocnNzSU1NpXfv3jz66KPExsZy3XXXUVZWBsCDDz7IggULTtd/+eWXGThwIH379mXfvn0A5OTkMH78eAYOHMjPfvYzOnfuTG5ubiN/F5RS9WXNwVzsBt67P4GxvcL57aKdDZbsnbrrpql55avd7DlWVK/n7NMhiJdvjj1v+WuvvcauXbvYvn07q1ev5sYbb2TXrl2nb0+cM2cObdq0oaysjMGDBzNlyhRCQ0NrnePgwYPMnTuX9957j6lTp7Jw4ULuvffec94rLCyMrVu38u677/LGG28we/ZsXnnlFcaOHcsLL7zAsmXLav0yUUo1P6v3ZRPi70VCdBv6d2rNLz5OZPZ3O7ilfwda+dRvatYR/WUaMmRIrXvQ3377bfr168ewYcNIT0/n4MGD57Tp0qUL/fv3B2DQoEGkpqbWee7JkyefU2fdunVMmzYNgAkTJhASElKPvVFKNRSb3fDl9ky2peWfPma3G344kMOoHm2xeAg+nhZmhi/k21av0Ir6fyi0WY7oLzTybiwBAQGnv169ejXfffcdGzZswN/fn9GjR9f5BK+Pj8/pry0Wy+mpm/PVs1gsWK1WwPGQk1KqeVmfksurX+9h34li2gX5sPpXY/DztrAzs5C8kkpG96xeVTjpAzwTZ8FVT4BPq3qPQ0f0TgoMDKS4uLjOssLCQkJCQvD392ffvn1s3Lix3t9/5MiRzJ8/H4Dly5eTn59/kRZKKVcpr7Lx5Nxt3D17E8XlVp4eF0NWUQUfrk8FYPX+HERgVExbSF0HS34F3cfD+FcbJJ5mOaJ3hdDQUEaMGEFcXBx+fn60a9fudNmECROYOXMm8fHx9OzZk2HDhtX7+7/88svcddddfPbZZ1xzzTVEREQQGBhY7++jlLoy5VU2fvbxFn44kMPT42J47Jpu+HpZSM4o5F+rU7h7SCdWH8gmPqo1oeVp8Nl90KYb3P4+eFgaJKaL7jDlCgkJCebsjUf27t1L7969XRSR61VUVGCxWPD09GTDhg08/vjjbN++/YrO2dK/p0rVt/IqG4/+O4l1Kbm8Nrkvdw7udLps7/Eibnh7LdPjffHcPZ/7QnbToXgn+LaGR7+H0G5X9N4issUYk1BXmY7om4m0tDSmTp2K3W7H29ub9957z9UhKaVqsNrsp5P8X6bEc0dCx1rlvSOCeCjWwqP7Hibcs4ASn3gY/BL0nQohnRs0Nk30zURMTAzbtm1zdRhKqfP4x/cprD2Yy+tT+p6T5AEoPckLeS9RShXTPP6XT37+KHg0zppTmuiVUuoKJaae5B/fH2TywEjHdE1hpuMCq7FD3O3Q/VqYdw9eRUfZNHQmt4QOxtJISR400SullFMqrXa8Pc+9UbEoK43fzt1Jxzb+vDopDg7/AAseBms5+AbDgWU4dlU1cPscroub0uixa6JXSqmLOJxzigl/X8vs+xMY1aP63vfyQlj5Kq0S32eZgYqwPvh/1Rt2fw6hMXDnfyC0O6RtgN2LoEN/cEGSB030Sil1USv2ZFFptfPR+lRHot/zJSz5NaYkh4+t4+jVNZqhlv1wcLkjmd/01pkHn6JHOD5cSB+YaiCtWjn+kY8dO8btt99eZ53Ro0dz9m2kZ3vrrbcoLS09/dqZZY+VUvXrhwOONeNX7c8mb+9amH8/BLbnb9H/4i8e0+lz95/hga/ghXSYMrtBnm69EproG1iHDh1Or0x5Oc5O9M4se6yUqj8lFVYSU09yfWw77AZKv30FAtqSe8cXzDwQzJRBUQT6erk6zAvSRO+k5557rtZ69L///e955ZVXuPbaa08vKfzll1+e0y41NZW4uDgAysrKmDZtGvHx8dx555211rp5/PHHSUhIIDY2lpdffhlwLJR27NgxxowZw5gxY4Azyx4DvPnmm8TFxREXF8dbb711+v3OtxyyUurSbTiUR5XN8MBV0TwSmU7HgkTsI55h3vY8Km127r8q2tUhXlTznKNf+jyc2Fm/52zfFya+dt7iadOm8fTTT/Pzn/8cgPnz57Ns2TKeeeYZgoKCyM3NZdiwYdxyyy3n3Y/1X//6F/7+/iQnJ5OcnMzAgQNPl/3xj3+kTZs22Gw2rr32WpKTk3nqqad48803WbVqFWFhYbXOtWXLFj744AM2bdqEMYahQ4dyzTXXEBIS4vRyyEqpi/vhQA5+XhYGdW5NT/MZx00bDoZM4j+L9jOyexjdw5vWNE1ddETvpAEDBpCdnc2xY8fYsWMHISEhRERE8Nvf/pb4+HjGjRtHZmYmWVlZ5z3HmjVrTifc+Ph44uPjT5fNnz+fgQMHMmDAAHbv3s2ePXsuGM+6deu47bbbCAgIoFWrVkyePJm1a9cCzi+HrJS6MGMMqw9kM7xbKD5HVxN6civvy2Se+2I/J4rKeWB4tKtDdErzHNFfYOTdkG6//XYWLFjAiRMnmDZtGp988gk5OTls2bIFLy8voqOj61yeuKa6RvtHjhzhjTfeIDExkZCQEB588MGLnudCaxQ5uxyyUuoCrBXkbJrPkIJd3BLTFVZ+AsGdMF3u4/jGTKJC/BjbK9zVUTpFR/SXYNq0acybN48FCxZw++23U1hYSHh4OF5eXqxatYqjRy+8we+oUaP45JNPANi1axfJyckAFBUVERAQQHBwMFlZWSxduvR0m/Mtjzxq1Ci++OILSktLKSkpYdGiRVx99dX12FulWjC7DRZOJ3zFE/zVeybX7PgNHN8Bo5/jjmFdEYEHropu1Kdbr0TzHNG7SGxsLMXFxURGRhIREcE999zDzTffTEJCAv3796dXr14XbP/444/z0EMPER8fT//+/RkyZAgA/fr1Y8CAAcTGxtK1a1dGjDhzz+2MGTOYOHEiERERrFq16vTxgQMH8uCDD54+x/Tp0xkwYIBO0yjlhEqrnVMVVtoEeJ9baAx88yzsXcz81tP5vGIw8x7q50j+7WLpJcJ3/3UN0aEB57ZtonSZ4hZMv6eqpUnNLWHu5jQWbMmg0mpnw2+vPXd/1u//B9b8L9bhTxO3dhh3JnTklUlxrgn4ElxomWKdulFKtQgLtmQw+o3VzF53hOiwAIorrGw8lFe70qFVsOZ/YcB9bO76BOVV9jNLHjRjTiV6EZkgIvtFJEVEnq+jfJKIJIvIdhFJEpGRNcpSRWTnT2X1GbxSSjlr+e4TRIX4sf75sXz66FD8vCysOZhTu9KRH8DDE274X3ZkFAEwsFOIC6KtXxedoxcRC/AOMB7IABJFZLExpub9fyuBxcYYIyLxwHyg5oT1GGNM7pUGa4w57z3q6tI0xSk7pRpSSs4p4joE0y7IF4CruoWy5sBZiT4jCdrFgZcfuzIL6djGj5C65vGbGWdG9EOAFGPMYWNMJTAPmFSzgjHmlDmTOQKAes8ivr6+5OXlaYKqB8YY8vLy8PX1dXUoSjWKSqudo3mltR5uGhUTRmpeKWl51UuM2G1wbBtEOaa5kzML6BsZ7Ipw650zd91EAuk1XmcAQ8+uJCK3AX8GwoEbaxQZYLmIGOD/GWNm1fUmIjIDmAHQqVOnc8qjoqLIyMggJyfnnDJ16Xx9fYmKinJ1GEo1iqN5Jdjshm7hZ+6U+Wnu/YeDOdwX2hly9kPlKYhMoKC0kvSTZdw9pGG3+GssziT6uuZKzhlWG2MWAYtEZBTwB2BcddEIY8wxEQkHVojIPmPMmjrazwJmgeOum7PLvby86NKlixPhKqVUbSnZpwDo3jbw9LEuYQFEhfix5kAO9w3rDJlbHAVRCezMLARwmxG9M1M3GUDNDRCjgGPnq1ydxLuJSFj162PVn7OBRTimgpRSqtH8lOhrjuhFhKtj2lYvWmaHzCTwCYY23Vpkok8EYkSki4h4A9OAxTUriEh3qb5KKiIDAW8gT0QCRCSw+ngAcB2wqz47oJRSF5OSc4rI1n74e9eexLimRxinKqxsPZoPGVsgciB4eLAzo5DOof4E+zft5YedddGpG2OMVUSeAL4FLMAcY8xuEXmsunwmMAW4X0SqgDLgzuo7cNrhmM756b0+NcYsa6C+KKVUbaUnoaKIlOxTdKtjlcnh3cOweAgb9qUxNHs3XP0sAMkZhfTv5D77Pji1BIIxZgmw5KxjM2t8/Trweh3tDgP9rjBGpZS6PF8/g0ldS2bxmwzt0uOc4iBfLwZ0bM2J/ZvA2CEygZMllWQWlHH/Ve5xIRb0yVillLuyVUHKSqQ0j5vsq8+7bvw1PdoSlLfD8SJykNvNz4MmeqWUu0rfDJXFWD39ecSyhO5hfnVWu3NIRwZZDpPj2R5atWVXdaKP1USvlFKuVWm1X/gBypQV4OHJhu7P0sUji97FP9ZZLTzQlxG+qWysiGbl3iySMwroEhZAsJ97XIgFTfRKqWbIbjfc8s91vPr1BXZiS/kOOg5jqedYjtGWwK0z665XfIJWFSfI8I/l1a/3sD29gDg3Gs2DJnqlVDO0an82+04Us+Voft0Vik849pXufi0HcspZHjgZ0jY4bqE8237HRj8jRl/P0bxSsooqiNdEr5RSrvXh+lQADmadwm6vPX1jjMGestLxdfdrSck5xZFOUxwPQ636I+QdclQsL4TFT8HXT0N4LPGDR3ND3/YAbjei1x2mlFLNysGsYtYezKVLWABHckvILCijYxv/0+W/XpDMTQfmMSognJOtelJQmkGniHBo9xR8/wf4x0Bo3dlxV86pEzDilzD6BfD04fe3xNKzXRAJ0c1/aeKadESvlGpWPtqQirenB89PdKyE/tPyBj9ZfyCLfpVbWW2NZ2emY0357uGtHA9DPbkVbnjDsRRxm67wyAoY/yp4Oe7ICQ/05ZfjYvCyuFdq1BG9UqrZKCyrYuGWTCb168CwLqEAHMgqZkyvcAByiitod2oPIT6nWHSqN2s+2w5UJ3oRCO3m+BjyqMv64Aru9WtLKeXW5iemU1Zl48ER0QT7exEe6MPBGiP6XZmFXGPZgREPxt4wlcKyKvy9LXQIbtl7L+iIXinVLBhj+HjjUYZ0aUNsB8fF0ph2rTiYVXy6ztFD+7jPsgJb1FBuGxFPqWcwWUUVLX5nOk30SqlmYc/xItJOlvLEmO6nj8WEBzI/Kd2xzWhVGWN3PIOP2PGc9E8A7hnqPuvVXAmdulFKNQsr9mQhAmN7h58+FtOuFaWVNo4VlMFXvySq8hD/iXwJwrpf4EwtjyZ6pVTTZbfD5zNg/zK+25vFwE4hhLXyOV0cE+7YMapk7Tuwcz5/rboDj57XuyraJksTvVKq6TqRDMmfYV/4KPmZhxjfp12t4pjwVoChw+5Z5Lcbzju2SW73sFN90ESvlGq6Dq4AwGaz8qb3vxjXM6xWcUiANwMCTtKqIpsdQdcAcvpCrTpDE71Squk6uBw6DOT94CcY6rGP7gdmnVPlxsAUAFaV93Rs/+dGq07WF030SqmmqSQPMhKp6HItf83qz+4242HVn89ZmGwou8k2IXyXHaTTNuehiV4p1SScvTgZh74HDIleg6iyQcX1b0BAGKz+85k6xtC9dBvr7b3JLCx3q12h6pMmeqWUy6XmltDvleW88HkypZVWx8GUFeAfyoLjbWkT4E2/mM4w4D44tBKKjjnq5B7ArzKPjfY+AMTp/HydNNErpVxuXmI6JZVW5iWmc9M/1rEr/STWAytI9h3Msj05jO0VjsVDoP/djk28d8x1NDyyBoANPyX6yCBXdaFJ00SvlHIpq83Owq0ZjO3Vjk8eGUpJhZWX3v0Yz/KTfJAdw6iYtjw9LsZRObQbdB4J2/4DxkDqWgiKpMS/Ix3b+NHa39u1nWmidAkEpZRLrdqfQ05xBVMTohjePYxlvxzF3rlLsWd48Mp/PUlQm9r3zjPgXvjiMTj6I6Sug+7juckzkkBfTWfno98ZpZRLfZaYTlgrn9NLDYcEeDPcvgWiEs5N8gB9boElv4YVv4PSPOhyNb8fENvIUTcvOnWjlHKZ7KJyVu3PZsqgyDObfexeBMe2Qcx1dTfyDoC4yZBZfZtl9NWNE2wzpoleKeUyC7dmYrMbpiZ0dBzY+jEseBg6DoWhM87fcMB9js+tO0GIrlB5MU4lehGZICL7RSRFRJ6vo3ySiCSLyHYRSRKRkc62VUq5t+LyKn5MyT3nuDGG/0tKZ3B0CN3atoL1/4TFT0DXMXDfIvC9wK2SUQkQNQT63NqAkbuPi87Ri4gFeAcYD2QAiSKy2Bizp0a1lcBiY4wRkXhgPtDLybZKKTdVXmXj4Q8TSUzNZ+HjwxnU+cym21vT8jmcW8LPr46CxU/B1o8ciXvye+B5kbtnRGD6igaO3n04M6IfAqQYYw4bYyqBecCkmhWMMaeMMT891hYAGGfbKqXck81ueHredhJT8/H0EL5OPlarfNG2TLp65XHbtocdSf7qZ+H2ORdP8uqSOZPoI4H0Gq8zqo/VIiK3icg+4Bvg4Utpq5RyL8YYXvlqN8t2n+C/b+rDtb3D+Sb5OLbqZQ6qbHa27djOYq8XseQfgWmfwrW/Aw+LiyN3T84k+ro2WzTnHDBmkTGmF3Ar8IdLaQsgIjOq5/eTcnJynAhLKdVUfZV8nH9vOMqMUV15ZGQXborvQHZxBYmpJwFYezCH+6oW4Ec5TF8JvW50ccTuzZlEnwF0rPE6Cjh2nroYY9YA3UQk7FLaGmNmGWMSjDEJbdu2dSIspVRTte5gDm0CvHl+Qi8Aru0djp+Xha92OP77/7B5G1M818LA+6FtD1eG2iI4k+gTgRgR6SIi3sA0YHHNCiLSXaq3WReRgYA3kOdMW6WU+9mZWURcZDAeHo4/6v29PRnXpx1Ld52gsKyKmJQ5eACWkU+7NtAW4qKJ3hhjBZ4AvgX2AvONMbtF5DEReay62hRgl4hsx3GXzZ3Goc62DdERpVTTUF5l42BWMX3PWmDspvgITpZU8uaiNdwh35MXMwVadzzPWVR9cmoJBGPMEmDJWcdm1vj6deB1Z9sqpdzXvhPFWO3mnLXhr+nRlkAfTzrseR9PTxth1+tjNY1Fn4xVStWrXZmFAOfs9uTrZWFST1/utXzH3tDr8Ajr5orwWiRN9EqperUrs5DW/l5EBvucU/a491L8qCRw/HMuiKzl0kSvlDrtuz1ZHMwqvqJz7M44yZt+HyB/7Qn5R88UlOQReeBjJO42OvcaeIWRqkuhiV4pBTg2AHly7jbe+u7gZZ+joqyYZ/JeYWzJEigrgK9+6dggBGDDP6CyBLlGR/ONTRO9UgqAlJxTlFXZ2Hui6PJOUHoS2we3MFq2sbP/yzDhz3B4FWz7GEpyYdMsiJsC4b3qN3B1UbrxiFIKgJ0ZjouoqbkllFXa8PO+xOUIVv0Rn5xkHq/6JS9e/RiE+MLuL+DbF+HoeqgqhWt+0wCRq4vREb1SCoCd1XfL2A0czL7EeXq7DfZ8ye6gUWz0GUHHNn7g4QG3vA22Ksdm3n1vh7Y9GyBydTGa6JVSACRnFNIh2BeAvcedm74prbRSXmVz7N9aksM3tqHERQZR/aC8YzPv6/4APsGgc/Muo1M3SimqbHb2HC/ivmGdmbs5jb3Hzz+i35qWz/trj7DneBGpeSUE+3nxbfcvCPfyZ25+L+7qc9aGIUMehYEP6PLDLqQjeqUUB7NOUWm1069ja3q2D2TfeS7IGmP41fwd/Hgolx7tWvHU2BjC/C1Y9n/N/qDhFNm8znlQCtAk72I6oldKsTOzAID4yGB6tQ9i6a7jGGPOTMFU25pWwOHcEv4yJZ6pgx3r1DwalUGrzwr57+OxAOcsfaBcT0f0SimSMwoJ9PWkc6g/vSMCKSit4kRR+Tn1Fm7NwNfLg4l9258+1urQ1xgvf4Lib6BPRBCd2vg3ZujKCTqiV0qxM7OQvpHBiAi92jtWndx3vJiIYL/TdcqrbHy94xgTYtsT6OvlOGi3wd7FSMx1vD51mCtCV07QEb1SLVyl1c6+48X0jXJMufSKCAQ458Gp7/ZmUVRuZcqgqDMHq++2Ifa2RotXXTpN9Eq1cAeyiqm02YmPbA1AkK8Xka392HfWnTcLt2QQEezL8G5hZw7u/D/w8oeY6xozZHWJNNEr1cIlVz8RW/Miau+IwFr30mcXlfPDgRxuGxCJpXrXKEryIHm+40Eob52Xb8o00SvVwu3MLCDYz8vxNGu13hFBHM4tcTwMBXyxPRO7ofa0zZY5YC2HYT9v7JDVJdKLsUq1cDszC4mPCq51K2Wv9kHY7IaU7FOUVFj5x/cpDOocQre2rRwVrBWw+T3oNhbCe7socuUsHdEr1QJU2ey8tnQfmQVltY4XllWx73gx8VG1733/6YLszB8Ocd+czfzGewH/DvsYqqpvudz1OZzKgmG/aJT41ZXRRK9UC5CUms/MHw4xe+3hWse/35fFCLYzoXPt+tGhAfh6efB18nFGtLNyr/VzAnZ/Ch/fBmX5sPEdaNsLul/biL1Ql0sTvVItwMbDeQB8k3wcm92cPp62+Ss+8n6duD1/q1Xf4iHcFN+Bm/t1YFbsHsRuhXG/h8wk+NcIOLEThj0OZz05q5omTfRKtQAbD+fhZRGyiyvYdMSR9EsLc7jr2OsAyIGlYK2s1eaNO/rxj6l98dr+kWMufuQzcO9CqCgG/1CIv7PR+6EujyZ6pdxceZWNbWkFTBvcCX9vC1/tOA7GUPh/TxJCEWn9nobyQjjyw7mNDyyFokwYPN3xussoeGwdPLQUvPzOra+aJE30Srm5rWn5VNrsjOnVlvF92rF013GsO+YTkbGU/+dxBx1ueB58gmDPF+c2TpwNQVEQc/2ZYyGddQORZkYTvVJubuOhPDwEEqLbcHN8B6pKizDf/IrtpgeZfX6Gp48f9JwI+75x7Ab1k9yDcHg1JDwIFr0TuznTRK+Um9t4+CR9I4MJ8vViVI+23Oa7Ba+qIv5QeRfX9a1+AKrPJMfdNKlrzzRMfB88vGDA/a4JXNUbTfRKuauyfKwLf0ZWegrDuoYC4O3pwQMBmzhqD+eAdx+Gd3ccp9tY8G7l2Mwb4MC3sHkWxE2BwHYu6oCqL04lehGZICL7RSRFRJ6vo/weEUmu/lgvIv1qlKWKyE4R2S4iSfUZvFKqthOF5cz4dxL7TxRD4mw8d87jSY/5DOtWndCLjtG9ZCtf2Ecytnc7fDwtjuNeftDjetj3NaT+CPMfgIh4uPEN13VG1ZuLTryJiAV4BxgPZACJIrLYGLOnRrUjwDXGmHwRmQjMAobWKB9jjMmtx7iVUnVYtC2T5Xuy2Juey2qvWSAWbvVYR3lQARAOO/8PwWDvO5VHR3at3bjPJNi1ED6+FVp3gnsWgE+gS/qh6pczI/ohQIox5rAxphKYB0yqWcEYs94Yk1/9ciMQhVKqcRgD+akArN6fTWRrP66uWoOlNJu/+z2JXSy02vy2o27yfIhM4Jk7J567t2v38eAV4LhH/r5FEBCGcg/OJPpIIL3G64zqY+fzCLC0xmsDLBeRLSIy43yNRGSGiCSJSFJOTo4TYSmlAFj1J/h7P8o3zGLL0Xxu6RfBiyGrOGiiePvkYJLb3QY75sK+JZC1C/pNq/s83v7w0BKYvtIxolduw5lEX9czzqaOY4jIGByJ/rkah0cYYwYCE4FfiMioutoaY2YZYxKMMQlt27Z1IiylFOmJsPYN8AnG59vnGE0SNwcfJiB/DxUJjxHs543v6GdAPGDhdPDwhNjJ5z9fh/4QfKFxnGqOnLk5NgPoWON1FHDs7EoiEg/MBiYaY/J+Om6MOVb9OVtEFuGYClpzJUErpYDKElg0w/FA0/QVZLx7K/8w/8A3uTf4hxI3YTrbbvTFw0Ng4P2Oh596TISAUFdHrhqZMyP6RCBGRLqIiDcwDVhcs4KIdAI+B+4zxhyocTxARAJ/+hq4DthVX8Er5e7mJ6bz8IeJ2O11/BG9/CU4eQRu+xemVTtmWH9NsXcYcmIHJDwCXn6OJA+OdWoCO8CQ6c14FcQAABk/SURBVI3bAdUkXHREb4yxisgTwLeABZhjjNktIo9Vl88EfgeEAu9Wb15gNcYkAO2ARdXHPIFPjTHLGqQnSrmhTzensT29gOV7spgQ1/5MwZG1kDQHhj8J0SPZf6KIvcW+JE54jxtPLXSsLFlTcBQ8u7dxg1dNhlPPNRtjlgBLzjo2s8bX04FzhgrGmMNAv7OPK6UurrC0iuSMAsCxAcj1se3O7AK150vHHTJjXgJg9X7HDQyDBiRA8EiXxKuaLn0yVqkmav2hXOwGbunXge3pBWw+cvJMYdoG6DgYvHwBx22VvdoH0j7Y10XRqqZME71STdTalFxa+Xjyx9viCA3wZuYPhxwFZQWQtRs6DQeguLyKpNR8RvcMd2G0qinTRK9UE2SMYc2BHIZ1DSXQ14sHhkezan8O+04UQfpmwEDnqwBYtT8Hq90wuqfelqzqpoleqSboaF4pGflljOrheDr1/qs64+9tYdYPhyFtvWNVycgEjDHMWnOI6FB/Bke3cXHUqqnSRK9UE7Q2xbE01MjujkTf2t+bu4Z04ssdxyg5uNbxYJO3P2sO5rIrs4jHrumGxUP3b1V100SvVBO09kAOka396BIWcPrYU2NjaO8P3lnbsXV0rBn47qoU2gf5cttAfZpVnZ8meqWaGKvNzoZDeYzqEXbmdkog2N+LN0fY8MLKsqKubDl6kk1HTvLoqK5nlhtWqg66P5hSTcyOjAKKK6yM7H7uxdWhln0AvLIjkIisPYT4e3HXkI7n1FOqJh3RK9XEbN6dQleP44zoXseaNEc3YA3tRYVXa3ZkFPLQiC74e+t4TV2YJnqlmoqSXKzLXuShzTfyvfeztP7wGlj7VyhIc5TbbZC+Gc8uw3l9Sl8GdGrN/Vd1dm3MqlnQoYBSTcHWj2Hpc3hUlfGNbQT9hoyme/YKWPkqrPwD9JwIXcdAZTF0Gs6EuAgmxEW4OmrVTGiiV8rVKk7Bty9ibxfLPdn3U966K5NvGg7yK8g/Cts+hqQPYH/1clOdhrk2XtXsaKJXqhHdP2czvdoH8tsbep85mDwPKgpZ2fFJNqRY+GBKzJm7bUI6w9iX4OpfOfZzLc2D1nrxVV0aTfRKNZLi8irWHsxh46E8HhnZhXZBvo79Xje/hz2iP69sC6BflA+je9SxlIGXLwy4p/GDVm5BL8Yq1Uh2ZhRiDFTa7Ly/7ojj4JEfIGcfieF3kFFQzlPXxtS6d16p+qCJXqlGsi3dsbb86J5t+WTjUQpLq2DT/8PmF8pTydH0iwpmbC9dgVLVP030SjWS7ekFdA0L4LkJvSiptLFo1Y+Y/UtZwDhK7V68NW2AjuZVg9BEr1QjMMawPb2A/h1b0zsiiLG9wpHE2djx4M38q3nzzv611rVRqj7pxVilGsHxwnJyiivo17E1AL8Y0Y6YIytZYh/M1LFDGN+nnYsjVO5ME71SjWBH9fx8/+pEPyjvG5BS9kbfz7PjergyNNUCaKJXqhFsTy/A2+JBr4hAsFlh47uYTlfxm4f1lknV8HSOXql6ZrXZeWDOZpbtOg7WCvj4NrrteYc+EYGO5YT3LoaCNGT4k64OVbUQOqJXqp6tTcnlhwM57D5WxJhhm/E59D1TgdBAPzAjYMM/oU036DHR1aGqFkITvVL1bPH2Y/h5WQguPYLlxzcp7HYz3x3IZ8rxWfBlKWRugRv/Ch76B7VqHJrolapHpZVWvt19gkn9Inj0yGuUnPLmo8DH+HvVSSbEBBKw/T/g1wb63e3qUFULooleqXq0Yk8WpZU2pgdtolvJNn7PDD7cWEiwny/+d30Iy56DjkPB29/VoaoWRBO9UvXBZoVN/yJy3XK+8ztKt43HoONQOnSfAUsP0K9ja8TLF27+u6sjVS2QU5OEIjJBRPaLSIqIPF9H+T0iklz9sV5E+jnbVqnmpMJqY+7mNPJOVZw5aAws/TUsf4mwkgPYgzsiwx6HOz7kwRHdGNk9jJvjdZMQ5ToXHdGLiAV4BxgPZACJIrLYGLOnRrUjwDXGmHwRmQjMAoY62VapZuODH1N5bek+/vfb/bx8cx9u6dcBWfcmJM1hV5eHuGnveL6ZOhI6BAPgDfxn+lDXBq1aPGemboYAKcaYwwAiMg+YBJxO1saY9TXqbwSinG2rVHNRXF7FzB8OkdA5hCq74ZfztpO97iMezX2d451u4qWiycSEG/pEBLk6VKVqcSbRRwLpNV5nABcaojwCLL3UtiIyA5gB0KlTJyfCUqpxzVmXSkFpFS/fHEufUGHXvP+mT+rHrLf34cEDd1BJMb++vqeuQKmaHGcSfV0/tabOiiJjcCT6kZfa1hgzC8eUDwkJCXXWUcoldszD/t2rDCtqzT8jBtA3MwPm/ZV+p7Kw97+b7iNfYUGFNwWlVQzp0sbV0Sp1DmcSfQZQc5PKKODY2ZVEJB6YDUw0xuRdSlulmqyt/4bFT5Hj3wM/U8qNBZ/C0v9A5CCYNhePqEGEA7pdiGrKnEn0iUCMiHQBMoFpQK2nPUSkE/A5cJ8x5sCltFWqyUqcDd88S0X0WK4/9BCj+nTk7cndIT8VwmP1yVbVbFw00RtjrCLyBPAtYAHmGGN2i8hj1eUzgd8BocC71fOTVmNMwvnaNlBflKo/e750JPlu1zM5ZwblVPH0uBjwaQXt+7o6OqUuiRjT9KbDExISTFJSkqvDUC1VVRn8IwGrb2tuKX+Fw/lVzHlwMMO7hbk6MqXOS0S2GGMS6irTvz2VOtv6f0JRBs+X3K1JXrkFTfRK1VR0HNa9yf42Y/j8ZDRzHtAkr5o/TfRK1bTyVYzdym8Kb2dsr3YM765JXjV/muhVi7Z053F+8clWqmx2OLYNdnzKke4PsKMkhLuHdrz4CZRqBnT1StViGWP423cHOJB1ioGdQ3gk/0PwbsXrJTcSEWznmh56d7xyDzqiVy3W1rR8DmSdorW/F39fsQ/bviWUdhrD8kOlTE3oiMVDlzJQ7kETvWqx5m5OJ8Dbwn8eGUoPWwqWkmx+EMfdaVMH67SNch+a6FWLVFRexdfJx7ilfyRxkcE82/kQVuPB/xzoyOgebYls7efqEJWqN5roVYv05bZMyqvs3DXEMXIfWrmJZI/eZFb4Mm2Irp6q3IsmetXiGGP4dHM6sR2C6BsZDPmpeOTsofWASdwYH8HYXnoRVrkXvetGtTjJGYXsPV7EH26Nc6wdv38ZAF1H3M47od1cHJ1S9U9H9KrFmbXmMH5eFib17+A4sP8bCOsJmuSVm9JEr1qGsgLI3su324/yzc7jPD66G0G+XlCWD6k/Qs+Jro5QqQajUzfK/VWVwYc3QtYuxuHBev92tM/sBQtCoaoUjA163uDqKJVqMJrolftb/hJk7eKL0EdJzz7JA92q8Cg/BgVHoTQP2sVBVJ2ruyrlFjTRK/e2ZzEkzial+0M8vWsMv5nQk6DR3V0dlVKNSufolfsqSIPFT3AqtC+37ruWgZ1aM+Pqrq6OSqlGp4leuSdj4MtfYLPZuD1nOhFtgpj9wGA8Lfojr1oe/alX7ungcjiyhterplIW2JlPpg+lTYC3q6NSyiV0jl65H7sNs+JlMj068I1lAp9NH0p4kK+ro1LKZXREr9zP9k+RnL38sfwOnrquN1Eh/q6OSCmX0kSv3EtlKaz6I6m+vVnnPZyb+3VwdURKuZwmeuVeNr4Lxcf57ampTBnYEX9vnZ1UShO9ch+2Ktj4LkfbjGS9tSd3D9XlhpUCTfSqmSoqr3Js6F3ToVVQmsfMklEMiW5Dj3aBrglOqSZG/65Vzc6pCiuj/rIKDxFu6deByQMj6RsZjCR/RpV3axYU9uKNiTqaV+onTo3oRWSCiOwXkRQReb6O8l4iskFEKkTkV2eVpYrIThHZLiJJ9RW4arkWbz9GQWkVcZHBfLo5jVv++SMD//sLynZ9xWLrEAID/JkQ197VYSrVZFx0RC8iFuAdYDyQASSKyGJjzJ4a1U4CTwG3nuc0Y4wxuVcarFIAczen0at9IB89NJiiMivLdh/Hd+8C/A5XsDPkOn4ztCc+nhZXh6lUk+HM1M0QIMUYcxhAROYBk4DTid4Ykw1ki8iNDRKlUtV2ZRayM7OQV26JRUQI9vfizsGdYP+PENyJ3//iEfDQS09K1eTM/4hIIL3G64zqY84ywHIR2SIiMy4lOKXONndzGj6eHtzav8aP4Kkcx4XYvrdrkleqDs6M6KWOY+YS3mOEMeaYiIQDK0RknzFmzTlv4vglMAOgUye9kKbOVVpp5cvtx7gxPoJgf68zBbs/d2weEj/VdcEp1YQ5M/zJADrWeB0FHHP2DYwxx6o/ZwOLcEwF1VVvljEmwRiT0LZtW2dPr1qQr3cc51SFlbuG1BgIpCfC5lnQri+E93ZdcEo1Yc4k+kQgRkS6iIg3MA1Y7MzJRSRARAJ/+hq4Dth1ucGqlqu8ysYnm47SPbwVCZ2C4eAK+OBGeH+cY5eosS+5OkSlmqyLTt0YY6wi8gTwLWAB5hhjdovIY9XlM0WkPZAEBAF2EXka6AOEAYtE5Kf3+tQYs6xhuqLcUVZROR9vOMqnm9OoLCnggwEpyDv/BXkpEBQJE16DAfeBTytXh6pUkyXGXMp0e+NISEgwSUl6y31Ll36ylAlvraG0ysYD3Up4Mec5vCpOQtRgGPIz6DMJPHWNeaUARGSLMabOzY/1yVjVZH3wYyoVVjvfPxxNly8ng7cP3PsddBzs6tCUalY00asmqbi8ivlJ6Uzr40OXpfeCtRweXqYXXJW6DJroVZP0WWI6looCXsx/G4qOw/1fapJX6jJpoldNjs1u+OrHrXzV6k/4FRyDaZ9Cp6GuDkupZksTvWpy1iUm8ffS39LBqxjung/dxrg6JKWaNU30qmkpOkbct3fi7VGOPPAldKrz+Tql1CXQhUGUSyzbdZyr//I9y3efOH3M2O1kfPQIfrZTrBjyPhZN8krVC030qt4t3nGMZ+fv4HzPaKTllfLr/0vmeEE5Mz7ewt9WHKDCamPR+38mKm89X4TN4Ibx1zVy1Eq5L030qt59+OMRFm7NYGta/jlllVY7T8zdigh8+8wopgyM4u8rDzLlz59xXcbbHA0axLSfv4Kvl64nr1R90Tl6Va8KS6vYnl4AwH82pjGoc5ta5X9Zto/kjEJm3juQbm1b8cYd8cR1aEXsygfw8fSg80MfgEWTvFL1SUf0ql6tS8nFbiA+Kphvko9zsqTydNmqfdnMXneE+6/qzIS4CABEhIfsnzPE7MRr4p8gpLOrQlfKbWmiV/VqzYEcAn09eW1yPJU2Owu2OPasOVlSya8XJNOrfSC/vaHGg097v4Lv/wfi74RBD7omaKXcnCZ6ddl2ZRbWmoc3xrDmYA4ju4fRp0MQQ6Lb8MmmNOx2w0tf7KSwrJI3p/Y/M/9+Yid8PgMiE+Dmt0Hq2uNGKXWlNNGry1JcXsX9czbzwJzN5FdPz6Rkn+J4YTmjejg2jrlnWCeO5pXy/OfJLNl5gmfG96BPhyCw2+Hoeph7F/i2hmmfgJevK7ujlFvTi7Hqgmx2w2tL99KnQxC3DYg6fXzmD4c4WVKJCLy7OoUXr+vCht2HAU4n+glx7ensX0XB1kU8E+7JYwHZsPxD2LUIijLAJxge+BIC27uia0q1GJro1XkZY3jpi13M3ZyGxUNoF+TL8G5hHC8sY/baI0zq3wFviwcfrU/l2RO/4c6MzZQG301k4PUA+KR8yzeez9LKOxeKgG8AD0/odi2M+z30nKgbhijVCDTRt0CllVb8vCzIRebE3/ruIHM3p/HwiC6sOZjDE59u46snR/LWigMYA7+6ricWD8Ej+VN809ey33TisYoP4L0kCI2B3Z8T0C6W8mvfwze0M3j5gW8weAc0Uk+VUqCJvkXJO1XB68v2MT8pg94RQdx/VWcm9e+Av3ftHwOrzc6H61P5+8qDTE2I4r9v6s3h3E7c+s8fue/9TRzJLWH6yC50bOMPJXm87DOXxMoeTK38HV+Nyydux58gey+MfgEZ+V/46i5QSrmUJno3VlZpI6+kgpMllWw5ms/fVhygtNLGnQkd2ZFRwAuf7+RPS/ZyVddQ+ndqTe+IIDYdPsnCrRnkFFcwrnc4f7qtLyJCt7at+Nud/fn5vzfQxteTX4zp7niT5S/hZy/hTx4/w8vTk26j7oGrJ0N5AQRHXThApVSjcKtE/+KinVTZ7OccNwbsBqx2O1a7AQOeFsHTwwMPcc1dfcaAzRhsdoPVZkDA08MRk6XGvVA2O9iq4z7f9r5Wu52SChunKqxUlZdQUXaKqvISxFZBhfGmDG9K8WVQ1/a8OimWmHaBGGNIOprPZ4npJB3Jo3jf93S1LGeSZPEzrxKC/E/hURmP7LgfYidDSTbj0t5jd6t/42GqsCwcCe1iYcenyNXPMiP8Ro4XluPnbQFa6dy7Uk2IWyX69YfyKK+y1TpmMVZ8qUDEA5vFFyyOLv+UYO0u3BzdQwRPi2DxkPPGJICnxQNPi+Ahgoex4U0lofaTxNgP0912iC72NNqbHNrac/A3pY6GntT61zUIWHsjiVdB1GDEJ5DBwODuhZA/G0q3UukbholMwCeoLfgEQspKWPwkLH0OqsrAw4JX7G3gHwqHVsGhldCmK4z6NRO9/Brt+6aUujRulehXBf4OygsdSamqDKpKwW6tXcnDCyxeOFIojrtAvPwcHxbviw/v7TbH/qVVpVBVfv56nj7g5e84r8clrN1iDNirzsRvs4IdqMLRF1tF7foWbwjrCa3jHFMlge3Bu9WZ/tgqoKoMKc2DjCRIng9J79c+R0gXuOktvPvdVft+dmMgfTMkfwYBbR1PrgZFnCkvzDzzvVNKNVlulehp28vx2csPPP3A2//M11CdPEvAVnWmjd165hfD2Um0LuJxJoF7XuAhH2v5mWRtzp1OuiCLd3UC9Xf8IvqJhwW8Ahxl/m2gfbyjz5dysdNug7wUsFacOWfbXnX/MhJxbOF3vm38giOdf1+llMu4V6KfPMvVETR9HhZo29PVUSilGpEugaCUUm5OE71SSrk5TfRKKeXmnEr0IjJBRPaLSIqIPF9HeS8R2SAiFSLyq0tpq5RSqmFdNNGLiAV4B5gI9AHuEpE+Z1U7CTwFvHEZbZVSSjUgZ0b0Q4AUY8xhY0wlMA+YVLOCMSbbGJOI427vS2qrlFKqYTmT6COB9BqvM6qPOcPptiIyQ0SSRCQpJyfHydMrpZS6GGcSfV2Pijq7boDTbY0xs4wxCcaYhLZt2zp5eqWUUhfjzANTGUDHGq+jgGNOnv+y2m7ZsiVXRI46+R5nCwNyL7Ntc9US+wwts98tsc/QMvt9qX3ufL4CZxJ9IhAjIl2ATGAacLeTb3xZbY0xlz2kF5EkY0zC5bZvjlpin6Fl9rsl9hlaZr/rs88XTfTGGKuIPAF8C1iAOcaY3SLyWHX5TBFpDyQBQYBdRJ4G+hhjiupqWx+BK6WUco5Ta90YY5YAS846NrPG1ydwTMs41VYppVTjcccnY1viymYtsc/QMvvdEvsMLbPf9dZnMS7ceEMppVTDc8cRvVJKqRrcJtG3lDV1RKSjiKwSkb0isltEfll9vI2IrBCRg9WfQ1wda30TEYuIbBORr6tft4Q+txaRBSKyr/rf/Cp377eIPFP9s71LROaKiK879llE5ohItojsqnHsvP0UkReq89t+Ebn+Ut7LLRJ9C1tTxwo8a4zpDQwDflHd1+eBlcaYGGBl9Wt380tgb43XLaHPfweWGWN6Af1w9N9t+y0ikTjWzUowxsThuFtvGu7Z5w+BCWcdq7Of1f/HpwGx1W3erc57TnGLRE8LWlPHGHPcGLO1+utiHP/xI3H096Pqah8Bt7omwoYhIlHAjcDsGofdvc9BwCjgfQBjTKUxpgA37zeOuwH9RMQT8MfxkKXb9dkYswbHgpA1na+fk4B5xpgKY8wRIAVH3nOKuyT6K1mPp9kSkWhgALAJaGeMOQ6OXwZAuOsiaxBvAb/BsVX6T9y9z12BHOCD6imr2SISgBv32xiTiWMV3DTgOFBojFmOG/f5LOfr5xXlOHdJ9FeyHk+zJCKtgIXA08aYIlfH05BE5CYg2xizxdWxNDJPYCDwL2PMAKAE95iyOK/qOelJQBegAxAgIve6Nqom4YpynLsk+itZj6fZEREvHEn+E2PM59WHs0Qkoro8Ash2VXwNYARwi4ik4piWGysi/8G9+wyOn+sMY8ym6tcLcCR+d+73OOCIMSbHGFMFfA4Mx737XNP5+nlFOc5dEv3pNXVExBvHRYvFLo6pQYiI4Jiz3WuMebNG0WLggeqvHwC+bOzYGoox5gVjTJQxJhrHv+33xph7ceM+w+knztNFpGf1oWuBPbh3v9OAYSLiX/2zfi2O61Du3OeaztfPxcA0EfGpXjssBtjs9FmNMW7xAdwAHAAOAS+6Op4G7OdIHH+yJQPbqz9uAEJxXKU/WP25jatjbaD+jwa+rv7a7fsM9MexjlQy8AUQ4u79Bl4B9gG7gI8BH3fsMzAXx3WIKhwj9kcu1E/gxer8th+YeCnvpU/GKqWUm3OXqRullFLnoYleKaXcnCZ6pZRyc5rolVLKzWmiV0opN6eJXiml3JwmeqWUcnOa6JVSys39fy/KMGKZ1yUvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Training and validation accuracy seems to improve after around 60 epochs" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 1ms/step - loss: 1.9991 - accuracy: 0.3827\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.38269999623298645\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[6.18367347e-01 2.16326531e-01 3.06122449e-02 1.02040816e-03\n", + " 2.85714286e-02 0.00000000e+00 8.26530612e-02 2.24489796e-02\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [0.00000000e+00 9.93832599e-01 1.76211454e-03 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 1.76211454e-03 2.64317181e-03\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.35658915e-02 3.70155039e-01 3.65310078e-01 1.93798450e-03\n", + " 1.35658915e-02 0.00000000e+00 1.60852713e-01 7.07364341e-02\n", + " 2.90697674e-03 9.68992248e-04]\n", + " [1.68316832e-02 3.22772277e-01 1.05940594e-01 3.50495050e-01\n", + " 4.95049505e-03 0.00000000e+00 4.95049505e-02 1.49504950e-01\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [9.16496945e-03 3.66598778e-02 2.54582485e-02 0.00000000e+00\n", + " 6.21181263e-02 0.00000000e+00 2.03665988e-03 8.57433809e-01\n", + " 0.00000000e+00 7.12830957e-03]\n", + " [2.46636771e-01 3.01569507e-01 5.82959641e-02 5.94170404e-02\n", + " 3.92376682e-02 0.00000000e+00 1.24439462e-01 1.70403587e-01\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.67014614e-02 6.51356994e-01 3.13152401e-02 0.00000000e+00\n", + " 6.26304802e-03 0.00000000e+00 2.86012526e-01 8.35073069e-03\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.94552529e-03 3.30739300e-02 9.72762646e-03 9.72762646e-04\n", + " 9.72762646e-04 0.00000000e+00 0.00000000e+00 9.52334630e-01\n", + " 9.72762646e-04 0.00000000e+00]\n", + " [2.66940452e-02 2.31006160e-01 3.09034908e-01 3.18275154e-02\n", + " 1.43737166e-02 0.00000000e+00 6.36550308e-02 2.73100616e-01\n", + " 4.82546201e-02 2.05338809e-03]\n", + " [1.18929633e-02 1.18929633e-02 9.91080278e-03 0.00000000e+00\n", + " 1.38751239e-02 0.00000000e+00 1.98216056e-03 9.49454906e-01\n", + " 0.00000000e+00 9.91080278e-04]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3hUxfrHPwMBJUDopGwoCTWN9ICAhQ4BBAFpUkQR9Ye9Xa/32stVAcWuqIiKooCF3iH0kgChCwQIkE5LSDXJ5v39cZZNNgnJAjmSwPk8zzywZ2a+593ZzeycM3Pmq0QEAwMDgxuZatc7AAMDAwO9MTo6AwODGx6jozMwMLjhMTo6AwODGx6jozMwMLjhMTo6AwODGx6jo6skKKUilFITLf+/Tym1soL1WyqlRCnlUJG6dp67llJqkVIqTSk17xp0KrxdrgdKqWVKqfHXO46biZumo1NKxSqlkpVStYscm6iUiriOYZWKiPwkIr3/6fMqpUYrpaKUUhlKqUTLH2TXCpAeBjgDjUTk3qsV0atdlFJ3WX4Efi923N9yPMJOndeUUrPLKyci/UTk+6sM1+AquGk6OgsOwJPXKqI0bqi2U0o9A0wH3kHrlJoDnwODKkC+BXBERPIrQEsvzgCdlVKNihwbDxypqBPciN+bKoOI3BQJiAVeBM4D9S3HJgIRRcp0BiKBNMu/nYvkRQBvA5uBbKA1IMD/AUeBdOBNoBWwFbgIzAVqWuo3ABaj/UFdsPzfvZj+RMv/7wc2Wf7/ApBRJOUBsyx59YBvgUQgHngLqG7Jqw5MBc4Cx4HJlngdSmmbehbte8tov1vQOsIES5oO3GLJuwuIA54FUizxTLDkvQ7kWuLOAB4EXgNmF9FuWTQ2y/s/bmnTE8B9xdvFzs/rTcvnlQ6sBBpf5r1div9LYHKR9osDXsH2O/IRcNry+e4Ebrcc71vsfe4p43tT9LP+AphfRP89YA2grvffzI2UrnsA/9gb1Tq6nsDvwFuWY9aODmiI1gGNRRv5jbK8bmTJjwBOAT6W/BqWP86FgJPl+N+WL6mnpfM4CIy31G8EDAUcgbrAPODPIvEV/fLb/EEXKdMMrZMJt7z+E/gKqA00BXYAD1vyHgH+stRpCKzj8h1dXyC/tLwiZd4AtlnO0wTYArxpybvLUv8NS7uEA1lAA0v+a9h2bMVft7wUm+W9XATaWfJcAZ/i7WLn53UMaAvUsrx+9zLv7S60Tq0zsN1yLBxYQckfwzGWz9IBrWNPAm4t7X2V8b0p+lk7oo0a7wduR/thcr/c52Ckq0s34zD6FeBxpVSTYsf7A0dF5EcRyReROWgdxcAiZWaJyAFLfp7l2HsiclFEDgD7gZUiclxE0oBlQCCAiJwTkd9EJEtE0tF+5e+0N2ilVC20ju0jEVmqlHIG+gFPiUimiKQAHwIjLVWGA9NF5LSInAf+V4Z8I+CslH1peR/whoikiMgZtJHa2CL5eZb8PBFZijaqaWfv+ytGAeCrlKolIomWti2OPZ/XdyJyRESy0UbXAWWdVES2AA2VUu2AccAPpZSZbfks80VkGtpIt7z3Wdr35pJeFlrn+QEwG3hcROLK0TO4Qm66jk5E9qNdNr5YLMsNOFns2EnAVOT16VIkk4v8P7uU13UAlFKOSqmvlFInlVIXgQ1AfaVUdTtD/xY4LCLvWV63QBsdJCqlUpVSqWiju6ZF3k/ReIu/t6KcAxqXMyNbvH1OWo5ZNYp1lFlY3vuVICKZwAi0EWmiUmqJUqq9HfFciqno55V0FfH8CDwGdAP+KJ6plHpWKXXIMoOcijZyb1yOZmnfGysisgPtUl2hdcgGFcxN19FZeBV4CNs/igS0zqMozdHufV3iWrZ6eRbtl7+jiDgBd1iOq/IqKqVetNR9sMjh02iXyo1FpL4lOYmIjyU/Ee2y9RLNyzjFViAHGFxGmeLt09xy7GrIRLtku4RL0UwRWSEivdAuW/8CvrYjnksxxZdS9kr4Ee2+61LLaMuKUup24F9oo+UGIlIf7f7gpc/wct+PMr83SqnJaCPDBLR7sgYVzE3Z0YlIDPAr8ESRw0uBtpYlFg5KqRGAN9roryKoizbCS1VKNUTrbMtFKdXPEudgyyXYpfeQiHaDfZpSykkpVU0p1UopdelyeC7whFLKXSnVgJIjWIpopaFd0n+mlBpsGX3WUEr1U0q9byk2B/ivUqqJUqqxpXy5SykuQzRwh1KquVKqHvDvIu/XWSl1t2UZ0N9ol8DmUjR0+bxE5ATaLYX/lJJdF+1e5BnAQSn1Ctr92UskAy2vZGZVKdUWbRJpDNqtgBeUUmVeYhtcOTdlR2fhDbQb34B2Dw0YgDbyOof2yzpARM5W0Pmmo90UP4t2U3+5nfVGoN38P2RZ35ahlPrSkjcOqIk26XEBmI82CgJtFLQC2APsQpuEuSwi8gHwDPBftD/k02iXcH9airwFRAF7gX0WzbfsfA/Fz7UK7YdmL9rMZdHOqRraZ5CANkN+J9oIq7iGbp+XiGwSkdJGqyvQ7rseQbtMzsH2svTSYuhzSqld5Z3HcqtgNtp93j0ichR4CfhRKXXLtbwHA1uUiLHxpoGBwY3NzTyiMzAwuEkwOjoDA4MbHqOjMzAwuOExOjoDA4Mbnn98y56yqFmnvtza0LX8gleIe/1bK1wT4JYa9q71tR+9fnkKdNLVK978An0myapXK3fZ4hVT8Yr6cfJkLGfPnq3QkKs7tRDJzy6/ICDZZ1aISN+KPL89VKqO7taGroQ+P7PCdd8f6FN+oaugjcsVL/wvl5oO+nQdufn6dHV6xXshM1cX3bq3VvxX3qF61bkw6tIxpMI1JT+bW9oNt6tsTvRn5T1FoguVqqMzMDCoiiio5LtPGR2dgYHBtaGAahV/G6ciMTo6AwODa0dV7juVRkdnYGBwjRiXrgYGBjcDlXxEV+m64dDm9Zk1JoAfxgYyMtit1DL+Jie+GtmBb0f788EQbUa1SZ2aTLvHm5n3+fPtaH+G+Nvs/MOW9asZ0j2YwXcFMOuLD0poLvtzLiP7dmZk3848MLQXRw7uAyApIY6HRw1gWM9QhvfuyJzvvrDWWb1yOcEdvAjwacsHU94roSkivPDMkwT4tKVzaADRu7XnvHNycujWtRNdwgLpGOTHO2++ZlNv5YrldPBph0/71kx5/91SdZ956gl82rcmNLADu3ftsqtuVYt33eoVdA3xpXOgF598OKVU3f++8DSdA73o0TmYvdG7rXkzPvuIuzoF0O22QB59cCw5OTkArFq5nEA/L/y92zLtMm3w/DNP4u/dlk4hhW0Qd/o04b17EOzvQ2igH59/+vE/0gZ66VYoCm1EZ0+6Xui5fTHaFt2HgRjgxfLK12vhLfGp2XLfrJ3S+9OtEnMmQyb8uFu6f7zFmgZ+uV1iz2XKyJlR0v3jLTLk6x3S/eMtMuybSHl4zh7p/vEW6f/FNjl9Pstad3vMeTE1byl/ro+WrYfPSJv2vjJ35XaJOpFmTd/OXylro2Ml6kSafPTdfPHxD5aoE2myfPthmb1ovUSdSJP1++KkectWMnfldtkec15aenhK9MGjciYtW3z9Osj2XfskLdtsTfP+WCQ9e/eR1Kx8WR2xWYJDwiQt2yypWfkSfyZN0rLNcvZijgSHhMnqiM2Slm2WjJx88fD0lIOHj0la5t/i59dBdu05INl5Yk1/LFwivfv0lazcAonYuFVCQsMkO0/KrHs+I7dKxXv6XJa0aOkhW6MPSWxKunj7+EnEtmhJSP3bmn6c+6d069lb4i/kyKJVGyQwOFQSUv+WnQePS7PmLeRYYqokpP4tAwcPlQ8/+1pOn8sSDw9P2XvwqJy7qLVB5O59kp5jtqb5fy6SXr37yMXsfFmzfrOEhIZJeo5Zjp6Ik41bIyU9xywJZ1KlVes21rp6tYEeukFBwVLRf+eqtovc2ulfdiUgSs8+53JJty7WsnPuZ2jbfXsDo5RS3mXVCQnoQHxqDokX/ya/QFh35CydPRvYlOnRrjEbj50nJUNbZ5WarW1qez4rj6NnMgHIzivg5IVsGtepCcCBPTtp1sIT9+Ye1KhZk94Dh7B+1RIbXf/gjjjV087lFxhCSpK2S0/jpi6099W2B6tdpy4tW7cjJSmBA3t24tmqFR4entSsWZMh945gyeKFNppLFi9k1OixKKUI7diJtLRUkhITUUpRp462Bi8vL4+8/DyUZegfuWMHrVq1xsNT0713xEgWL1pgo7t44QJGjxmHUoqOnTTdxMTEMuvujNxRpeLdvTOSlp6taNFSyxs0dDgrli6y0V2xdBHDRo5BKUVwaEfS0lJJTkoEIN9sJicnm/z8fLKzs3B2dWX3zkitDSznG3rvCBYvKtYGixYy6j6tDcI6diI1VWsDF1dXAgKDAKhbty7t2rcnIT5e1zbQS1cXqlW3L10n9BxLhgExovkn5AK/UI51nqtLU85k/G19fSYjl8Z1bLflcq9fi7q3ODDtHm++GOFHr/Yl1x86172F1k1qcygpA4CUpAScXQs3E27qYiLF8gdRGgt+/ZHOd/YscTwh7iSHD+7FN0DrCE3uhRv4mkwmEuNtN7dNTIi3KeNmcichQStjNpvp2jGI1s1d6Na9JyFhHbVzJMTjbqPrTnwx3dLKJMTHl1k3oVgslT3epMQE3EyFea5uJhITbXW1Mu6F8bqZSEpMwNXNxKOPPUWob2sC2rWgrlM97urei6TEUj6zhJKxmorHWqzMydhY9kZH/yOfmR66FY+q9Jeuep7ZhO2mhHHYbl0OgFJqksU0Ocr8d1bx7EuXwFaqV1O0aVqb/yz6i38tOMSYUHebR7xurVGN18Lb8vnGWLLyzJdESuiqy9w8jdq6gQVzf+TxF9+wOZ6VmcELj47l2Zf/R526TnZplrbX36Uy1atXZ9P2XRyMOcWuqEgOHthfbp3ydMuqey26lSZe7NNNTb3AiqWL2b7nMLv/iiUrM5Pffv35mtsAICMjgzGj7uXdqR/g5ORkV52yyuj1mdlTt8JQaJMR9qTrhJ4dXWnvqkTri8gMEQkRkZCUCxk0KTKCa1KnJueKPQp0JuNvIk+mkpNfwMWcfPbFp+PZWLMfqF5N8Vq/dqw5fJZNx85b6zR1NZFcZDSQkhRPE2fbyQqAo4f28+aLjzNtxhzqN2hoPZ6fl8cLj46l76DhdO97t1UzPq6wH4+Pj8fFzXbyxM3kblMmIT4OV1fbMvXr16frHXeyeuUKQPvljbPRjcOtmG5pZVzd3MqsayoWS2WP19XNREJ8YV5iQjwuxWLRyhQaZiUkxOPs4srGiLU0a9GSRo2bUKNGDcIHDiZqx1Zc3Ur5zFxLxhpfPFZLmby8PMaMHMbwkaMZNHhIme+voj4zPXR14SYe0cVha87iTjlmKjv37MNU/1ZcnG7BoZqiW9vGbDlxwabMluMX8HNzopqCWxyq0d6lDqfOaw8UP9ejFacuZDM/2vay1LtDEKdjjxF/Opa83FxWLvqdO3qG25RJij/N84+O4Y0PZtDCs7X1uIjwxr8ew6N1O8ZMfMxG81hMDLGxJ8jNzeX3eb8S3n+gjWZ4/4HM+flHRITI7dtwcqqHi6srZ8+cITU1FYDs7Gwi1q6hbTvNMS8kNJSYmKPEntB05/36C/0H3G2j23/g3fw8+wdEhO3bNF1XV9cy6waFhFapeAOCQjhxLIZTlngX/DaX3v0G2Oj27jeA+b/MRkTYGbkdJ6d6OLu4YnJvxq6o7WRlZSEibFq/jtZt2xMQFKK1geV8v837lf4DirXBgIHM+Ulrgx3bt1GvntYGIsLkhyfSrr0Xjz/5tE0dvdpAL92Kp/Jfuuq5ji4SaKOU8kBzZhoJjC6rgtls5pP1J3jvbi+qVVMsO5jCyfPZDPB1BmDx/mROXcgm8mQq34z2p0Bg6YFkYs9n4+tal97tm3D8bCZfjewAwLdbT7HjZCoODg48//pUHh83BHOBmbvvHUOrtl7M/+lbAIbd9yBff/weaRfO897LzwJQ3aE6Py5cz56obSz94xdat/NhdHhXAP7v+Vfo2q03Uz/8mCED+2E2mxkzfgJe3j58+7Vm5/DgQ4/Qu284K1csI8CnLY6Ojnz2lXa+pKREHnloAgVmMwUFBdwz9F76hmt/xA4ODnz40acM7N8Hs9nM+PsfwNvHh6+/0nQfevgR+vYLZ8Wypfi0b41jLUe++ua7Muteyqtq8b49ZTqjhw7AbDYzcsz9tPPy5oeZMwAY98AkevTux5pVy+kc6EUtR0c+/EwzCwsKCaP/3UPoc2dHHBwc8PULYMz9E7U2mP4xgwf2o8BsZmwpbdCnbzgrly/D37sttRwd+WKG1gZbt2xmzs+z8fH1o3OYNinx6htv0advuK5toIeuLuiwK0xFoqtnhFIqHM0UpjowU0TeLqu8U3MvMXYvMXYvAWP3Er3o0jGEnTujKrRXquZkkltCJ9tVNmftf3aKSMVvoVIOuj4ZIZpj+1I9z2FgYHC9MR4BMzAwuBmo5I+AGR2dgYHBtWOM6AwMDG5orvMaOXswOjoDA4Nrx9h408DA4MbGmIy4Ito0qc2SR2+rcN0GoY+VX+gquBD5qS66eqDXMhC9aFC75vUOweBKMC5dDQwMbmgu7UdXiTE6OgMDg2vEuHQ1MDC4GTAuXQ0MDG54jFlXAwODGxplXLoaGBjcDFTyS9dK1w3r5XrUq7MXe/54mf0LXuW5Cb1K6NavW4tfpz3Ejl//zcYfn8O7las1b/Kou4ia9xI75/+Hx0bfpXushq5+ulUpVj11KxqllF3puqGX6w4wE0gB9ttbJzAwSBc3Jcegx+TYqRRp3/8VqRvyhOw5fFoChrwptwZMtqYPZq2SNz5fLLcGTJYOg9+Qtdv+klsDJkvQ0Ldk/9F4adDpKakd/Lis2XZIfO5+TW7xf7TKOD8ZulrdqhRrVXIBq1a/hTgOnWlX4kZzAQNmodkd2k1mZqYurkehvi05dvossfHnyMs3M2/FLgbc1cFGt72nCxE7DgNwJDaZFm4NadqwLu09XNixL5bsnDzM5gI27oxhUDd/JCulSjk/GboLqlSseupWOOoK0nVCt45ORDYA58stWIS8vDxdXI/cmtYjLrlwS/b45AuYmtSz0d13JJ5BPTRbwxCfFjR3bYjJuT4HjiXQNag1DevVptatNejb1Qd3lwZIXkaVcn4ydO1zxqosseqpW/EoqlWrZle6Xlz3yQil1CRgEkCjxiWtCyvC9ai4exSUdOmZ+t0qpj4/jG2/vMiBownsORxHvrmAwyeSmTZrFYu/eIzM7L/ZeySe/Hzz5d7LNcda1RylqpJuVYpVT109uK733+zgund0IjIDmAHQrl17uVrXo9zc3Mu6HsWnpOLuXGiEbXJuQMKZNBvd9MwcHn5ttvX1X0teJzb+HADf/7mV7//cCsDrjw0kPjkVVaPOVTs0lRXrtTg/Gbpl61alWPXU1YPK3tFVqlnX2rVr6+J6FHXgJK2bN6GFWyNqOFTn3j5BLInYa6Nbr04tajhoix4n3NOZTbtiSM/MAaBJA80boplLAwZ192fu8iiUY9Mq5fxk6N5dpWLVU7fCqQL36K77iK4oSildXI/M5gKefm8uiz6fTPVqiu8XbOPQ8SQmDtNcvb6Zv4n2ni588+ZYzOYC/jqexCOv/2SNa87UiTSsX5u8fDNPvTuX1PRslKpWpZyfDF1NtyrFWlVcwBTXeemIHejmAqaUmgPcBTQGkoFXReTbsuoEB4fI5u1RFR6LsU2TgYGGHi5gDo08xSn8LbvKXph9343lAiYio/TSNjAwqFxU9hFdpbp0NTAwqIJc5/tv9lCpJiMMDAyqJhX1CJhSqq9S6rBSKkYp9WIp+fWUUouUUnuUUgeUUhPsic/o6AwMDK6JS5MR19rRKaWqA58B/QBvYJRSyrtYscnAQRHxR5sDmKaUKnfffaOjMzAwuGYqaEQXBsSIyHERyQV+AQYVKyNAXaWJ1UF7+iq/PGHjHp2BgcG1oUBVs/smXWOlVNGlFTMsDw0AmIDTRfLigI7F6n8KLAQSgLrACBEpKO+klaqjE8BcUPHLXT6f8UKFawL8uvtUhWuOCGxe4ZqgT7sCVLf/C35FxJ7J1EVXD3exeo41KlyzqnEFs65ny1heUppI8S9uHyAa6A60AlYppTaKyMWyTmpcuhoYGFwzFXTpGgc0K/LaHW3kVpQJwO+iEQOcANqXJ2x0dAYGBtdERU1GAJFAG6WUh2WCYSTaZWpRTgE9AJRSzkA74Hh5wpXq0tXAwKCKUgF3MEQkXyn1GLACqA7MFJEDSqlHLPlfAm8Cs5RS+yxn/ZeInC1P2+joDAwMrg1VcU9GiMhSYGmxY18W+X8C0PtKdY2OzsDA4Jq5nptq2oPR0RkYGFw7xiNgV8aqFcsJ9G1PB682TJtSuuvRc08/QQevNnQM9id6d6Hr0aOTHqCluzOhgX4l6u3bGsG/h3XjxSF3sOT7z0vk716/kldG9+HV+/rx+rgBHImOBCDx5DFeva+fNf1fNx9WztE2Ydm7NYIXh3XjhSF3sLgUzV3rV/Lf0X14+b5+vFZM8+X7+lnTI918WDGncGMXvZyf9GpbveLduG4V/boG0qdzB77+ZFoJ3eNHDzNyYHc6tGzIzC8+ssm7mJbKkw/dR/jtgfS/I4jdUdsBWLt6BV2CfegU4MUnH7xfaqz/eeFpOgV40a1zEHujdwMQc/QwPbqGWFNr90bM+Pxj3dvAcAGrIPRy3UGbJl4HHAIOAE+WVycgMEg8PDxl36EYOZ+eI75+HSQyer9k/F1gTb/9uVh69e4r6TlmWbthi4SEhlnzlq+OkE3bosTL28emzjdbj0sTU3N594+NMmPzUXFv7SVv/rJKZu44aU2fRxyUb7fHyswdJ+X1n5aLS4tWNvkzd5yUb7YeF6eGTeT9BZutmu//sVG+2XxUmrX2krd/WSWzdpy0pi8jDsp322Nl1o6T8qZFs2j+rB0nZaZFc+qCzTJrx0ndHKXSsvJ0aVu94t1/Ok2atfCQlVv3yZ7Y89LO21cWRUTKoYQMa9q097jMXbpeHn7iOXn+5bdt8gbdO1remPKpHErIkD2x52X7oTjZfzpNWrT0lO3Rf8mpMxni7esn67dHS1JarjXNnrdAuvXsI4mpf8uS1RslMDjUJj8pLVfiz2dLk6bOErnvqCSl5d70LmA1m7aW5o8vtCtxA7qA5QPPiogX0AmYXMpzazZkZWbiWcS5aNjwESwp7nq0aAGjxoxFKUVYx06kpaaSlJgIQNfb76BBg4YldI8fiKape0uamprjUKMmHXsPJHrDKpsytzrWtv7i/J2dVaof78HIzTR1b05jV3eOH4jGuZjm7mvUBP2cn6Iid+jStnrFu3d3FM1betKshQc1a9YkfNAw1q5YYqPbqHFT/AKCcXCwXbCbkX6RqG2bGTZ6PAA1a9bEqV599u6OwsOzFS08tPMNHjKcFUsW2dRdsWQRw0fdh1KK4NCOXExLJTkp0abMxoi1tPTwpFnzFrq2QZVxAaPyj+j0dAFLFJFdlv+no43sTGXVyc3Lw72Zu/X1JUejoiQmJNi4G7mZ3ElIKNvdKPVMEg2dCw2pGzR15cKZpBLldq5bzkv3duejZyYw4b9TSuTvWLWQjr3vvmLNF+/tzofPTODBUjS3r1pIp96FW1zr6iilQ9vqFW9KUgIuboXxOruaSE4svna0dE6fjKVho8a89PQjDOnVmf8+O5msrExSkhJwMxVquppMJBbTTExMwM1UGJOrmzuJCbZl/vx9LoOHjdC9DaqOC9hN3NEVRSnVEggEtpeSN0kpFaWUikpPL/kUR/HGuRp3o9I2US7NGSy4W1/embeWx97/mj++sr0nlJ+XS/SG1YT06H9ZzdLuyAZ368u789byxPtf83spmrs3rCbUoqnpVj5HqbK4nvFeDrM5n4P7ohk5biK/r9qCo6MjX386rULaIDc3l5VLF3P34KF21ymrjF6f2bW039Wgqim70vVC945OKVUH+A14qrTn0URkhoiEiEhIo4aNiDsdZ8275GhUFDeTycbdKCE+DlfXst2NGjR14Xxy4eXHhZRE6jdxvmz5dkEdORN3kvTUQlvafVsiaNHel3qNmlxWs0E5minFNPcW04Rrc34qq67J5K5L2+oVr7OriaSEwniTE+Np6lI4gi4LZ1cTzq4m/INCAeg9YDAH9+3B2dVEQnyhZmJ8PC7FNN3cTCTEF8aUmBCHi2thmbWrluPnH0iTpoWfta6fmQ66FY66yUd0SqkaaJ3cTyLye3nlHWvX5lgR56L5c38lvLjr0YC7mTP7R0SEHdu34VSvns0XsTQ8vP1JPn2CM/GnyM/LZfvKRQTc3sumTPLpWOuv4Mm/9pGfn0edeoUWidtXLiSsyCVmaZqBZWjGlqK5baXtZSvo5/wUHBKqS9vqFa9fQDAnTxwj7lQsubm5LF0wn269w8uM5RJNmjrj6mbiRMwRrZ03RtC6TXv8AoI5fiyGk7Ha+f78fS69wwfY1O0dPoC5c35CRNgZuZ26TvVwLtIZ/jH/V5vLVj3boKq4gClAKfvS9UK3dXSW/aK+BQ6JyAd21mHa9E8YPKAvZrOZsfdPwNvbh29maAujJ056hD79wlmxfCkdvNpQy9GRL7+eaa1//9jRbNwQwbmzZ2nr2Yz/vPwa4yc8SHUHB8Y8/wYfPDGOggIzXQcOx9SqLet+03xcuw0dw861y9iy9DeqO9Sg5i238MjbnxVOJORkc2D7Rsb9+x3ruS5pTrVo3m7RXGvR7D50DFFrl7G5iOb/laJ5fxFN0NdRSo+21TPe/749jYmjB1NgNjNk5FjatPPmlx++AWDkuImcSUnm3n63k5GeTrVq1fjhm89YHBFFnbpO/OetaTz/2IPk5eXSrLkHb3/4BQ4ODrwzdTqjhvTHbC5g1JjxtPfy4ftvtV2Cxj84iZ69+7Fm5XI6BXhRy7EW0z/7xtoGWVlZbFi3hinTbZcS3ewuYNzkLmBdgY3APuDSflEvWR7xKJWg4BDZuDWywmOZu+d0+YWuAj2Gw8Y2TRrGNk36oIcL2K0ubaX5uI/LLwgcndLvhnMB22VvcLcAACAASURBVESlXy9tYGBwzSiodh0nGuzBeATMwMDgmlAYHZ2BgcFNQCW/RWd0dAYGBtdOZZ+MMDo6AwODa+M6Lx2xh0rX0ekxC1yvpj6zYiHNSj77ea38vjeu/EJXwT1+ZT59V+lo6nSLLrpn03MrXLMqzbrqgbaOrnL3dJWuozMwMKhqKGMywsDA4MbHGNEZGBjc2Bj36AwMDG50jHt0BgYGNwWVvJ8zOjoDA4Nrp7KP6CqfOc7K5QT6eeHv3ZZpU94rkS8iPP/Mk/h7t6VTSIDVwCXu9GnCe/cg2N+H0EA/Pv/U9iHj3ZvX8figrkwe2JnfZ35SQnfHuuU8fW8Pnh3ekxdG9+XQbm2P0LNJ8bwycRhP3HMHTw65i8U/Fe5mEbFmJd3C/LgjxJvPp5fcPTjmyGEG97mTNq5OfPXphzZ5zz0+iaB2zejVJahEvT1b1vHckDt5ZlBXFn73WYn8qIgVvDiiF/8e1Yf/jgnn8O4d1rwnB9zGv4b3tOYVZeWK5fj7tMfXqw1TL2O08uzTT+Dr1YawIH92795lV129DFzWrFpBWKAPIR3aM31a6UY2Lz73FCEd2nN7x0D2RBfqBni3pmtYAHfeFkz32ztaj29Yu5I+XQPodZsfMz6ZWkLz2NHDjBjQDd8WDfj2i+k2ed1DvRjYLZRBPTsxpE/Xf6QNqoQ5juVZV3vSdUNHc5xbgR3AHjRznNftNcfZe/ConLuYrRm47N4n6Tlma5r/5yLp1buPXMzOlzXrN0tIaJik55jl6Ik42bg1UtJzzJJwJlVatW5jrTt352lxdm8hny3eKr9ExkqLtt4y/bcI+S06wZpmbzkq83fHy2/RCTJt7mpxa9lKfotOkG9W7ZYpc5ZrZTYfEdfmnjL9twiZu/O0NG/pIRt3HpSjiRfFy8dPVm3eLSfP5VjTzr9OycJVm2Ty0y/IS6//zyZv7qJVsnjtVmnb3tvm+I87YqWpqbl8uGCTfL/tmDRv4yXvzVsjP+08bU3fbvxLZkedkp92npb//bJSXFu0suY1dnWXL1fvsSn/087Tkp6dJx6ennLgrxhJzcgRP78OsjN6v2TlFljT7wsWS68+fSXzb7NEbNTMcbJyC8qsq5cxTEpajrT08JSd+w5L4vlM8fH1k82Re+RcRp41/fLbQunRq4+cTc+V5Ws3SlBIqDWvWfMWciQ20aZ8SlqONGvhIau37Zd9Jy9IO29fWRIRJYcTM61py74TMm/ZBnnkieflhVfetskzuTeXrftP2hw7nJh505vj1Da1lY7/i7ArcQOa4/wNdBcRfyAA6KuU6lRWBc0cp5XV0GPovSNYvGihTZklixYy6r5CA5dUi4GLi6srAYHa6Khu3bq0a9/e6okQs383Ls1a4uLegho1atK1zyAiI1bY6NYqYWSj/b9BE2c8vTpoZWrXwd2zNedTEonZv5uWHq1o3lKLdeA997Jqma3RSuMmTfEPCqFGjZILSjt2vp36DRqUOH7sQDTOzVrS1L0FDjVq0qn33eyMWGlTpqTpTvm/lFGRtmYpw4aPKGm0smgB991na46TmJhYZl29DFx2Re3Aw7MVLS1GNvcMG8GyYkY2yxYvZMSoMSilCA3rRFpaGknFjGyKsitqBy2KGO70HzSMNSsW25Rp1LgpHQKCcSjlM7schjmOfbsL35A7DItGhuVlDUsq87GH3Lw8TDaGHiYSE0qagZiKm4EUK3MyNpa90dGEhGmXLOdTkmjsUriNdENnV86llPyD2L52GY8Pvp13Hh/H5NdK7hWaEn+aE3/tp41fEOdTknAtarTiZiLJTvOWsjifkkQjZ9tYSzPdiVy7jOeG3MWUJ8cz6dXCSzClFO9Ovo//3BfO2t9/sh5PiI/H5F7MHKdE2ybg3qxI27prZcqqq5eBS2JCgs053Ur5LiQmFivjVlhGKcWwQf3o3jWM72d+bdV0MRUz3CmjYyyBUjw48m6G9O7Crz8WbkpqmOPcxDsMAyilqgM7gdbAZyJSwhzHDg2b1+WZfmRkZDBm1L28O/UDnJyc7KpziY7d+9Gxez8O7NzGnM/f57Wv5lrzsrMymfLcRCY8/waOderqZz5ip25o936Edu/HoV3bmPfFVF76Yg4Ar878nQZNXEg7f5Z3/280ri1b4RXUqcoZuFyLLsDS1etxdXXjTEoKQ+/uS5u27a/5M5uzcA3OLq6cO5vChBED8WzdltDbulbKNtDt+3kZburJCBExi0gA4A6EKaV8i5cp6gKWlZlJvI2hRzwuriXNQOKLm4FYyuTl5TFm5DCGjxzNoMFDrGUaObtyNqlwtHU+OZGGTVwuG7dPcCeST5/k4oVzAOTn5THl2YncHj6ETj3CrZqJRY1WEuJtvAWulobOrpxLto21fuPLm+54BXXSTHcuaKY7DSzvq17DxoR068vx/dGANjqLjytmjlOibU3EnS7StnFambLq6mXg4mYy2ZwzoZTvgptbsTIJhWUuxdekaVP6DxzMrp2RuJlMJMUXM9xxvvz3oDiXPt9GjZvSq9/d7I2O0rUNqoo5jqoCkxH/yKyriKQCEUDfUvKsLmBuJhPHYmKshh6/zfuV/gMG2pQPHzCQOT8VGrjUsxi4iAiTH55Iu/ZePP7k0zZ1WvsEkHjqBMnxp8jLy2XTigWE3NnbpkziqRPWX8Hjh/aSn5dH3foNERE+f/1Z3D3acPfYh200TxyP4dRJLdZFf8yjVz9bo5WrwdPbn6TTsaRYTHe2rVxI8J22pjtJpwtjPXFoH/l5udSp34Cc7CyyM7W7BTnZWezbtgH31u0AzRwnppg5TgmjlQF389NPtuY4rq6uZdbVy8AlMDjUxsjmj/m/0q+YkU3f/gP5dc5sRITIHdtwcnLCxcWVzMxM0tPTAcjMzGTd2lV4efsQGBxK7IljnLYY7ixZMJ/uffpjD1lZmWRkpFv/v3n9Gtq089a1DaqKOQ5UfhcwPc1xmgB5IpKqlKoF9ARKrhexrcPU6R8zeGA/Csxmxo6fgJe3D99+rZmBPPjQI/TpG87K5cvw925LLUdHvpjxLQBbt2xmzs+z8fH1o3OYNinx6htv0advONUdHJj44tu8+ehoCgrMdB80kuat27Fi3g8A9Ll3HNvWLCFi0XwcHByoeWstnnn/C5RSHNq9nfWL59O8jRfPDu8JwOjH/03w7T14473pjLt3IGazmeGjx9O2vTezv9PuB42Z8BApyUkM7NGFjPSLVKtWjZlffsrqLbup6+TE4w+NZevmjVw4d5aOvq14+sX/MnLMBKo7OHD/C2/y3mNjKDCbuXPQCNxbtWP1/B8B6DlsLJFrlrFxyW9Ud3Cg5i238vj/PkcpxcVzZ/jwuYcAMJvNdO47CP/O3QDNLOWD6Z9wd/++mAvMjBs/QTNasZjjPDTJYrSyfCm+Xm1wrOXIl9/MLLPupTy9jGHem/YR9w7uj9lsZvTY+2nv7cN333wFwISJD9OrTz9WrVhGSIf21KpVi0++1Jb+nElJZtyoYQDk55sZOnwkPXr1AeCVd6YxcdQgzGYzQ0eOo007b+Z8r9UbNX4iZ1KSGNq30HDn+68/Y+n6nVw4f47JD4zU2jbfzIB7hnNH9966t0HVMMep/AuG9TTH6QB8D1RHGznOFZE3yqoTFBwiG7bsKKvIVbHyr+QK1wR9tmnaFHumwjVBv22a9PqVzvo7XxddPbZpat7YscI19UIPc5y6zdpL8LMzyy8IrH+6yw1njrMXCNRL38DAoJJgPNRvYGBwo6OqgK+r0dEZGBhcM3r5+1YUle5ZVwMDg6pHRS0YVkr1VUodVkrFKKVevEyZu5RS0UqpA0qp9fbEZ4zoDAwMrgmtE7v2EZ3lAYPPgF5AHBCplFooIgeLlKkPfA70FZFTSqmm9mhftqNTSpXcVqMIIrKrrHwDA4Obhwq6cg0DYkTkOIBS6hdgEHCwSJnRwO8icgpARFLsES5rRDetjDwButtzgiulmg43Nbu3tavTv2Kq6xDrkA7u5Re6CtKz83TRrVtLHwcsx1v0udgIvP/HCtc8N2dChWuCPo54+iwmu6IRXWOlVFSR1zNEZIbl/ybgdJG8OKAjtrQFaiilIoC6wEci8kN5J73st0lEutkTtYGBgcEV/OafLWMdXWkqxftmByAY6AHUArYqpbaJyJGyTlruz6ZSyhF4BmguIpOUUm2AdiKyuJyqBgYGNwGKCru6iQOaFXntDhTfEigOrbPMBDKVUhsAf6DMjs6eWdfvgFygc5ETvWVHPQMDg5sBO59ztePyNhJoo5TyUErVBEYCC4uVWQDcrpRysAzCOgKHyhO250ZIKxEZoZQaBSAi2aqyrw40MDD4R6mYHcokXyn1GLAC7dHRmSJyQCn1iCX/SxE5pJRaDuwFCoBvRGR/edr2dHS5lofyBUAp1Qpt92ADAwMDFBU3iSgiS4GlxY59Wez1FKCkSUsZ2NPRvQosB5oppX4CugD3X8lJDAwMbmwq+zVeuffoRGQVMAStc5sDhIhIhF4BrVyxnADf9vh5tWHqlNJdj557+gn8vNoQFmzrVPXIpAdo4e5MSKBfiXqrVy4n1N+bIN92fDi1dHexfz37FEG+7egSFsie3bbLBM1mM3d0CmHEkMI9vVatXE5QBy/8fdryQVmOZT5tuS200LEsJyeHu7p2onNYIGFBfrz95msl2kAP56e1q1ZwW5APYf5efPxB6a5aLz3/NGH+Xtx5WxB7o3db89JSU3lg7Ag6B/vSJcSPyO3bdI9XD91eASZ2fzSEvZ8M5dnBJb8nTo41mPevHmybMojIDwYz9q7W1rx6jjWZ/Ww3dk2/h50f3kNY2yb/SBtcrXPbww89QAuTMyEBJd9nRVIVNt6019FrCPAB2tq6e67EfQftWns3sLi8spdcwPYfipEL6Tni69dBoqL3S+bfBdb025+LpVfvvpKRY5Z1GzSnqkt5K1ZHyKZtUeLl7WNT52z639LSw1N2HzgiyalZ4uPXQbbu3CsXsvKt6dffNUep85l5sjJikwSHhNrkv/XuFBk6fKT07hsuF7LyrZp7Dh6Vs2maY9mOXfvkYrbZmub9sUh69u4jaVn5sjpiswSHhMnFbLOkZeVLwpk0uZhtlnMXcyQ4JExWR2yWi9lm3RylEi9kS4uWnrJjz18SdzZDvH39ZOOOaEm5mGtNP89bIN179pHktL9l6eqNEhQcas0bPmqMfPDJl5JyMVfizmbI0VMpknIxt0o5YGXniRxLTBPv/5sr9UbOkr0nzknQU7+J47CZ1vTKT1Ey7Y+94jhspjR/4Cc5l54j9UbOEsdhM2X2uqPy6OcbxXHYTKk3cpa4jpstjsNm6hbrtTi3ZeUWyMo1EbJ5e5R4e/tYjwXq4ALWoKWXDJ+1y65EZXUBU0p9DjwC7AP2Aw8rpUqajV6eJ7FjVgQuuYCV7VS1ZNECRo8p6VQF0PX2O2jYoOQecTujduDZqtBRasiw4SxdbDuZs3TxIkZaHLCsjlIW3fi4OFYuX8q4+x8ooenhUehYtqSE5kJGjS4Sa5rmWKaUok6dOoC2/Xt+fp51Rko/V61IW1etocNZXtxVa+kiho+6D6UUIWEdSUtLJTkpkfSLF9m2ZRP3jdMWxtasWZN69evrGq8eugo4npRObEoGefkFzN98nAEhzW2/LCLUqaXd0al9aw0uZPxNvrmAurVq0MXbme/XHtU+t/wC0rJydW2Da3Fug8v/PeiBsjNdL+xZXnIn0EdEvhOR74Bw4C57xJVS7kB/4JvyyoLmAubezNZtKrGE61GCjbuRm8m9hDtUcRITEjCZitdJKFYm/rKuUy+98Ayvv/Uu1apVK1K+eBwmq71iYaylODRZNM1mM106BtGquQvduvck1OJYppfzU1Ki7ftzdTOVaIOkhATcSrRtArGxx2nUqDFPPDqR7l1Defqxh8nMzNQ1Xj10lYK4c5nW4/Hns3BtVNtG88vlh2hnqs+xGSPYMW0wz3+3HRHwcK7L2Ys5fDW5K1vev5vPHulifXpDtza4Bue2f5rKvpW6PR3dYaDoz14ztKlde5gOvIA2DVwqRc1x0tMvlpZv87q0x2LKa0B76lyuzPKli2ncpCkBQcEVpglQvXp1Nm/fxaGYU+yMiuTggf3XrFtW3WvRNeeb2btnN/c/+DBrN0Xi6FibTyz3+CpjvFfyHSletmeAiX2x52k16Vdue34BHzzYibq1alC9miLAoxFfr/iLzi8sJOvvfOs9vsrYBv8k2qyrfel6cdmOTim1SCm1EGgEHFJKRSil1qFdhja5XL0i9QcAKSKys6xyUsQcp1HDRsSdtnWbcinhemSycTdKiI8r4Q5VHDeTifj44nVci5VxL9V1avu2LSxfsogO7Vvx4Lj72Lh+HZMeGIdbiTjicbXHoalYrPXr16frHXeyeuWKy9apCOcnVzfb95eYEF+iDVxNJhJKtK0rriYTbiZ3gkPDABg4eAh790TrGq8euiLgXmQEZ2roSNL5LBvNsd3asGD7SUC7zD2ZkkFbUz0SzmcRfy6TqJizAPyxNZYAz0b6tsE1OLf9o1TcgmHdKGtENxVt8uEVoB/aMpPXLP9/0w7tLsDdSqlY4Begu1JqdlkVHGvX5pgdTlU/zy7pVFUWQcGhHIspdJT6ff5c+vW3dRfr138Av1gcsKyOUq6uvPrGOxyIOcnev47x7Q8/cfud3Zgx8weCgkM5HhNDbGyhY1l4Cc2BzPm5SKxOmmPZ2TNnSE1NBSA7O5uItWto005z69LPVSuE48eLuGr9Npc+xV21+g1g7pyfEBGidmzHyakezi6uODu74GZyJ+boYQA2RKylbXsvXePVQ1eAVq5OtGhahxoO1RjWxZMlUadtNE+fzeQuP+371LTerbRxcyI2OZ3k1GzizmXSxk3zCr7Lz5W/4lJ1bYNrcW77p6nss65lPdRv14Z2ZdT/N/Bv0DbKA54TkTFl1VFKMW36Jwwa0Bez2cy4+yfg7e3DNxanqomTHqGPxanKz6sNtRwd+errQlOO8WNHs3FDBOfOnqWNZzP++/JrjJ/wIA4ODrz/wUcMvTscs9nMfePux8vbh5lfa45SDzz0ML37hrNqxXKCfNtRy9GRz74s+7aig4MDUz78mHsG9sNclmPZimX4+7TF0dGRz7/SHMuSkhJ55KEJmM1mCgoKuGfovVYrPz0dpd6dMp0R9/THbC5g9NjxtPfyYda32sYR9z84iZ59+rF65XLC/L1wdKzFR58XtsE7Uz7k0Ynjyc3NpUVLDz625FU1B6xnv93Ggv/0pno1xQ/rjnIoLpUHe2k/Mt+uOsy786OZMfl2dkwbjAJenh3FuXRtffxzM7cz84k7qelQjRPJ6Tzy+Sbd2+BqndsAxo8ZzQbL30Nrj2b895XXyvxOXy2XLl0rM+W6gCmlOgGfAF5ATbTlIpki4mT3SQo7ujKNT4OCQ2TT1kh7Ze0m13zZW4TXhB7bNNVw0GfT56q2TZNeNBr1XYVrVqVtmrp0CmVXBbuANfb0kYHv/GJX2VmjOlRaF7BP0R6unQeEAOOANldyEtEWGEdcYWwGBgZVhEo+oLNvK3URiVFKVRcRM/CdUmqLznEZGBhUEZTSZ8PcisSeji7LsmVKtFLqfSARqF1OHQMDg5uISt7P2bWObqyl3GNAJto6uiF6BmVgYFC1qLKzrpcQkZOW/+YArwMopX4FRugYl4GBQRVBoW6IS9fSuK1CozAwMKi62OnZej2pVL6u2blm9pxKq3DdCzm5Fa4JENay4h+Y/jtfn6UwNapXLa/yhAvZuuhGfjRcF1090ONJAr36o8q+6fjV+LoqoGotnjIwMNCVyv4zerW+rn9VdCAGBgZVE0UVHtGJ4etqYGBgJzo90FNhVKp7dAYGBlUPparwiM7AwMDAXir7Q/1GR2dgYHDNVPIBnV2eEUopNUYp9YrldXOlVJheAW3bsJqRvUO5t0cQP3z1YYn8FQvmMnZAF8YO6MKk4b05emifNW/IXR0Y078z4wfezgP32N5ijNq0lkkDOzMxvCNzv/m4hO7WtcuYPOQuHhvWnSdH9ObAru3l1l2zagWdAn0I9W/PR9NKd9X69/NPEerfnjs7BbInutChKS01lQljRnBbkC+dg/2I3L5Vd93VK5cTGuBNkF8ZTmjPPUWQXxlOaLeFMGKo7Z5oejlgrV+7kp63+dMtzJcvP55aQvfY0cMM63cXXu71+fqz6dbjCfFxjL6nL727BNL39mC+m1FocbJx3Sr63x5I3y4d+PrTkvNtx2MOM3pgdwI8GvLdlx9Zj5+IOcKQXrdZU1g7V374ulC3KjmhVTSXfF3tSdcNO1y8vgA+Aw5ZXjcAIu1x3gFi0Ux1orHD/aedj7+4NWsp89bslvUHkqV1ex/5aelW2XL0gjV99etyWR51QrYcvSDTvpkr3h2CrXkupmaydHuMTfktRy/IwugEcXFvId8s3S5/7jotHm295Ys/N8iSfcnWNH/7cVm8N0mW7EuWT+evFfeWrWXJvuTL1l0YnSAtPTwlcu9hiT+XKT6+frIpco+cSc+zpp/nL5TuvfpIysVcWbZmowSFhFrzLrlqnUnPk/hzmRJz+oycSc+TpNQcXXTPXrQ4oe0/IskXssTHt4NsjdorFzLzrenX3yxOaBl5snKdxQmtSP5b/5siQ++1OKFZjunlgHUkMV2at/CQdTsOyKG4VGnv7SfLN+6UYylZ1rT9QKz8sWKDPPrU8/Liq+9Yj2/dd0wWrN4sx1KyZM/xZGnp2VqWb9wpRxLTpVkLD1m+ZZ/sPnFe2nr5yoJ1kXIgPsOaNuw5Lr8sWS+THn9Onnv5bZu8S2nvqTRp1KSprNp+UA7EZ1QpJ7QgHVzAXFr7yEtLD9uV7OkH9Ej2zJV0FJHJaI+AISIX0Pals5duIhJgzx5UOdlZuLfwxNS8JTVq1qRn/yFsXGNj2o1fUEec6mkOVD4BoaQkJ5QmZcORfbtwa+6Ba7OW1KhRkzv6DWbbuuU2ZWo51rbeUM3JzrKOxS9X98i+XbQs4qo1eOgIli22ddVavmQhI0aNsbhqdSItNY2kIq5aY8ZrrmJFXbV2Re3QRXdn1A48PctxQluyiJGjL+OEFl/SCQ30c8DasyuKFh6taN7Sg5o1azLgnmGsXr7YRrdxk6Z0CAyhhoPtss6mzq74dggEoE6durRu247kxAT27IqiWUtPmrXQNMMHDWPdiiU2dRs1bopfQDAONS6/VHTbpgiatfDEzb25rm2gl25Fo+wczV3PEZ09HV2eUqo6IABKqSaUYXZzLeTl5eHsarK+buLixpnkxMuWXzzvR267o6f1tVKKpyYMYcLgu/jzl1nW4+dSkmjsUriPfmNnN84lJ5XQ27JmKQ8P7MJrk8fw1Bsflln3XEoSJlMx17BEW/elxIQE3IqVSUqI11y1Gjfm8UcepFuXEJ6aPMnqqpWYmKCPbkICpuIOX4nlOKG5FZ77pRee4fW3bZ3QQD8HrOSkBFxNhd8FF1cTyYnl/6gVJ+7USQ7s24N/cKim6Vb4/pxdTSQnXbnmsgXzCR88zPq6Kjmh6YVS9qXrhT0d3cfAH0BTpdTbwCbgHTv1BViplNqplJpUWoGiLmCZGeW7gF1i57aNLJo3m/97/jXrsS9/Wc6sBeuZ9u08fv/pG3bv2KwFUdpOraXIdu4RzleLNvPyR7P48dP3yqx7ba5a+eyN3s2EiQ+zbnMUjrVr83EFuGrppbt8mcUJLTC4RP4/6YB1pX8pmRkZ/N8Do3j5zfepW9epQhyzcnNzWbdyCX0G3GM99k+2gR5OaBVBlXUBu4SI/IRmWfg/tL3oBovIPDv1u4hIEJqhzmSl1B2l6FtdwOo3aERykdHLmaQEGjd1KSEa89d+/vfSE7z35U/UK2LQ28RZMwVp2KgJd/QawKG92o3Zxs6unC3yy302OYFGpehewjfkNpLiYkm7cO6ydRs7uxIfX8w1zMXWfUnzerUt4+zqhqvJ3eKqpXm5Dhw0lL3Ru7U6biZ9dE0m4os7fLmU44SWoJ17+1aLE5pXKx4cX+iEBvo5YLm4mmw8fZMS43F2sd/0JS8vj8kPjGbQ0JH0GTC4UDOh8P0lJ8bT1PnKjGQ2rVuJt18AjZs4l/n+KqsTmh5UhckIe2ZdmwNZwCJgIZBpOVYuIpJg+TcFbVRY5mztrbUciYs9RsLpk+Tl5rJ6ye907dHPpkxSwmn+PXkcr079kuYera3Hs7MyycxIt/5/x6a1eLbVnKra+gYSf/I4SXEnycvLZcOyP+l4Vx8b3YRTJ6y/gjEH95Kfl4dT/YaXrdvWN5ATxwpdtf787Vf69re1xOgTPpBf58y2uGptw6meEy5FXbWOaK5aG9evpZ3FVSswOFQX3aDgUI4ds8MJ7efLOKEdPcneQ8f49vtCJzTQzwGrQ2AwscdjOH0yltzcXBb/MZ8effqX9fWxIiK8+NSjtGrbjgcffcJ6vENgMKdOHCPulKa5dMF8uvUOt0vzEkv/nEf44HttjlUlJzS9qOyXrvaso1uCdgmqgFsBDzRTa5+yKimlagPVRCTd8v/ewBvl1OGZV9/n6QeGYjabGTDsPjzbePHHz5qz0T2jH+C7T6dwMfU8U199DoDqDg7M/GMd58+e4d+TNZMxc76ZXgOH0sly/666gwOPvvQ/Xn5kJAVmM73uGUWL1u1ZOvd7AMKHj2fzqsWsXTSP6g4O3HLLrfxrygyUUpetC/C/qR8xfHB/CgrMjBp7v8VVS3MWu//Bh+nVpx+rVy4jzL89tWrV4uMvCl21/jd1Oo9MHEdebi4tWnpa8xwcHHTTfX/aRwwdVMwJ7RuLE9rEh+ndx+KE5teOWrUc+eyrsp3QLunq5YD16rsfcP+Iuykwmxk2ehxt23vz86yvARh9/0OcSU5icO+uZKSno6pVY9aMT1m+aReHD+znz3k/087LlwHdtNHts/95zD2ZPwAAIABJREFUnW49+/Kft6YxafRgCgrM3DNiLK3befPrD9r7HDFuImdSkhnR73YyMtKpVq0aP379GQsjoqhT14ns7Cy2bFjHq+99/I+1gR66FY7SxyiqIinXBaxEBW1Xk4dF5OFyynmijeJA61B/FpG3y6rj5RcoM/9Yd0Xx2ENV2qZJLxx0ukFya83quujqtU1TTl7Fz6N5Nq06zgJdOoaws4JdwNzb+cljX/xpV9l/92hdaV3AbBCRXUqpUDvKHQf8ryoqAwODKkWVfwRMKfVMkZfVgCDgjG4RGRgYVDkq+0P99iwvqVsk3YJ2z26QnkEZGBhUHbRZ14pZXqKU6quUOqyUilFKvVhGuVCllFkpNexyZYpS5ojOslC4jog8b4+YgYHBTUgFzaha+pvPgF5AHBCplFooIgdLKfcesMJe7cuO6JRSDqIZVl9uS3UDAwMDFNpklz2pHMKAGBE5LiK5wC+UfvX4OPAbkGJvjGWN6HagdXLRSqmFwDw0X1cAROR3e09iYGBwY1NBt+hMwOkir+OAjrbnUSbgHqA7UO6k6CXsmXVtCJyzCF9aTydAhXd0tWpWx6+ZU0XL0ufjTRWuCbD0sS4VrnlLDX2Wa1zpMqLrzbGzGbrodmnVWBfdmxtFNfv9xRorpaKKvJ4hIjOsQiUp/sWdDvxLRMxXMgFSVkfX1DLjup/CDu5yJzcwMLhJ0cxx7C5+tox1dHFAsyKv3YHiuy6EAL9YOrnGQLhSKl9EylzIV1ZHVx2og329rIGBwc1KxT2wHwm0UUp5APHASGB00QIi4mE9rVKzgMXldXJQdkeXKCJlPrJlYGBgoIDqFdDTiUi+UuoxtNnU6sBMETmglHrEkv/l1WqX1dFV7hWABgYGlYaK2plERJYCS4sdK7WDE5H77dUtq6PrYa+IgYHBzU0lfzCiTAPr8/9kIAYGBlUThX2PWF1PKl18q1YuJ9DPC3/vtkybUrpT1fPPPIm/d1s6hQQQbXGqijt9mvDePQj29yE00I/PP7XdSqdjywbMeTCEXyeGMiasWQldgMBm9Zg1PojZE4L5dGQH6/H5k8L44f5gZo0P4tuxgdbjq1cuJ8Tfm0Dfy7tqvfDsUwT6tqNzWKA11pycHLrf3okuHYPoFNyBd958zaaeno5S/j7t8fVqw9TL6D779BP4erUhLMif3UVcwB5+6AFamJwJCfArUU+veCM3ruWB8Nu4v08Yv3xd0rltzaL5PDz4Th4efCdPjQ7n2F/7rXl//DiDh+6+g4cG3s7vP3xlc74A3/b4ebVh6pTSY33u6Sfw82pDWLBtGzwy6QFauDsTEvjPtUFVcAHDYmBtT7pu6Om8A9QH5gN/AYeA28oqHxAYJB4enrL34FE5dzFbfP06SOTufZKeY7am+X8ukl69+8jF7HxZs36zhISGSXqOWY6eiJONWyMlPccsCWdSpVXrNta6Xaesl7gLWTLsq+1yx9QNciQ5XUZ/Gymd319vTb0/2iTHz2TIPV9sk87vr5fwT7dY8xJSs6XfJ5ttyt/27lpp6eEp0QeOSEpqlvj4dZBtO/dKala+Nc39faH07NVHLmTmyaoIzVUrNStfLmTmSVxKqqRm5cuZtGwJDgmVVRGbJDVLP1et9Ow88fD0lAN/xUhqRo74+XWQndH7JSu3wJp+X7BYevXpK5l/myVi4xYJCf3/9s47Pqoq/cPPawKGIE0EE0JLJJJGCQlREWFVlCIqCihSFJQiu6jr6u5vV13buq6rLoIoUlV2FSsWehdp0iVIlSIKJAEChBICSSbv7497M8wkIQRmrmTiefjcD5m5537nzLkz79xzzznvN8W9b+6CRbps5RqNi4v3Osap+s76IV3DGzTSSXNW6Yz1ezWqaZyOn7pE524+4N7e+HC6TvnuR527+YC+NOYjbdqslc7dfEDHfv2tNmoSo1PX7tZZG9I08dob9L2ZK3TWD+kaGRmlG7fs0CPHT2lCs+a6Zv1GzT5d4N6mfDVdb7m1k5445dJvFlttULhvzvxFunTFGo2Ni/c65rfuAtY4tplOWv1LmTbKsQuYL4wEZqtqDFbKpi2lFT6ZnU3UVVe5nYu697yX6dO8napmTJvKfX0sp6qUa64lKyuLjPR0wsLDaZlorVarVq0aTWNiSLNTcceGV2PvkRzSjp4iv0BZsPUgNzSp7aV7S2xdvt1+iP3HTwOQdTKv1Dd2Ys8Woq4646rVvSRXrenT6NWnuKuWiHDZZZcBVsrvvLx8xB77ccr5ac1q73097rm3uO60r+nj0bZHsyxdgLY3tOPyWsXz7zlV322e7muVK9O+810sX+jt3BafmEI12xEutkUSmbYj3J6d24ltkURIlVCCgoNp1roNyxbMYNsP64g6RxvMmPY1vfuWjzYIGBcwrMSbZdkuFo4FOhGpDrQDJgKoaq6qZpV2TG5enpdTVUREBOlpxV2PIoq6HhUp8/Pu3WxYv57kFGv1SJ3LLuWAHcAADhw/TZ3LvB0bG9aqQrWQYEbd25yJ/RLpFF/XvU8V3ujZjIn9ErmjueU1cfpoJhERRVy10s7hquXxflwuF22vSSK6UTg33nyzu66OOUrt865LSe2WlpZG/QYex9cvXqYoTtU3c38GdcI8HeHCOXTg7I5ws6d8SOsbrPGzxtEx/LDmO45lHeZUzklWL57PwfQ0MvdnUL+BdxukF6trmledrPN6cdrAuID5j/NOvHkeRGHlrXtPRFoAa4HHVDXbs5DtDjYYoHbt4stzyup6VMiJEyfoe19PXnl9ONWrW8vJyjLjOegSIebKy3j00w1cGnwJY/sksintOHuO5DB08noys3OpGVqJET2b8fPhHBZsOLdLVWl1DQoKYunKtWRlZdG3V3c2b9pIXHxCuXSUKg2n6ktJ+84y42n9yqXM/mIyb3xg+d82vOpq7hn4CH99qCchoVWJahrPJcHBJWuW4zZwrG39zkW+/1YGnOy6BmMlBXhHVROxEgIUyy+lHi5gtWvX9nKq2rdvH2HhxV2P9hV1PbLL5OXl0bdXD+7p1Zs7u93tLnPgxGnqVrvU/bhutUvJPOGdXv3A8VxW/HSEU3kFHM3JZ/2eozSpY6XIzsy2ymadzGPx9kPEhVfj0hp12LfP21UrPPwcrlolvJ+aNWvS9ob2LJg3x/3+HHGUqu9dF892O6Mbwd49HsfvLV6mKE7V94qwcA5meDrCpXN5Cc5tu7Zt4o1nH+eFt/5L9ZpnupWdu/dh9JQFDP/fVKrVqEVEo0iuCAtn7x7vNggrVtcIrzql7dtb7Jz9Wm0QUC5gZdwuFk6+9l5gr6qutB9/zjlSPoVWrcrOHTvczkVTPvuE27p6O1V16Xo7H31oOVWtWrmCGjVqEBYejqryhyEDaRoTyyOPPe51zNb049SvVYXwGiEEXyLcHFOHpTsOeZVZsiOTFvWrEyRwafAlxIdXY/fhk4RUuoRQe6F9SKVLSGlck10Hs7msfoxVV9tVa8rZXLU+LO6qlXnwIFlZVi8+JyeHb79ZQPTVTQHnnJ+Skr33ff7pJ8V1u97Bhx5tW71GjWLBuyhO1bep7b6WvtdyhPt21pdcd6O3c9uBtL28+OgA/vLK29RvfJXXviOHDrrLLJ0/gxu73E3ThER2lqENJn9QPtogsFzAyveoq2NdV1XNEJE9ItJUVbdhTUDeXNoxIsLrI96k2+2dKXC56PfAAGLj4pk43poY/dCgh+nYqQtzZ8+iRdzVVAkN5Z1xEwH4bvkyPpr8AfEJzWiTYsXT5158iY6duuBSeGP+Dob3SCDoEmH6Dxn8dOgk3VpYH+CvUtP5+XAOK386wqT+SajCtB8y+CnzJPVqhPBytzjAyrk1d8sBVu4+ggQF89rwkXS/w3LV6lvoqjXedtUaNIRbO1muWokJTQkNDeXtMZbbVEZGOkMHPYirwIUWFNDt7h506mJZGjrpKDV8xCjuuK0TrgIX9z8wwNIdZ+sOtnVnzyQhNprQKqGMmfCu+9w80Lc3ixcv4lBmJk0iG/DMs8/Tf8BDjtU3KDiYYU+/wlOD7qWgwEXHu3rTODqG6R+/D0DXXv354J3/cOzoEUa9+H/uY97+bB4A/3jsQY5lHSG4UjCPPPOKe9DiPyNGcWfXTrhcLu7vP4C4uHgm2G0wcPDDdLTboFlsNFVCQxk73qMN+vVmid0G0VENeObvz/OAg20QMC5glP9lVOftAnZe4iItgQlAZWAXMEBVj5ytfKukZF28fJXf62HSNDmXpsmpX+kl252xJXEiTdMl5d0ZxgMnXMCaxLfQVyfPPndBoHvLeoHhAnY+qOp6rLQqBoOhAlPeByMcDXQGg+G3QfkOcybQGQwGP1DOL+hMoDMYDL5hTS8p35HOBDqDweAz5orOYDBUcMRviTedolwFOgGCg/w/h9mJaSAAlRyoq1OU91GxotwQXccR3Vrtn/a75pFv/+l3zUDCdF0NBkPF5yIv2C8LJtAZDAafMYHOYDBUeM6WWaa8YAKdwWDwicLEm+UZE+gMBoPPlPM4ZwKdwWDwnfLedS138yOccj1ywrHLOEoFnu4t10ST+tEf2fjJn3iyb7timjWrhfDJy31YNekRlowfSlzkmZT6Wz9/ktX/fYQV7w9j6cTfB2wb+BsBLpGybRcNp1x3gKbAeo/tGPDH0o5JTGzliJvSoeOn/e7Ydej46d+8o1Qg6u7cm6kxPV7Tau3+rqk/pmnL3m9oSJun3NvwDxfri+Pna0ibp7R5r+G6cPUO977daYc1ovNLXuVD2jwVUG3ghAtY0/iWunjb4TJtVDQXMFXdpqotVbUlkAScBL4s7Zjs7GxHXI/Wrlnld8cuS9M4SgWSrgA79x5md9oR8vJdfLZgA11viPXSjGlcl0VrdwLw4y+ZNAqvSd1aVYudp0A+Z36njMY4F/M+3q/Vdb0Z2KmqP5dWKC8vzxHXo/S0NL87dqWnpRlHqQDTFYG9B466n9934BgRdWp4af6wI50721sZpZNj69PwyppE1LXKqCrT3hjAsom/58E7Wpdaj/LaBk4QCHaHv9ZgRC/go5J2eLmAXXHhLmDn66bkq2OXLw5NpRFojlKBpluUomVf/99iXv/jbax4fxibdmaQuj2dfFcBADcNHUd65nHq1KzK9BED2PbzQZal7g74NvAH5Xso4lcIdCJSGbgD+FtJ+1V1HDAOoGnTGL1Q16Pc3Nyzuh7Vi4jwu2PXNde1KXeOUqW1gdGthyrUr3vmCi6ibnXSMo95aR4/eZohL3/hfrz18yfZnWZl/0/PPA7Awaxspi7eTOu4+ixL3R1QbeAY5TzS/Rpd187AOlXdf66CVatWdcT1qFVSa787dlmaxlEqkHQVaFK/No3Ca1EpOIieNzdnxtKtXpo1LguhUrDl2zHg9mSWrt/N8ZOnCQ2pxGWhlul5aEglOqQ0YdOu/QHXBk4hZfx30XB6tAP4GMsU55xlW7VK0i+nztAm0dEaGRWlz7/4kubkqb751jv65lvvaE6e6sncAh3y8O81MipK4+MTdOl3q71GoIoem5On7lHVq5pEa+PIKH3muRc162S+Dh/5tg4f+bZ7dHXg4KHaODJK4+IT9JslKzTrZL4uXblOmzVvqXEJzTQ2Ll7/9sxz7pHaKV9N1yZNojUyMkqfe+Efmn26QEeOGq0jR422R1BdOnjIUI20NZcsX+UeXe1xTy+9MixMg4ODtV5EhI4eM16zTxec9X342gZG13r+zife1x9/Pqg792bqs2Pmakibp3TYq1/psFe/0pA2T2n7Qe/o9l8O6tbdB/SrRRs1rOOLGtLmKY3p8Zqm/pimqT+m6aZdGe5jQ9o8FVBt4MSoa0xCS125M6tMGxdp1NVpF7BQYA8QpapHz1U+KSlZl61c4/d6nM5z+V0TnEnTFEiOUoHIbz1NkxMuYLHNEvW/Xy8qU9mUq2pWSBewk0BtJ1/DYDBcXITyn+/QLAEzGAy+EQD56MrdEjCDwRB4SBm3c+qIdBKRbSKyQ0T+WsL+PiKywd6Wi0iLstTPXNEZDAbf8cMVnYgEAW8DtwB7gdUiMlVVN3sU+wlor6pHRKQz1tS0a86lbQKdwWDwEb9NHUkBdqjqLgAR+Ri4E3AHOlVd7lF+BVCfMlCuAp0CefkFftfdln7C75oA+7NP+V2zXZPiq0P8gROmQwBBDo0SH8/Jc0R35sQ/+V3z5Ol8v2sChF5arr6eZ6Uwe0kZuUJEPKdWjLMXDQBEYM3SKGQvpV+tPQTMKsuLBkZLGgyG8k3ZA11mKdNLSlIpcf6biNyIFejaluVFTaAzGAw+46eu616ggcfj+kBa0UIi0hyYAHRW1UNlETajrgaDwWf8lKZpNRAtIpH2GvlegFc+NRFpCHwB9FPVH8taP3NFZzAYfMYf13Oqmi8iw4A5QBDwrqpuEpGH7f1jgGexFiGMticp55dlpYUJdAaDwTfKOkmuDKjqTGBmkefGePw9EBh4vrom0BkMBp+wRl3L99KIcnePbt7c2bRqHkuL+KsZ/lrJJjZ//tNjtIi/mutat/Qysfld22tpk5JISqtm/NPDxAbgu2/n07NDMt1vTGTSmDeK6c7++lP6dGlDny5tGNjjVn7c8gMAp0+fYsBdN9Hntuvp1elaxo142X3M2qULGXr79Qy+7Vo+nziqmOaKb2bzSPcbeaznzfyp161sXrfSvW/ks3+kX/t4ht3VvthxThj5AMybM5vEhBiax0bzn1LMfJrHRnNNUgu3LsDQwQ/SuP6VtP4VzXwWzpvDda3iSWkRy5vDXy1R96k/P05Ki1jaX9eKDeu/d+87mpXFg/3upU1SAtcnN2P1yhUArFqygPs7X0Pfjq2ZPH5kMc350z5j4J3tGHhnO4bd15mdWzcC8MtP2xl01+/cW9fkxnw+yX2hwYJ5c0hJjCe5eQwj/lNyXf/65B9Jbh7DDdckkrr+TBu0jGtC25SWtL8uiZtu8J5NEQjmOOC/lRGO4XCKpseBTcBGrAzDIaWVb5nYShtHRmnq5u2aeTRHE5o111XrftBjOS739tmX07TDrR316Ml8nb9omSYlp+ixHJcePZmvaQeP6rEclx46dkqTklN0/qJleizHpct/PKQRDRvrF9+s16VbDmiTmHj9aPYKr/Qx4z+do/PW7daVO7P0jYmfaXyLJF25M0tX7Dii32zYqyt3ZumyrQc1vkWSTvh8ni7/8ZCG1W+k42au1Clrf9HGV8fpW19+q1M3ZLi3T1bs1K9T03Xqhgwd+flCjWjcxL3v5Xe/1Dc+nqsNr2rqdYwTRj5ZJ/P16Mk8jYyM0h+27NDDtpnP6vUb9cTpAvdWaOZz/JRLF9pmPoX7ZnuY+Xge45QxTPqRHG3UOEpXpW7VvZknNC6hmS5ZtV4PHMt1b5M/+1pv6tBR9x89rTPnL9FWSa3d++65r68OHzVGDxzL1b2ZJ3T7Lwc0/UiOhjdorB/MXaNzUtM0qmm8vjttmS7ckune3pw8U79esUMXbsnUf439WGOat/Lav3BLps7buF9rXVFXJ8//XhduydQDR09p48goXfvDNk0/nK3xCc102epUPXQiz719PGWq3nxLR808nquzFy7RVsmt3fsaNGykP+5O9yp/6ERewJjjxDdP1M1pJ8q0UdHMcUQkAngUSFbVBKybi71KO+ZkdjZRV11FZKGJTc97mVHMxGYq9/X2MJw5mlWiiU1+fp47o8Lm1LXUbxRFRMPGVKpcmVu6dmfxfK/bADRPuobqNWoCkJDYmgMZaYXvg9Cqlm5+/hndzalrCW8YSVj9RlSqVJkbOnVj5TdzvDSrhFZ11+F0zkmvDA8Jyddxmf16njhh5AOwZnVxM58ZRY1Wpn3NfUXMfDI8zHxq/YpmPuvWrCYy6kw73NX9HmbPmOalO2vmNO65rw8iQnLKNRw9msX+jHSOHzvGiuVL6XP/AAAqV65MjZo1WbdmNRENI6nXwPoc3NTlLpYv9J5vmpCYQjX7vMS1SOZgRrHZDaxbsZh6DRoTZvuQrFuzyruuPe5lVtG6Tp/Kvff19T5nGenFtH+NtnWC8p540+muazBQRUSCgVBKmBPjSW4Rc5x6ERGklcUMxMPE5vprWnFVwzBuvKkDrVOsbsCB/elcGR7hPqZuWD0O7j/7h2zqp//juvYd3I9dLhd9u7alU0o0KdffSELLZA7sT+eKK8+kpr7iynAOHSiu+d2CmQy9oy0v/qEvj75YvMtcFCeMfMButyJmPkXbNr0EM5+0i2Tmk5Hu/R7D60UUa4eMtDTqFTMfSmP37l3Urn0Fjw4dyE1tW/P4sCFkZ2eTkb6PumGe56z0z8HMKR9wzQ03F3v+m5lfctNtd7sfp6elnfV8uMukFylT70wZEaHHnZ25qW0Kk94d7y4TKOY41nv4jbqAqeo+4HXgFyAdOKqqc89X53wMZ4KCgli2ch1bdvzC2jWr2bxpY+FBxY85y+ut+W4x0z77H8P+8oL7uaCgID6YvpRpyzaxKXUtO7dtLlmzhDN53c1deGfqUp4a8R4fvlX8fltRSkyEegFGPpu2/+zVBqUdUxbd86nvxTaGceW72JD6Pf0fGsLCpasJDa3KqOGvntf7+37lEmZN+ZBBTzzn9Xxebi7LF86mfcczacl9bduZ87/lm2Wr+eSL6Uwc9w7Lly7xWfdCzqUvlPd7dE52XWthLciNBOoBVUWkbwnlBovIGhFZczI7u4iZzD7Cy2IGUpKJTbv2zJ9rdSXrhtVjf/qZX7MDGWlccWVx74btWzfy8lOP8trYydQooZtWrXpNkq5ty3eLF1A3rB6Z+89cYWTuT+fyOmFnbY+E5OtI37ObY0dKn8jthJEP2O1WxMynaNvWK8HMp2jbFsUXA5fSjg2v5/0e09P2EVakHcIjIkgrZj4UTnhEBPUi6pPUOgWA27vdzYbU9YTXq+++JQGQuT+NK+oWP2c7t23i9b8/zj/e+l+xz8GqJfOJjmvO5VfUdT9XLyLinOejXr0iZdLOlCls4zp163Lb7d1Yt3b1WdvNH23rbwoTb5Zlu1g42XXtAPykqgdVNQ9rNnObooVUdZyqJqtqcr2ICHZ5mth89gldipnY3M5Hkz0MZ6rXKNHEZtHCBUQ3bQpAbPNW7Nm9k7Q9u8nLzWXe9Cm0u7mzl25G2h7+OrQfz78+loaRTdzPHzmUyfFjlu6pUzmsWvYtja+KJrZ5K9J+3kXG3p/Jy8tlyeyvuOZ3t3pppv3yk/uXdefmDeTn51GtZvEA6okTRj4AScnFzXy6lGDm81ERM5+iwaUoThm4JCYls2vXDn622+HLKZ/SsUtXL91Onbvy6UcfoqqsWbWS6tVrcGVYOFdeGUa9iPrs2L4NgMWLFnJ1TCyJScns+3kX6Xt/Ji83l4Uzv+S6Gzt5ae5P28tzj/bnb/8eTQOPz0EhC2d84dVtteraml07Per6+Sd0LlrX227nk48+8D5nYeFkZ2dz/LjlLpadnc03C+cRGxfvaNv6nTJ2Wy9m19XJeXS/ANfavhE5WCbWpRpCiAivvfEmd93eGZfLRb8HBhAbF8/E8dYw/kODHqZjpy7MnTOLFvFXExoayuixEwHIyEjn4UEDcLlcFBQUcFf3nu4PW3BwME8+9xqP9u9OQYGL23v0JerqWL6Y/C4Ad/d+kImjXuVo1mFefe4JAIKCgpn09SIyD2bw4p+HUuByUVCg3HxbN9reZH05hjz1Ms8PvY8Cl4sO3e6jYZMYZn06CYDO9zzAd/Ons3DaZwQHV6LypSH85dWx7l+11/7yMBvXLOdY1mEGdEjkvt//mVvv7k1wcDCvDR9J9zu6WPcG7+9PbFw8744fC8CDg4Zwa6cu9lSRpoSGhvL2mAnuNhg66EFcBS60oIBud/egk0cb/GfEKLp17WS1bf8BxMXFM2Gc1bYDBz9Mx85dmDN7Js1jo6kSGsqY8e+6z03/fr1ZsngRhzIzuTqqAU///XkeGPAQwcHBvDHyLW6/rSMul4sH+j9IXHw848dauoOGPEynzl2YM2sm8TFNCK0SytgJ77nrVNKxhfteeW0E9951Gy5XAb37PUBMbDzvT7QSXfR/aDAdOnZm/tzZpLSIJTS0CiNHT3DX9+XX3mDowAfIzc2lUeNI3hw9geDgYB555hX+b2BPXAUFdL67N5HRMUz92KrPHb0G8L/Rr3Es6zAjX/yL/TkIYsznCwA4lXOStcu/5fEXhnt9boODg/n3f0bSs9ttuFwuevfrT0xcPO9NsM7ZgIFDuKVjZ+bNmUVy8xiqVKnCKPucHTywn/vv6wFAfr6L7vf04uZbOpbaPr62rROU71l0OG6O8wJwL5APfA8MVNXTZyvfKilZv122yu/12JJ23O+aYNI0QeCladq479i5C50nLRrUOHehC8CJNE1OmOM0a9lKv5q3rExlm9QNrZDmOM8Bz52zoMFgCGAusmdrGTBLwAwGg0+cZ+LNi4IJdAaDwXdMoDMYDBUd03U1GAwVnnKevMQEOoPB4DvlPM6Vv0B3iQN3NePrV/e7JkAC/td14v0DuAqcm0bkBNWqVHJEt8vAc683Pl+OLHrJ75oBxUWeDFwWyl2gMxgMgUXhErDyjAl0BoPBZ8p3mDOBzmAw+IFyfkFnAp3BYPAdM73EYDBUfMp3nDOBzmAw+E45j3Pl0AXMIacqJ3TnzplNy4QYmsVG83opms1io0lJasH3HpoPD36QRvWvJPlXdNUKNBcwJ3RvuSaa1MmPsfHjx3myb7timjWrhfDJy71Z9f4wlox7mLjIMwk2t372BKsnDWPFe39g6YShAdsG/kbEsjssy3bRcNgF7DEsB7BNwB/PVb5lYitHnKqccMAq1Ny4ZYcesTXXrN+o2acL3Fuh5olTLv3G1izcN8dD0/MYp1y1As0FzCndnXsPaUzP17Va+2c1dXuatuwzQkOuf9q9Df9wsb44Yb6GXP+0Nr/vDV24eodv/LnYAAANg0lEQVR73+60wxrR5Z9e5UOufzqg2sAJF7AWia30wPG8Mm1UQBewBGAQkAK0ALqKSHRpx1guYP53qnLCAaskzaIuSzOmfU3vIprpHpqX/4quWoHmAuaErgA79x5id9oR8vJdfDb/B7q2jfXSjGlcl0VrdwHw4y+ZNAqvRd1aVYu970BtA6f4zXpGALHAClU9qar5wLfAXaUdkJuX55xTlZ91S9JML+bQVFyzqDtUiboOOD8FmguYE7oisPfAUffz+w4eI6KO9+qWH3ZkcGe7OACSYyNoeGUNIupaiTVVYdrw/iybOJQH7ziTOzKQ2sApfsup1DcC/xSR2lip1LtQQip1ERkMDAaofUXx7LoX26nq19T0VdcpV61Aq+/5vI+iZV//YDGvP3YbK977A5t27id1ezr5rgIAbho6jvRDx6lTsyrTR/Rn28+ZLEvdHfBt4Du/4cSbqrpFRP4NzANOAKlYKdWLlhsHjANo2jRGHXOq8rNuSZphxRyaimsWdYcqUfcCnZ9yc3PPemx5dAE7Z339rKsK9eueSXseUac6aZneafaPnzzNkH994X689bMn2J12BID0Q1bZg1nZTF28hdZxESxL3R1QbeAE1hIwR6T9hqOjrqo6UVVbqWo74DCwvbTyoVWrOuJU5YQDVkmaxRyaut7B5CKaRa0Li+KU81OguYA5oatAkwa1aRRei0rBQfTs0IwZy7Z6ada4LIRKwUEADLg9maWpuzl+8jShIZW4rEplAEJDKtGhdRM27ToQcG3gFOW96+r0qGtd+/+GwFagVmnlE1sl6ZSvpmuTJtEaGRmlz77wDz1xukBHjBqtI0aN1hOnC/T4KZcOGjJUIyOjNC4+QRcvX+UeAexxTy+9MixMg4ODtV5EhL49ZrzXiKK/dT01n3vhH5p9ukBHjhqtI0eNtkdQXTrYQ3PJ8lXu0dWimqPHjNfs0wXukbQm0dEaGRWlz7/4kubkqb751jv65lvvaE6e6sncAh3y8O81MipK4+MTdOl3q71G4Yoem5OnjrWBU/V1SvfOJybpj78c1J17D+mzY+dqyPVP67BXv9Jhr36lIdc/re0Hj9HtvxzUrbsP6FeLNmpYp39oyPVPa0zP1zV1e5qmbk/TTbsy3MeGXP90QLWBE6OuLROTNOukq0wbF2nU1WkXsCVAbSAP+JOqLiitfKukZF3y3WrH6uNvnPiBCrQ0TU65gDlFrd8943fNQErT5IQLWOJ5uPfVqBJUIV3AbnBS32AwXHwu9tSRsmCWgBkMBt8p55HOBDqDweAzF3V5Vxkod2tdDQZD4OGvlREi0klEtonIDhH5awn7RUTetPdvEJFWZamfCXQGg8F3/BDpRCQIeBvoDMQB94lIXJFinYFoexsMvFOW6plAZzAYfEbK+O8cpAA7VHWXquYCHwN3FilzJ/BftVgB1BSR0id7Us7u0X2/bm3mZZde8nMZil4BZDpQBaPrnG4g1fW8dKtU+qcjuudJWXUb+fuFv1+3dk5oZSm+frNkQkTEcynoOHt1FEAEsMdj317gmiLHl1QmAkgv7UXLVaBT1TplKScia5yYi2N0ndMNpLoa3fNDVTv5SaqkS76iE0DLUqYYputqMBjKC3uBBh6P6wNpF1CmGCbQGQyG8sJqIFpEIkWkMtALmFqkzFTgfnv09VrgqKqW2m2FctZ1PQ/GnbuI0S1nuoFUV6N7EVDVfBEZBswBgoB3VXWTiDxs7x8DzMRK+bYDOAkMKIu2o2tdDQaDoTxguq4Gg6HCYwKdwWCo8JhAZyiGOJdz26+ISOmuNReuGxYobWAoGwEV6ESkqYhcJyKV7OUi/tb3q6aINBGRZBG51M+68SLS3vbj8JdmWxHpB6Cq6q8vuojcLiKP+UOriO6dwL9FpO45C5+fbkfgS7ynMPiqea2I9LP/r+xH3Wj78xXkxPehQnExsn1eyAbcjZWleAHwX+BRoLqftK/2+DvIT5pdgQ3AN8BHnq/ho25nW/crYAYQ5qPeJcBlWN67m4GHPff5qH0rsB64xc+fhfb2Z8HfuoX13Q2M9JPmHfb5mgR8DkT7Sbcblg/LFGAk8Hugqj/boyJtF70CZTyplYBPgOvtx92B14CXfA12dkA6CUz2eM6nYAe0sb+Iifbj0VhD5b62w++AH4EU+/GXQAc/tfFfgCfsH5HH/aDXBtjvUdcaWMuPQv2g/SfgSfvvesAtWEuFavig2QFrykK8/XmbC7TzsZ61saZKJNiP3wV6AnWBEB91ZwFx9uMHseagPQNU88fnoaJtgdR1rY6VsQCsL/h0oDLQ+0K7WfY9nmHAH4FcEfkAQFVdfugKvKKq39t/Pwdc7ocu7H5giKquEpEwrC/3MBEZKyI9fOxu5mN11yYBKSIyXET+ZU/MvJDPySGsFPrhdhf7K6xME+/7qa6FfI71RR8GvC0itS5QMwi4X1U3AVWBbVhBz5d7lvlAFSBGRKpj/VDdD4wAnvHhHmM+1lV4GICqvgv8DNTB+uE2FOViR9rz+BW7BWtW9A324yCgN/AB9nzAC9Sth/WhuQLrS/OBH+oahH2laf9dH/geqGM/V9sPr/E08Iz99wCsK946PuhdBfzV/vsJrKvct32sYwtgF9aynUFY3eQHsbryl/ugm4AViD4GBtjPRQFjgI4+1vkS+/9OQAbQzEe9HsBaYAXwd/u5m4D3gRY+6D4M/A/oB/zT/h4MwQ89h4q4BdIV3RKs7kQ/EWmnqi5VnYwVqFpcqKiqpqnqCVXNxPqgVCm8shORViIScwGaLlU9Zj8UIAs4rKoHRaQP8JKIVLnQOtuv8U9Vfcn++z2gGr7dQM8BmorIIKwv0StAQxEZ4kMdU7GuMP6lquNVtUCtq49aWM5wF6q7EXgS64o20n5uF9aPSpkSQ5SiXWD/PxtrtUFXH65qUdXPsbrFS7B+7FDVhVjny5dMIh8Bs7GCZqiq9lXVsUBd++rR4EHALAFT1VMi8iFWpoK/2QHoNHAl50jRch6vccj+Yr8mIluxvjg3+qiZD5wQkT0i8i+sG979VTXnQjVFRNT+Wbcfd8dqh3Mubi6lnmkisgf4O/AHVZ0mIjdi3be6YFR1M9Ygh2dd6+D7OZuFdUvgeREpTO2ViBWg/UUq8Djwqqq6LlREVY+IyELgHhHJBUKwAvQGHzSPAh+KyEeFwVlE7gcuBy64rhWWi31Jeb4b1n25G7G6Le9j3/D382s8jh+6LbaW2HXeCfyCn0bdbO1LgYewRkwT/KDXAEjyeOzTqGsJ7fAgVtCL96NuK+Bl4D/+OF8l6H8KNPaDTk2smQLfYg1QXHC39Sz6hW3r9zaoCFvArnW1BwtU7V8zP+rWwvpwP6GqF/yLW4Juf2C1Wje7/aVZCeve5U5V3eZHXa8rRn9pYk0LyVDVrf7UdgIn2sDWrYZ1T/nYOQufn24joJKq+nQFXlEJ2EDnJCISoqqn/KzpyBfHYDCcGxPoDAZDhSeQRl0NBoPhgjCBzmAwVHhMoDMYDBUeE+gMBkOFxwS6AEFEXCKyXkQ2ishnIhLqg9b7ItLD/nuCFHdD9yz7OxFpcwGvsVukuNfn2Z4/i0Z/EXnLH69r+G1jAl3gkKOqLVU1AcjFWqbl5kKTEKjqQLVWL5yN32FlIjEYAhYT6AKTJUAT+2rrGxGZDPxgJ2B8TURWi8iGwnWq9lrNt0Rks4jMwEoThL1vkYgk2393EpF1IpIqIgtEpDFWQH3cvpq8QUTqiMgU+zVWi8j19rG1RWSuiHwvImMp2Wi4REQkRUSW28cuF5GmHrsbiMhsEdkmIs95HNNXRFbZ9Rp7oYHe8NsgYNa6GixEJBgr+eZs+6kUrOVfP4nIYCyfy9ZipYRaJiJzsdaANgWaYa2J3YyVG81Ttw4wHisH208icrmqHhaRMcAJVX3dLjcZeENVl4pIQ6zlTLFY606XquqLInIbMPg83tZW+3XzRaQD1pKu7p7vDyubymo7UGcD92LlJ8wTkdFAH6xcegZDMUygCxyqiMh6++8lwESsLuUqVf3Jfv5WoHnh/TesZJfRQDvgI7UWpqfZC8yLci2wuFBLVQ+fpR4dgDg5k6Ktur2sqR1WFmhUdYaIHDmP91YDmCQi0VhJGyp57JunqocAROQLoC1WPrYkrMAHVs63A+fxeobfGCbQBQ45qtrS8wn7S57t+RTwiKrOKVKuC1YAKQ0pQxmwbndcp0Wyr9h1udBlNv8AvlHVu+zu8iKPfUU11a7rJFX92wW+nuE3hrlHV7GYAwy1F/sjIleLlcV2MdDLvocXTsmpp74D2otIpH3s5fbzx7FypxUyFyubL3a5wuC7GKv7iIh0xso5V1ZqAPvsv/sX2XeLiFwuVv6+bsAyLN+QHmIb49j7fcntZqjgmEBXsZiAdf9tnYhsBMZiXbV/CWwHfsBKZ/5t0QNV9SDWfbUvRCQVK2MxwDTgrsLBCKxUQ8n2YMdmzoz+vgC0E5F1WF3oX0qp5wYR2Wtvw4FXgX+JyDKsHICeLMXKpLsemKKqa+xR4meAuSKyAZgHhJexjQy/QcyifoPBUOExV3QGg6HCYwKdwWCo8JhAZzAYKjwm0BkMhgqPCXQGg6HCYwKdwWCo8JhAZzAYKjz/D+HpnMtvcuN7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Nonlinearity (Activation function)\n", + "- Sigmoid functions suffer from gradient vanishing problem, making training slower\n", + "- There are many choices apart from sigmoid and tanh; try many of them!\n", + " - **'relu'** (rectified linear unit) is one of the most popular ones\n", + " - **'selu'** (scaled exponential linear unit) is one of the most recent ones\n", + "- Doc: https://keras.io/activations/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
**Sigmoid Activation Function**
\n", + "\n", + "
**Relu Activation Function**
" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, )))\n", + " model.add(Activation('relu')) # use relu\n", + " model.add(Dense(50))\n", + " model.add(Activation('relu')) # use relu\n", + " model.add(Dense(50))\n", + " model.add(Activation('relu')) # use relu\n", + " model.add(Dense(50))\n", + " model.add(Activation('relu')) # use relu\n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " sgd = optimizers.SGD(lr = 0.001)\n", + " model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0110 - accuracy: 0.5953 - val_loss: 0.8677 - val_accuracy: 0.7369\n", + "Epoch 2/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.6794 - accuracy: 0.7986 - val_loss: 0.6026 - val_accuracy: 0.8170\n", + "Epoch 3/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.5043 - accuracy: 0.8493 - val_loss: 0.5074 - val_accuracy: 0.8411\n", + "Epoch 4/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.4196 - accuracy: 0.8719 - val_loss: 0.6869 - val_accuracy: 0.8013\n", + "Epoch 5/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.3644 - accuracy: 0.8877 - val_loss: 0.4076 - val_accuracy: 0.8768\n", + "Epoch 6/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.3219 - accuracy: 0.9009 - val_loss: 0.4033 - val_accuracy: 0.8800\n", + "Epoch 7/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2931 - accuracy: 0.9086 - val_loss: 0.3891 - val_accuracy: 0.8857\n", + "Epoch 8/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2733 - accuracy: 0.9152 - val_loss: 0.3820 - val_accuracy: 0.8870\n", + "Epoch 9/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2536 - accuracy: 0.9214 - val_loss: 0.3655 - val_accuracy: 0.8921\n", + "Epoch 10/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2372 - accuracy: 0.9249 - val_loss: 0.3433 - val_accuracy: 0.8987\n", + "Epoch 11/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2208 - accuracy: 0.9320 - val_loss: 0.3384 - val_accuracy: 0.9040\n", + "Epoch 12/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2102 - accuracy: 0.9341 - val_loss: 0.3393 - val_accuracy: 0.9027\n", + "Epoch 13/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1970 - accuracy: 0.9373 - val_loss: 0.3228 - val_accuracy: 0.9101\n", + "Epoch 14/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1856 - accuracy: 0.9400 - val_loss: 0.3321 - val_accuracy: 0.9086\n", + "Epoch 15/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1788 - accuracy: 0.9457 - val_loss: 0.3561 - val_accuracy: 0.9034\n", + "Epoch 16/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.1686 - accuracy: 0.9476 - val_loss: 0.3213 - val_accuracy: 0.9077\n", + "Epoch 17/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.1600 - accuracy: 0.9494 - val_loss: 0.3330 - val_accuracy: 0.9091\n", + "Epoch 18/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1555 - accuracy: 0.9504 - val_loss: 0.3161 - val_accuracy: 0.9150\n", + "Epoch 19/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1451 - accuracy: 0.9546 - val_loss: 0.3111 - val_accuracy: 0.9162\n", + "Epoch 20/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1401 - accuracy: 0.9568 - val_loss: 0.4167 - val_accuracy: 0.8919\n", + "Epoch 21/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1372 - accuracy: 0.9575 - val_loss: 0.3049 - val_accuracy: 0.9172\n", + "Epoch 22/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1272 - accuracy: 0.9590 - val_loss: 0.5210 - val_accuracy: 0.8645\n", + "Epoch 23/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1261 - accuracy: 0.9590 - val_loss: 0.3753 - val_accuracy: 0.9025\n", + "Epoch 24/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1202 - accuracy: 0.9628 - val_loss: 0.3271 - val_accuracy: 0.9130\n", + "Epoch 25/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1134 - accuracy: 0.9635 - val_loss: 0.3211 - val_accuracy: 0.9162\n", + "Epoch 26/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1088 - accuracy: 0.9675 - val_loss: 0.4257 - val_accuracy: 0.8901\n", + "Epoch 27/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1053 - accuracy: 0.9662 - val_loss: 0.3142 - val_accuracy: 0.9199\n", + "Epoch 28/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.1013 - accuracy: 0.9703 - val_loss: 0.3477 - val_accuracy: 0.9096\n", + "Epoch 29/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0976 - accuracy: 0.9696 - val_loss: 0.3136 - val_accuracy: 0.9180\n", + "Epoch 30/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0939 - accuracy: 0.9703 - val_loss: 0.3286 - val_accuracy: 0.9178\n", + "Epoch 31/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0899 - accuracy: 0.9714 - val_loss: 1.5631 - val_accuracy: 0.7330\n", + "Epoch 32/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0964 - accuracy: 0.9716 - val_loss: 0.3254 - val_accuracy: 0.9158\n", + "Epoch 33/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0845 - accuracy: 0.9727 - val_loss: 0.3224 - val_accuracy: 0.9200\n", + "Epoch 34/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0802 - accuracy: 0.9758 - val_loss: 0.4094 - val_accuracy: 0.9093\n", + "Epoch 35/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0794 - accuracy: 0.9752 - val_loss: 0.3260 - val_accuracy: 0.9205\n", + "Epoch 36/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0758 - accuracy: 0.9775 - val_loss: 0.3405 - val_accuracy: 0.9190\n", + "Epoch 37/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0729 - accuracy: 0.9775 - val_loss: 0.3568 - val_accuracy: 0.9135\n", + "Epoch 38/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0706 - accuracy: 0.9792 - val_loss: 0.3372 - val_accuracy: 0.9190\n", + "Epoch 39/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0674 - accuracy: 0.9802 - val_loss: 0.3313 - val_accuracy: 0.9217\n", + "Epoch 40/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0656 - accuracy: 0.9801 - val_loss: 0.3709 - val_accuracy: 0.9152\n", + "Epoch 41/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0629 - accuracy: 0.9802 - val_loss: 0.4039 - val_accuracy: 0.9089\n", + "Epoch 42/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0618 - accuracy: 0.9817 - val_loss: 0.3331 - val_accuracy: 0.9224\n", + "Epoch 43/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0587 - accuracy: 0.9830 - val_loss: 0.3455 - val_accuracy: 0.9202\n", + "Epoch 44/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0572 - accuracy: 0.9841 - val_loss: 0.3485 - val_accuracy: 0.9217\n", + "Epoch 45/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0540 - accuracy: 0.9842 - val_loss: 0.3471 - val_accuracy: 0.9221\n", + "Epoch 46/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0528 - accuracy: 0.9845 - val_loss: 0.4474 - val_accuracy: 0.8985\n", + "Epoch 47/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0518 - accuracy: 0.9854 - val_loss: 0.3460 - val_accuracy: 0.9232\n", + "Epoch 48/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0477 - accuracy: 0.9875 - val_loss: 0.5837 - val_accuracy: 0.8838\n", + "Epoch 49/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0503 - accuracy: 0.9846 - val_loss: 0.3594 - val_accuracy: 0.9184\n", + "Epoch 50/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0438 - accuracy: 0.9882 - val_loss: 0.3544 - val_accuracy: 0.9197\n", + "Epoch 51/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0428 - accuracy: 0.9889 - val_loss: 0.3541 - val_accuracy: 0.9219\n", + "Epoch 52/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0419 - accuracy: 0.9882 - val_loss: 0.3639 - val_accuracy: 0.9197\n", + "Epoch 53/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0389 - accuracy: 0.9900 - val_loss: 0.4586 - val_accuracy: 0.9025\n", + "Epoch 54/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0383 - accuracy: 0.9915 - val_loss: 0.3587 - val_accuracy: 0.9237\n", + "Epoch 55/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0361 - accuracy: 0.9900 - val_loss: 0.4175 - val_accuracy: 0.9172\n", + "Epoch 56/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0360 - accuracy: 0.9911 - val_loss: 0.3711 - val_accuracy: 0.9217\n", + "Epoch 57/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0342 - accuracy: 0.9912 - val_loss: 0.3754 - val_accuracy: 0.9210\n", + "Epoch 58/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0315 - accuracy: 0.9926 - val_loss: 0.3802 - val_accuracy: 0.9200\n", + "Epoch 59/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0312 - accuracy: 0.9924 - val_loss: 0.3789 - val_accuracy: 0.9207\n", + "Epoch 60/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0298 - accuracy: 0.9929 - val_loss: 0.3850 - val_accuracy: 0.9192\n", + "Epoch 61/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0289 - accuracy: 0.9932 - val_loss: 0.3800 - val_accuracy: 0.9212\n", + "Epoch 62/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0279 - accuracy: 0.9936 - val_loss: 0.3873 - val_accuracy: 0.9210\n", + "Epoch 63/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0269 - accuracy: 0.9942 - val_loss: 0.4172 - val_accuracy: 0.9173\n", + "Epoch 64/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0261 - accuracy: 0.9942 - val_loss: 0.3952 - val_accuracy: 0.9209\n", + "Epoch 65/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0245 - accuracy: 0.9949 - val_loss: 0.3964 - val_accuracy: 0.9221\n", + "Epoch 66/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0234 - accuracy: 0.9953 - val_loss: 0.3914 - val_accuracy: 0.9231\n", + "Epoch 67/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0228 - accuracy: 0.9952 - val_loss: 0.3985 - val_accuracy: 0.9226\n", + "Epoch 68/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0219 - accuracy: 0.9960 - val_loss: 0.3958 - val_accuracy: 0.9239\n", + "Epoch 69/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0214 - accuracy: 0.9957 - val_loss: 0.4045 - val_accuracy: 0.9207\n", + "Epoch 70/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0212 - accuracy: 0.9952 - val_loss: 0.4025 - val_accuracy: 0.9207\n", + "Epoch 71/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0193 - accuracy: 0.9962 - val_loss: 0.3990 - val_accuracy: 0.9232\n", + "Epoch 72/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0192 - accuracy: 0.9965 - val_loss: 0.4069 - val_accuracy: 0.9239\n", + "Epoch 73/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0180 - accuracy: 0.9966 - val_loss: 0.4285 - val_accuracy: 0.9207\n", + "Epoch 74/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0182 - accuracy: 0.9968 - val_loss: 0.4098 - val_accuracy: 0.9227\n", + "Epoch 75/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0173 - accuracy: 0.9966 - val_loss: 0.4126 - val_accuracy: 0.9229\n", + "Epoch 76/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0161 - accuracy: 0.9973 - val_loss: 0.4139 - val_accuracy: 0.9246\n", + "Epoch 77/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0158 - accuracy: 0.9970 - val_loss: 0.4127 - val_accuracy: 0.9222\n", + "Epoch 78/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0156 - accuracy: 0.9973 - val_loss: 0.4135 - val_accuracy: 0.9249\n", + "Epoch 79/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0155 - accuracy: 0.9975 - val_loss: 0.4178 - val_accuracy: 0.9236\n", + "Epoch 80/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0139 - accuracy: 0.9980 - val_loss: 0.4237 - val_accuracy: 0.9224\n", + "Epoch 81/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0136 - accuracy: 0.9977 - val_loss: 0.4317 - val_accuracy: 0.9212\n", + "Epoch 82/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0133 - accuracy: 0.9981 - val_loss: 0.4270 - val_accuracy: 0.9241\n", + "Epoch 83/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0132 - accuracy: 0.9978 - val_loss: 0.4279 - val_accuracy: 0.9234\n", + "Epoch 84/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0124 - accuracy: 0.9980 - val_loss: 0.4321 - val_accuracy: 0.9232\n", + "Epoch 85/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0127 - accuracy: 0.9978 - val_loss: 0.4910 - val_accuracy: 0.9146\n", + "Epoch 86/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0126 - accuracy: 0.9982 - val_loss: 0.4904 - val_accuracy: 0.9163\n", + "Epoch 87/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0120 - accuracy: 0.9979 - val_loss: 0.4334 - val_accuracy: 0.9227\n", + "Epoch 88/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0107 - accuracy: 0.9985 - val_loss: 0.4390 - val_accuracy: 0.9236\n", + "Epoch 89/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0103 - accuracy: 0.9986 - val_loss: 0.4407 - val_accuracy: 0.9244\n", + "Epoch 90/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0098 - accuracy: 0.9986 - val_loss: 0.4421 - val_accuracy: 0.9239\n", + "Epoch 91/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.0097 - accuracy: 0.9985 - val_loss: 0.4477 - val_accuracy: 0.9222\n", + "Epoch 92/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0095 - accuracy: 0.9986 - val_loss: 0.4510 - val_accuracy: 0.9227\n", + "Epoch 93/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0091 - accuracy: 0.9990 - val_loss: 0.4476 - val_accuracy: 0.9229\n", + "Epoch 94/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0085 - accuracy: 0.9991 - val_loss: 0.4503 - val_accuracy: 0.9242\n", + "Epoch 95/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0086 - accuracy: 0.9988 - val_loss: 0.4593 - val_accuracy: 0.9229\n", + "Epoch 96/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0083 - accuracy: 0.9991 - val_loss: 0.4600 - val_accuracy: 0.9231\n", + "Epoch 97/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0082 - accuracy: 0.9988 - val_loss: 0.4607 - val_accuracy: 0.9231\n", + "Epoch 98/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0077 - accuracy: 0.9993 - val_loss: 0.4600 - val_accuracy: 0.9241\n", + "Epoch 99/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0075 - accuracy: 0.9994 - val_loss: 0.4628 - val_accuracy: 0.9236\n", + "Epoch 100/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.0073 - accuracy: 0.9994 - val_loss: 0.4618 - val_accuracy: 0.9246\n" + ] + } + ], + "source": [ + "model = mlp_model()\n", + "history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXyV5Z3//9fnLNlXSIBAgICCgAioERcUsG64UpVaUFt1tIy21urMtNrO/MbaZeq3Oo51RkvRol1cal0qtoi2VqUqKosIYZPIGsKSjSRkOTnL9fvjOklOkhNyIAk5ufN5Ph48knMv59x3SN7nOp/7uq9LjDEopZRyLldfH4BSSqnepUGvlFIOp0GvlFIOp0GvlFIOp0GvlFIO5+nrA4gmJyfHFBQU9PVhKKVUv7FmzZpyY0xutHVxGfQFBQWsXr26rw9DKaX6DRHZ1dk6Ld0opZTDadArpZTDadArpZTDxWWNPhq/309JSQmNjY19fSiOkJSURH5+Pl6vt68PRSnVy/pN0JeUlJCenk5BQQEi0teH068ZY6ioqKCkpIQxY8b09eEopXpZl6UbEVkiIgdFpKiT9SIij4lIsYisF5HTItbNEZGt4XX3dedAGxsbGTx4sIZ8DxARBg8erJ+OlBogYqnRPwPMOcL6S4Fx4X8LgV8CiIgbeDy8fhKwQEQmdedgNeR7jv4slRo4uizdGGNWiEjBETaZC/zW2PGOPxKRLBHJAwqAYmPMdgAReSG87abuHrRSSnVHUyBETaOfYMgQDBlCxhAKQdAYjDF43S68bhdulxAIhQgEDb5AiMO+ALWNfg43BmgKhmgKhAiEDEleF2mJXtISPQRCIWobAxxuDCACqYkekhPcBIKGQ/VNVDf4afQHCYZfj4ih4lMSPdw+64QeP9+eqNGPAPZEPC4JL4u2/MzOnkREFmI/ETBq1KgeOKyedejQIZ577jm++c1vHtV+l112Gc899xxZWVmdbvOf//mfzJw5kwsvvLC7h6lUrwkEQ9Q1BWloCuILBFsCMhAy+AMGfyhEKNQaksGQYV91A6WHGqis95Oa4CY9yUuS10V9U5DDPhuG/mCIpmAIXyBEdb2fijofh+r9eNxCSoKHlAQ3DU1Bqhv8VDf4cbuEtEQPGUleEPD5gzT6QwB43NLy2rWNfg77AgRChtQEG7YA5Yft88eLyA/XOWmJcRv00WoA5gjLozLGLAYWAxQWFsbdbCiHDh3iiSee6BD0wWAQt9vd6X7Lli3r8rl/9KMfdfv4lGrmD4bYX91I6aEG9tc0UtPgp9YXoM4XwCXS0lItq/VRUlVPSVUDYFueKQluMpK8ZCR7yUz2Ut3QRPHBwxQfPExVL4SjSyDR48brFhI8LjKTvQxOTWTkoBRCIUNdU4DKuiaSvG5GDUohM9lLMGSoabQta4CslASSvC4EwR8M4Q8ZXAIFOamkJ3nwuIT6piD1TQGMgbPHDiYnLZGsFC8et+AWwSWCyyW4XSCIffMKhggEQ3jCb1xet5Ce5CE9ybbcEz12ucctNPpDLS19r8dFWqKHtEQbr3VNAep8QbxuISs5gcwUL8leN26X4JLjU0btiaAvAUZGPM4HSoGETpb3S/fddx9ffPEF06ZNw+v1kpaWRl5eHuvWrWPTpk18+ctfZs+ePTQ2NvKd73yHhQsXAq3DORw+fJhLL72Uc889lw8//JARI0bw2muvkZyczM0338wVV1zBvHnzKCgo4KabbuL111/H7/fzxz/+kQkTJlBWVsb1119PRUUFZ5xxBsuXL2fNmjXk5OT08U9G9YSDtY1UHG7C63aR4HYRCIU4FG7B1jT4qQmXAmob/dSGv1Y3+DlQ4+NATSMVdU1dvoZLbEuruVKQmuBm5KAURmQl43IJDU1BahsDlB5qoLohQHVDE2mJHk4cksacycMYlpFMaqKblAQbcm6XDUePS1qC0CW21NEUMIhAXmYSw7OSGZSSQIPfPn+DP9imda/Xi3pfTwT9UuDOcA3+TKDaGLNPRMqAcSIyBtgLzAeu74HX44HXN7KptKYnnqrFpOEZ3H/lyZ2uf/DBBykqKmLdunW8++67XH755RQVFbV0T1yyZAmDBg2ioaGBM844g2uvvZbBgwe3eY5t27bx/PPP8+STT3Ldddfx8ssvc+ONN3Z4rZycHNauXcsTTzzBww8/zFNPPcUDDzzAl770Jb7//e+zfPlyFi9e3KPnr7rPGMPOino+2VHBuj2HGJqRxPSCQZw6KpumYIgt+2rYsr+WQ/V+gsYQChl2VtTx6e5D7D3UENNreFy2VZmW5CEz2UteZhJTR2aRk5aAKxyYbpcwNCORvMxk8jKTyEzxkpHkJdFjQzUYbq02Pz7S+fRkCKcmekhN7Dc9uh2ly5+6iDwPzAZyRKQEuB/wAhhjFgHLgMuAYqAeuCW8LiAidwJvAm5giTFmYy+cQ5+YPn16mz7ojz32GK+++ioAe/bsYdu2bR2CfsyYMUybNg2A008/nZ07d0Z97muuuaZlm1deeQWA999/v+X558yZQ3Z2do+ejzqyqromSqsbOFjjo7KuiexUL0MzkshI8rJmVxUrtpXx/rZyDtb6AMhI8lDrs6UCt8uGa3tulzA0PZFTR2dzy4wCRmQl4w8Z/IEQbpeQmWLLJ5nJXlsySOyZFrDbJbhdnZcbm2lL2zli6XWzoIv1BvhWJ+uWYd8IetSRWt7HS2pqasv37777Ln/7299YuXIlKSkpzJ49O2of9cTExJbv3W43DQ3RW3HN27ndbgKBAGBbV6r3fH6glr+s30dJVQNfPWMkZxRkIyLsPdTAg29s4fXPjlx1zE7xMuPEHM45IYfpY7I5ITeNmsYAa3dVsWZXFSmJbibmZTApL4PctERcLg1Rdfzo56gYpaenU1tbG3VddXU12dnZpKSksGXLFj766KMef/1zzz2XF198kXvvvZe33nqLqqqqHn8NpzHG0Oi3PToCwRCNgRD1vgD1TUHKD/vYXlbH9vI6Vu+sZNvBw4hAWoKHl9eWMG1kFqeNyubZj+3Ir/88ayzT8rMYmplEdkoCVfVNHKxppLLOz+QRGZw8PBN3u/DOTPZy/oQhnD9hSF+cvlItNOhjNHjwYGbMmMHkyZNJTk5m6NChLevmzJnDokWLmDJlCieddBJnnXVWj7/+/fffz4IFC/jDH/7ArFmzyMvLIz09vcdfp79q9AfZtK+G9XsOsWV/LVv217LtQC11TcEj7jcoNYEJw9L52tmjmXPyMNKTvLy0toQnV2xnyQc7uGJKHvddOoH87JQ2+40htZNnVCr+SDyWBAoLC037iUc2b97MxIkT++iI+p7P58PtduPxeFi5ciV33HEH69at69ZzxvvPNBAMsa+6EWNs/2iPWzDG3uziCwTZvK+WNbuqWL2rki37agmE6+CDUhM4aWg6Jw1LZ0hGIgluFwkeF4keV0u/7OzUBMbmpJKVkhD1tYMhQ2VdE7npiVHXKxVvRGSNMaYw2jpt0fcTu3fv5rrrriMUCpGQkMCTTz7Z14fU4/ZU1rNiWxkrv6hg24HD7CivoykYOuI+KQlupo3MYuHMsUzJz2LqyEyGZST1yAVLDXnlFBr0/cS4ceP49NNP+/owesTnB2p5eW0JHxZXtLTCaxv9LTfu5GUmcfLwDGZPyGVsTipetyt896TBLdJyc83YnDQm5qXjceu0CkodiQa96jVrdlXyi7eL+Xh7BTlpiQzNSKTBH2LzvhrcLmF6wSDSkuyvYII7lX+aMYaZ43M5ITdVu/Yp1YM06FWP8QWCbDtwmM37avjTur18UFzB4NQEvnrGSA43Bthf04jH5eI/r5jEVdOGk5OmpRGljgcNehVV0d5qGvxB8rOTGZKeRCAUYt+hRvZU1fPFwcNsPXCYzw/UUnHYhz9oaAqGqKprainF5KQl8u+XTeSGs0aRkqC/Zkr1Jf0LVG1U1/v5yV828cc1JS3LvG47yFNkB63MZC8nDUtn6sgsEtwuvB4X2SleJgzLYGJeBmNyUjv0K1dK9Q0N+l6SlpbG4cOHKS0t5a677uKll17qsM3s2bN5+OGHKSyM2iMKgEcffZSFCxeSkmL7cccy7HGsGpqCzHl0BRnJXiYPz2R4VhKLV2ynoq6JO2afwFljB7eMbpjocZGfnUJ+djJjclIZkp6odXSl+gkN+l42fPjwqCEfq0cffZQbb7yxJehjGfa4K02BEKWHGqioayIYMgSCIZ77ZBeN/hAThqWz5OYzmDwis9uvo5SKDxr0Mbr33nsZPXp0y3j0P/zhDxERVqxYQVVVFX6/n5/85CfMnTu3zX47d+7kiiuuoKioiIaGBm655RY2bdrExIkT24x1c8cdd7Bq1SoaGhqYN28eDzzwAI899hilpaWcf/755OTk8M4777QMe5yTk8MjjzzCkiVLALjtttu4++672blzZ4fhkP/w0ivUBV00BUIt9XQBMpM9LPvOeXjdLgLBEKWHGsnLSsKr3RWVcpT+GfRv3Af7N/Tscw47BS59sNPV8+fP5+67724J+hdffJHly5dzzz33kJGRQXl5OWeddRZXXXVVpyWNX/7yl6SkpLB+/XrWr1/Paae1zKPOT3/6UwYNGkQwGOSCCy5g/fr13HXXXTzyyCO88847HcadX7NmDU8//TQff/wxxhjOPPNMZs2aRXZ2dstwyIt+tZirr53Homee48prv0qS102S10VGsodBqQlsr/G2hLrH7WLU4La3+SulnKF/Bn0fOPXUUzl48CClpaWUlZWRnZ1NXl4e99xzDytWrMDlcrF3714OHDjAsGHDoj7HihUruOuuuwCYMmUKU6ZMaVn34osvsnjxYgKBAPv27WPTpk1t1rf3/vvvc/XVV5OSkoI/aLjsyrm8/ubbzLrwUvJHFZA2/ES27q9l7MRTqNy/l5OGpWtLXakBqn8G/RFa3r1p3rx5vPTSS+zfv5/58+fz7LPPUlZWxpo1a/B6vRQUFEQdnjhStNb+jh07ePjhh1m1ahXZ2dncfPPNnT6Pwc5GVF7bSOVhHxtLawgZQ3WDH09KEAQSEhNwCaQmuhmSkUJTY72GvFIDWEx//SIyR0S2ikixiNwXZX22iLwqIutF5BMRmRyxbqeIbBCRdSKyuv2+/cn8+fN54YUXeOmll5g3bx7V1dUMGTIEr9fLO++8w65du464/8yZM3n22WcBKCoqYv369QDU1NSQmppKZmYmBw4c4I033mjZJz09nZqaGg7VN7HtQC2BYIiyWh+nn3kOf3/zLyRLgExviA/+9gZfueIiRg9OJcHtYmxumv3eowGv1EAXywxTbuBx4CLs/LCrRGSpMWZTxGY/ANYZY64WkQnh7S+IWH++Maa8B4+7T5x88snU1tYyYsQI8vLyuOGGG7jyyispLCxk2rRpTJgw4Yj733HHHdxyyy1MmTKFadOmMX36dACmTp3Kqaeeysknn8zYsWOZMWNGyz633vYNLrpkDoNyh/Lsq8twu4RxQ9IZPuU8tt/6T8y9eBYA3/jGbZx22mmdzlqllBq4uhymWETOBn5ojLkk/Pj7AMaYn0Vs8xfgZ8aY98OPvwDOMcYcEJGdQOHRBP1AHqY4ZEx4GN4QPn+Q8sNNBI1haEYiuWk923d9oPxMlRoIujtM8QhgT8TjEuwk4JE+A64B3heR6cBoIB84gC0rvyUiBviVMSbqrNYishBYCDBq1KgYDss5mgIhahv91DYGOOwLEIp4801J8JCfnUySt+s5PpVSKppYgj5aE7L9x4AHgV+IyDpgA/ApEAivm2GMKRWRIcBfRWSLMWZFhye0bwCLwbboYz2B/srnD3KowU9Ng58Gv50FKcFthxFISfSQGJ4ow+3SGrtSqntiCfoSYGTE43ygzUzJxpga4BYAsbWFHeF/GGNKw18PisirwHSgQ9DHwhjjiNvuqxv87K6sxxhDSoKHYZlJZCR5SfS4jtv5xePMYkqp3hFLc3EVME5ExohIAjAfWBq5gYhkhdcB3AasMMbUiEiqiKSHt0kFLgaKjuVAk5KSqKio6PcBVVHnY3dFHcleNxOHZXDikDSGpCeR5HUf15CvqKggKSnpuLyeUqpvddmiN8YERORO4E3ADSwxxmwUkdvD6xcBE4HfikgQ2ATcGt59KPBqOMA8wHPGmOXHcqD5+fmUlJRQVlZ2LLv3uZAxHG4MUNMYIMnrwpWaQHFF3306SUpKIj8/v89eXyl1/PSbycH7q53ldfxm5U5eWl1CrS/ANaeN4P9dO0VvYFJK9SidHLwPfFF2mMfe3sbSz0rxuITLTsnjpnMKOHVkliOuMyil+g8N+h4UCIZYub2Cl9eUsPSzUhI9bhbOHMut545hSLrWw5VSfUODvgfUNvp58I0tLNuwj6p6P6kJbm47bywLZ47VeVGVUn1Og76bmgIh7vj9Wj7aXsHlU/K47JQ8Zo3P1RuclFJxQ4O+G4wx3PfKet4vLueheVP4SuHIrndSSqnjTLt+dMP//PVzXlm7l3suHK8hr9SxaKqHOOz512dCoV55Wm3RH4OSqnp+vnwrSz8r5auFI7nrghP7+pDUsfI3QF0ZZPXw+EqblkLeFMgu6NnnPVb+Rji0G7zJkJoDniQ4tAv2roF962HE6TDhCuhsyI2qXVD6KdTug5pSSBsKp98MiWlttwv4INAIQb/dbvu79l/ldjjpMph2PQyZBMV/hY9/BV+8bZ9rRCHknw55U2HYFEgb0vEYyrbCql+Dvx4yhkN6HiRlgicR3Il2/+TsI/8c6iuhaidU7Qh/Df+rK7f7pgyyzzv6HBgzyz5uFgyEz60JmursLHd7V9ufX/ow+zMccbo9pmCT/WfCwW0M1O6H8q32PAKNkJIDKYPt9+VboexzwMCdq7r+/zxK2o/+KDQ0BXns79v49fs7cAksPG8s375gnPaJ7y1Vu2DzUjjlK/YPKRpj4JWF9o/llHkw7hJwe+HARtj1oQ03Xw00HYbRM2D6N9ru/9b/B2t/A9/bAa4urqsEmqD4b7DrAxh1Noy7yIZMh+PeCb+YagPjljdg0JjWY93wR6jZC+nDbVhlj4aM/LYBa4z91z50D5fBgQ3g8trXTRsS/Y2kahfs+8wG0YEiKNtij8lEtBbdCTaIADuclbHTac7+AZxwvl1mgvZ8Vz8N29+J2DcRgj4bUjO+AwXnwdY3YPPrULa54/HkToDMfNj+HoT8kJQFjYcgbRhMuQ4OH4CS1VD5Res+acPs8QybDINPtM/9+XL7BpWUZfdpP+RW9hj45xWQlNHxGEJB+PPdsPa3bZen5tr9UnOhsRrqy6G6xP6+IJB7kn3zqq+wv0ftuTyQcxLUlkJDVcf10aTkQEKqfdNpqgVxwaCx9nmGTIQv/QccQxfsI/Wj16CPUZ0vwK2/WcVH2yu55tQR/NslJzE8K7mvD6vnGAMf/ALGX2J/2brzPGt/a1tzs+9r+wu78U/w5g8gbxqMPhvGzrZ/zO3t+Ad8vAi2LrPhlDMebl4Gabkdt/3i7/C7q8GbCv46SEi3fzi+ars+IQ0S08MtsQDcuxPcER9knzgHDm6Euz61f2ztz6Vyu2317njPhk1jNS3BmJgJJ8+Fi3/aNlw+/hW88T1IzIDkLBv2niT40zdh25sdz8GbAjnj7DnU7LUtP7cXRp5pW5beFNjyZ9i9sm1YA0xdABc+AOlDoeIL+Nv99jjB/hwGj4MhE2yIDD7BhntduQ2l7NG2JZ07ATb9Cd590LZ028vIh9O+DifNgcyRtuW7dw2881+2Rd78WqPOgTEzbYh5Em0gF8ywb2gAdRVQ9DLs+ci27ifNtefZrKEK9hfZN6j96+33ZZshFLBvKtMXwhm32U8kQb8Ne1+tPaeKYnj5Npg8D65Z3Pb3LhSC178Nn/4ezviG/b0bNAayRnf8RAL296R0rf0ksneN/R1KGWxb995k+0bnTbI/t7ypdlnz70rpp/Z3zZ1ozy2y8ZCSY984Ij8lBHz298mT0P4ojpoGfTfVNvq55elVfLrnEI9cN5W500b09SG18jfaj+C5J3XveQ7thkdPgaGTYeF7rWFoDKx4yP7CuxPsH/CUr9rWbLTneO1OG4oA85+HCZfZ75vq4X9Pt7/4bq/9owA4/z9g5r/ZP8xQyAbVh4/ZP6zTb7Yf41+93bbqblra9o8E4DdXQfnn8O21NkA2/sk+1+hz7ZtJZniYh41/gj/eBLf+FUbaCV+oK4eHTrDfL/iDDbJmez6B5xfYFh7YN5AJl9kgKTjXflooegk+ex7O/3eY9b3WfX93jf1ZXPukPb6Uwbbc0HAILv4xTLvBhnlNCVTusB/ly7faTwwZefaTQNNh2LWytYU8ZBJMvNK+tjE23Ha+Dx89YUNl/CWw6TX7f3TOt2H8xXYf71E0RoJ++xyHdrcuG3oynHhh5592dn9s/y9PvDD6G3F3BXz2+bNGQ0IXk9e/93N456fw5V/aEhHY36k/320/tc26F87/Qc8fY5zQO2O7oabRz01LPmFDSTWPzT+Vy6fkHb8Xb6iyH3f3b7D/Bp8Ac37WdpsP/9cG8b07bEvqSEJBKHoF1v8BLvt52xbs3jX264Ei25o+5077ePWv7R9PznjbaqvcYQOrfdAX/w1evMl+f/l/w8eL4c3vwwlfsq2flY/bj7e3LLcBXLsf/no/vPMTG3iX/AyWftuGZ+GtcMl/2f3Atsifnw/PzoOv/am19bx3rX1TuejHNgRO+JL9F82YmYDYVlpz0O98v3V9+da2Qf/5m/bnf+UvWlu9kZ8Exl1o/1WXwGcvwMzv2jcY32HY+Q/b+hx+KtzwRxv8mflw4yu2FAGQeCLknGhbl0dSX2lbrdmjO64bd5FtaS//vm0pn/Y1+6bTWZmrK26vLX8djVFn2n+9xZMY+yfM8/4VdqyAv/yb/TR1cJP9f9y7Gs79F5j9/d47zjinQX8Edb4ANy/5hKK91Tx+w2lccvIx/gEdi/Ji+N2XoXoPiNuWAIr/aluOkRectr9j66WH9tiP6NEYY1tq7/yXDTSADS/DrO+2btPcYi84F979GZx8ta1LLv+Bba1d/0dbM376MvvRtL21v7Wtx9vetqE0aKwtqXz0OEy7Ed7/H9siHX223T59GFy9yH6sf/8Re3wNVXDhD2HG3W0/ep94AXzlGXjx6/D7a+HGl23Yf/CoLZ+cfnPXP8+UQTB8GnzxTmvre+c/bLnEm2Q/FUQ6UGTf3Lp67qnz4bVv2RrzyDPsG0mwCcaH3zRGnQV3r7dvVtHq+bEcd/tPMZEGnwA3vGjLDe4B/ufsctuyzS9nwB9uAMReEJ/zIJx5+zHVvZ1CryJ2otEfZOHvVrNuzyH+d8Gpxzfk92+Ap+fYHiFffw1+UArX/c7WZ3d92LqdvwFKwlfoq0s6f771f7BlCxEbmLkT7QXFSHvX2jLJ5Y/Ymuhf/hX+eLMNmat/1Xph0JNoX7c9f2PrxUWwLeuTLocV/w1/+Rf7ZnThA233EYEL77efAMQFVy+Gc++J/gc54XKYt8TWTn9/jT3eTUth+m3RL75FM3Y2lHxiW91grwWMPtv+PMraBf3+Ilu26MrEq8CTbEs4YC8YJmbagG+WmnNsIX80BnrIN8sYbkt8X3kGvvuFvTh71h0DOuRBgz4qfzDEnc+t5YPiCh6aN5U5k4+xXHO4DH5zpW2JfvwrG+BHuibSWG0vpD1zuW1d/9NyG07eJMg/wwbK9vdaty9Z1dpzonp3tGe0ZZa3/gPyp8MdH9qWesEMW4MOhicBCwWhdJ3tGjZoDJz3b/D5G/bC3LW/tkHVzJMcvoDUTqDBrot0yU/tm8aWP9uLYINPiH6MZ9xm/yinfrXznw3Yi3dfecZe8Fpyif0ZnXn7kfeJNHa2PZ5dH0LtAfvppuA8yB1vv2/+v2mosuWk5jLLkSRlwMQrbOnE3wjb3oITv9T2IqM6voadYn/PUwf39ZHEDW0GtGOM4d9f3cDfNh/kx3NP5trTj3HMdn8jvHC97T2QOsSWJsB+pL/mydZWaFM9rPg5bFkWLh8YW/b4+mtt+3Z7Emzrc0fE5Fw7P7AtYaTzFv07P7UlmBtfbr2gNvocWPUU7P/MhnvZVttjZcTpdv2Mu2zLd9zF9k0hkjfJhnq0821/4W/QGNvzZvXTbS9WRhNri2vilXDdb+31gMKbo/e37szIs2zvl+3vtnaVG3Me7Emyb7KHD9reKwc22nVDo/QIimbKfNttcsVDtifI+Dld76PUcaRB387TH+zkxdUlfPtLJ/K1swuO7UmMgde+acPyut/BpKtsDb3oZXj7R/Dri2HB87Yv8SsLbcCfeKG9EDbidNtHO1oPgzEz4W8/tIGUNsReTMybarutHdrTcft9n9lAP+M2u12zUefYr7s+tK/XfCG2Oeg9ifYiYjSeZBvq7QUaoteSz/sX29e6qz7qR2PC5XBPke2udjS8Sbaksv0d26slMQOGTQ13mcS26tOH2rINxFa6AftJIW2ovQ6BwIlReiQp1YdiKt2IyBwR2SoixSJyX5T12SLyqoisF5FPRGRyrPvGkxWfl/GTv2zi4klDuefC8bHvuOMfsPh82x1vxcO2D3XRy3DB/TbkAbJGwrl3w9detXcXLp4FT11o68Vf+5Ntcc/6nr3w2Fk3sjGzwq+3woZtySp7E1BmfscWfShk6+zJg2xPjEgZefYmkV0r7eO9a+zdfO37kUfjSey8Re/pZCjmngz5ZunDjq0uPXa27Y2xdZn9ZOMO3/ACrRdkDxTZLpGx9l5xe+xNXSZoe/RoyUDFmS6DXkTcwOPApcAkYIGITGq32Q+AdcaYKcDXgV8cxb5xYUd5HXc+t5bxQ9P5n69Ow+WKsZSw7jnbu6S+wgbF338Mnyy2PU3Ovafj9mNnwTf+boN28rXwzQ/DdyLGIG+qvdC3471wfd5na8xZI23vnEhfvG23uehHtsdOe6NnwO4P7RvC3jUw/LTOb3+P5O2sRu87uj7bfWVs+GddV2Z/dmAv4CWktV6QPRC+EHs0F/CmLrBftWyj4lAsTaLpQLExZjuAiLwAzMXODdtsEvAzAGPMFhEpEJGhwNgY9o0L9y/diIjw5NcLSU2M4cdiDPz9J/CPh20r8UR8EoAAABtFSURBVCu/sYHaUGVvQR92SudBMfgE+Of3oq87Epfbdn/csQIyRoTvRjzLlohqStt2sdv3mf06aW705xp9Nqz7PexbZ2vS0d6UovEkRe91E2jovEUfT4ZNsd1TG6psfR7s/1POOFu6CQbg4Gbbl/+onneyvUdg+Kk9f8xKdVMspZsRQGRzsSS8LNJnwDUAIjIdGA3kx7gv4f0WishqEVl9vCcA31BSzYrPy/jnWWMZOaiLu+/Ahvzy+2zIn/o1uOGl1lZzcrbtr90b5Qqwnwiqdtouk8NOsa+bOdKWDWr3tW5XtgUyR0W/xRts2QLszVEm2Fqf74onyW4f9LddfqTSTTxxuWzXz5TBbS+25pxkW/SV2+19ArH0uGlv9NmtN3kpFUdiCfpozdL2fQQfBLJFZB3wbeBTIBDjvnahMYuNMYXGmMLc3F64lfoInni3mPQkDzeeFeXuw/aMgbcfsAF51rfgqv89vl3pxsy0Xyu3t5YeMsNDJEfW6cu2HHlYhOwx9lb7opft4xGnxfb6zUHW/qapQEP/CblLf25b35Glqtzx9s7d3eHrFrFeiFWqH4gl6EuAyMHW84HSyA2MMTXGmFuMMdOwNfpcYEcs+/a14oO1LN+4n5vOLiAjKYbAXvGw7V1R+E+2n/jxvhEjd4Ltrgm2jAO2Rg+tdfpQEMq3HTnoRWzvnlDADloV64XH5lZ7ZM+bYMA+T/t+9PEqNccGe6TmC7IbX7UjEuZ2cpexUv1QLEG/ChgnImNEJAGYDyyN3EBEssLrAG4DVhhjamLZt6/98t3tJHpc3DKj4MgbhoKtY7NMXQCX/Xff3G0n0jpuy6jwcALNA3c1B/2hXbbF3dUYIc3lm1hb89Aa9JE9b5pb9/2lRR9N85vijhV26IPevpNVqeOoy6uOxpiAiNwJvAm4gSXGmI0icnt4/SJgIvBbEQliL7TeeqR9e+dUjl5JVT2vrdvL184ezeAjTeLdUAUv3Wp7spx+C1z2cGw9VHrL7Pts747m6wIJqbYbZXNf+oNb7NeuWqWjwzdD5Ucd8C665p41kT1vmoO+v7Too8kusC35UEDLNspxYuqIbIxZBixrt2xRxPcrgXGx7hsvnvrHDkTgG+dF6T8eDNhxyveugQ8es/XvKx6FwluO/4G2lzPO/osU2Ze+LBz0OV3cCzB0kr2hK9bunRBRuolo0Td/359bwW4vDDrB9rwZegwXYpWKYwP2ztiGpiAvrynh8lPy2k4gYoztTfOPR+wY4mB7r9z8l94djrW7skbZyRfADmmQkR/bYF/NN3TFyhPlYmxL6aYft+ihdcwbDXrlMAM26P+8vpRaX4Drz4zoaRMK2rtaVz1l5888+Wrb7TC7IP5Hv8scacdwMcZOVtHdiUg64z1Si74f1+jBlro2v35sXSuVimMDNuif/2Q3J+SmckZBeGz3gA9e+YYdfGzGd+yQuvEe7pEy8+34LfWVtj944bm98zqeaDX68Pf9vUU/faGdlelYJ+5QKk4NyKDfur+WtbsP8R+XT0RMCIpetfNlVmyzsxXNuKuvD/HoNXex3PWB7RHT2y36Nr1uHNKiTxsCk6/p66NQqscNyKB//pPdJLhdfGV4Bfxygb14OWRSx3lD+5PmLpbFf7VfuzPB95FE60ff/H1/D3qlHGrABX2jP8gra0uYM3kYmasetnOXzlsCk67u2y6T3ZUZHru++G37taseN8cq6sXYcIu+P/ejV8rB+nGyHZtlG/ZR0xhgwfRRdlz3vCl2FMn+HPIQnq4uCWr22qENoo1Y2RNa+tFHa9H38xq9Ug7Vz9Pt6L28toQxOamcNXYQ1JdD6vEdV6fXiLSWb3rz9v3mvvJ+h90Zq5SDDaigr/MF+GRHJRdPGoqI2JmZjnaWonh2XILeoXfGKuVgAyroV35RgT9omDk+1waVr7rtxNf9XfMolr3V4wZsicud0LbXjRPujFXKwQZU0K/YVkay101hQbadEQocGvS9PPKiJ6ltrxun3BmrlEMNrKD/vIyzxg4i0eOGunK70Emlm4IZNuR7+85OT1LHFr3L23uTrSilumXABP3uinp2VtTbsg3YOUPBWS36gnPhWx9DYnrvvo43qeOdsdqaVypuDZigf2+bDfaWoG8p3Tik183x1H7e2P4yX6xSA9SACfoVn5cxIiuZsTmpdkFL6WZw3x1Uf+VJ6tiPXoNeqbgVU9CLyBwR2SoixSJyX5T1mSLyuoh8JiIbReSWiHU7RWSDiKwTkdU9efCx8gdDrPyigpnjc223SrClG3FDUi/dWORk3uSOd8ZqH3ql4laXQyCIiBt4HLgIOwfsKhFZaozZFLHZt4BNxpgrRSQX2CoizxpjmsLrzzfGlPf0wcdq7a4qDvsCzBofUY+vL7f1+f5+R2xf6NDrxqcteqXiWCwpNx0oNsZsDwf3C8DcdtsYIF1sczkNqAQCPXqk3bBiWxlul3DOiRFB77SbpY6naL1u9GKsUnErlqAfAeyJeFwSXhbp/7DzxpYCG4DvGGNC4XUGeEtE1ojIws5eREQWishqEVldVlYW8wnEYuUXFUwbmUVGkrd1YV0ZpGp9/ph06HWjNXql4lksQR9t9g3T7vElwDpgODAN+D8RaZ7HboYx5jTgUuBbIjIz2osYYxYbYwqNMYW5uT3bE2ZnRT0nDWvX5dBJ49wcb57kjjNMadArFbdiCfoSYGTE43xsyz3SLcArxioGdgATAIwxpeGvB4FXsaWg46a+KUBlXRP52e1KC1q6OXaexI5zxurFWKXiVixBvwoYJyJjRCQBmA8sbbfNbuACABEZCpwEbBeRVBFJDy9PBS4Ginrq4GOxt6oBMORnp7QudOI4N8eTN7njEAg6oJlScavLXjfGmICI3Am8CbiBJcaYjSJye3j9IuDHwDMisgFb6rnXGFMuImOBV8NdGj3Ac8aY5b10LlGVVDXwG+//Y+LmKTD1cbvQiePcHE/R+tFri16puBXTDFPGmGXAsnbLFkV8X4ptrbffbzswtZvH2C0HD+7nK64NhMoiLh46cZyb48mTBEEfhEK2e6q26JWKa47vRO7e8yEuMbirtkMw3OPTiePcHE/edtMJ+ht0iGKl4pjjgz6n7CMAJOSHqp12oY5z0z2eiOkEQ0EI+bUfvVJxzPFBf0Ltaqpd4WEOyj+3X3Wcm+5pbr0HGiNml9IavVLxytlBX7OPkcE9rMm5yj4u32q/6jg33dPcevc3tPa+0Ra9UnHL0UHfVPwuAGX5F0PaMCjfZlfoODfd09x6D/hah0LQFr1ScSumXjf9VePn71BvUknMnwaV46CsuUWvN0t1S3PrPdAA/gT7vQa9UnHLuU1aY0jY/Q9WhiaRPyjVTphdvg2M0XFuuqu5Ru9vbG3Raz96peKWc4O+cjtJ9aV8EJps74rNGW/vhj18wJZutEV/7DwRLfrmwc20H71Sccu5Qb/jPQA+YTJD0hNt0IPteVNXoV0ru8MbUaP3a4teqXjn3Br99veo8uTgSxmLyyW2dAOwv0jHuemu5nq8vwHczTV6bdErFa+cG/R717DBfTL5g8KDmaXnQUI67F5pH2sf+mPnibgztuVirN4Zq1S8cmbpxhg4fJCd/mxGZIVbmiKQMw52fWgfa+nm2Hkj7owNaD96peKdM4O+qQ6CPkp8yW2HJ84Zby/EgpZuuqNNrxu9M1apeOfMoA+PZVNFetsJR3LHt36vvW6OXWSvG70zVqm458wafTjoK016xxZ9M23RHzu3F8Rle9249c5YpeKdQ4O+EoAqk86IyBZ9TrjnjY5z0z0irfPGusITrmvQKxW3YirdiMgcEdkqIsUicl+U9Zki8rqIfCYiG0Xkllj37RXhFn21ZDA0PaI3yKAx4PLYHjc6zk33NM8bG2iwP1O3M9sMSjlBl2knIm7gceBSYBKwQEQmtdvsW8AmY8xUYDbw3yKSEOO+PS8c9AmZuXjcEafo9sKgsdrjpic0zxsb8GkfeqXiXCzNsOlAcXhaQETkBWAusCliGwOki50cNg2oBALAmTHs2/PqKwjiIisrSl/5aTfYiTJU9zTPG+v36l2xSsW5WIJ+BLAn4nEJNsAj/R+wFCgF0oGvGmNCIhLLvgCIyEJgIcCoUaNiOvhO1VdwiAzyslI7rjv37u49t7Kag97t1Ra9UnEulkK1RFlm2j2+BFgHDAemAf8nIhkx7msXGrPYGFNojCnMze1maaW+girSSUl0d+95VOe8SeGJRxq0Ra9UnIsl6EuAkRGP87Et90i3AK8YqxjYAUyIcd+eV19JpUkn0aNB32s8yeGJRxp1+AOl4lwsQb8KGCciY0QkAZiPLdNE2g1cACAiQ4GTgO0x7tvz6iuoNGkkerRnTa/xJIaHKW7U0o1Sca7LGr0xJiAidwJvAm5giTFmo4jcHl6/CPgx8IyIbMCWa+41xpQDRNu3d04l4pjry6kIDdcWfW/yJkPtftuPXks3SsW1mDo/G2OWAcvaLVsU8X0pcHGs+/aqUMiWbkgn0ast+l7TcjHWA0mZfX00SqkjcF4S+qoRE6TKpGvppje1dK9s1Ba9UnHOeUkYHv5AL8b2suZeN4EGHf5AqTjnvPvWI0auTNAWfe9p049eg16peObYoK/U0k3v8ibboHd5dYhipeKc85IwokWvQd+LPIlgQtBUqy16peKc85IwskXv1Rp9r2nuO29C2qJXKs45MuiD7kTqSdQWfW+K7Gmjd8YqFdecl4T1FfgTsgHRoO9NkeUavTNWqbjmvCSsr6QpMRtAu1f2psig1370SsU1BwZ9BY1eO02g3hnbiyLr8tqiVyquOS8JI4NeSze9J7Iury16peKa85Kwrpx6T3PQa+mm10S24rV7pVJxzVlBHwxA4yHq3HaQLS3d9KI2vW406JWKZ85KwoYqAA43B72WbnpPm4uxWqNXKp45KwnDN0vVujIASHA76/Tiikdb9Er1FzEloYjMEZGtIlIsIvdFWf9dEVkX/lckIkERGRRet1NENoTXre7pE2gjHPQ1rgwSPC5Eok1Zq3pEZCteW/RKxbUuBzUTETfwOHARdg7YVSKy1BizqXkbY8xDwEPh7a8E7jHGVEY8zfnNM071qnDQV5OhZZve5tE7Y5XqL2JJw+lAsTFmuzGmCXgBmHuE7RcAz/fEwR21cNAfkgztcdPb9M5YpfqNWIJ+BLAn4nFJeFkHIpICzAFejlhsgLdEZI2ILOzsRURkoYisFpHVZWVlMRxWFC0DmunE4L1O74xVqt+IJQ2jFbpNJ9teCXzQrmwzwxhzGnAp8C0RmRltR2PMYmNMoTGmMDc3N4bDiqK+EhLSqQ95tGtlb3O5wB0u2WiLXqm4FksalgAjIx7nA6WdbDufdmWb8MThGGMOAq9iS0G9o74CUgbh84e0dHM8eJLA5bEThCul4lYsQb8KGCciY0QkARvmS9tvJCKZwCzgtYhlqSKS3vw9cDFQ1BMHHlV9BaQMxhcIaunmePAmaddKpfqBLptixpiAiNwJvAm4gSXGmI0icnt4/aLwplcDbxlj6iJ2Hwq8Gu7m6AGeM8Ys78kTaKM56OtCGvTHgycJQsG+PgqlVBdi+sxtjFkGLGu3bFG7x88Az7Rbth2Y2q0jPBr1FZAznqbqEBnJ3uP2sgOWJ8nOMKWUimvOKq62lG60RX9ceDXoleoPnBP0xsCcn0HuBHwb6zXojwdPsga9Uv2Ac4JeBE77OgA+/9+1183xkJoDTdq1Uql455ygj+ALhEjQFn3vu+JRMHoxVql459Cg1+6Vx0XaMd7YppQ6rhyZhr5ASO+MVUqpMMeloTGGpoDeGauUUs0cF/S+gO0FoqUbpZSyHJeGGvRKKdWW49LQF7C9QBK9WrpRSilwYNA3aYteKaXacFwaaulGKaXaclwa+vzNQa+lG6WUAicGfUuN3nGnppRSx8RxaailG6WUastxaahBr5RSbcWUhiIyR0S2ikixiNwXZf13RWRd+F+RiARFZFAs+/Y0nz9cutEavVJKATEEvYi4gceBS4FJwAIRmRS5jTHmIWPMNGPMNOD7wHvGmMpY9u1p2qJXSqm2YknD6UCxMWa7MaYJeAGYe4TtFwDPH+O+3dYa9NqiV0opiC3oRwB7Ih6XhJd1ICIpwBzg5WPYd6GIrBaR1WVlZTEcVnTa60YppdqKJQ0lyjLTybZXAh8YYyqPdl9jzGJjTKExpjA399jHOW/tR69Br5RSEFvQlwAjIx7nA6WdbDuf1rLN0e7bI7R0o5RSbcUS9KuAcSIyRkQSsGG+tP1GIpIJzAJeO9p9e1LzWDc6laBSSlldTiVojAmIyJ3Am4AbWGKM2Sgit4fXLwpvejXwljGmrqt9e/okIvkCQbxuwe2KVjVSSqmBJ6Y5Y40xy4Bl7ZYtavf4GeCZWPbtTT6dXUoppdpwXH1DJwZXSqm2HJeIPn9Ig14ppSI4LhF9gZBeiFVKqQiOS0RbutEavVJKNXNg0If0rlillIrguETUGr1SSrXluETU0o1SSrXlwKDXFr1SSkVyXCJqjV4ppdpyXCI26Z2xSinVhuOCXu+MVUqpthyXiFqjV0qpthyXiD5/iESvlm6UUqqZo4LeGKOlG6WUasdRiRgIGUJGpxFUSqlIMSWiiMwRka0iUiwi93WyzWwRWSciG0XkvYjlO0VkQ3jd6p468Gh8OruUUkp10OXEIyLiBh4HLsLOAbtKRJYaYzZFbJMFPAHMMcbsFpEh7Z7mfGNMeQ8ed1Q+fxDQ+WKVUipSLE3f6UCxMWa7MaYJeAGY226b64FXjDG7AYwxB3v2MGPTOjG4tuiVUqpZLIk4AtgT8bgkvCzSeCBbRN4VkTUi8vWIdQZ4K7x8YWcvIiILRWS1iKwuKyuL9fjbaAl6vTNWKaVaxDJnbLRZtk2U5zkduABIBlaKyEfGmM+BGcaY0nA5568issUYs6LDExqzGFgMUFhY2P75Y+ILaOlGKaXai6XpWwKMjHicD5RG2Wa5MaYuXItfAUwFMMaUhr8eBF7FloJ6hc+vpRullGovlkRcBYwTkTEikgDMB5a22+Y14DwR8YhICnAmsFlEUkUkHUBEUoGLgaKeO/y2moLNQa8teqWUatZl6cYYExCRO4E3ATewxBizUURuD69fZIzZLCLLgfVACHjKGFMkImOBV0Wk+bWeM8Ys762TaWnRa41eKaVaxFKjxxizDFjWbtmido8fAh5qt2w74RLO8dBao9egV0qpZo5KxNbulVq6UUqpZg4Lem3RK6VUe45KRK3RK6VUR45KxJaxbtyOOi2llOoWRyViS+lGx6NXSqkWzgp6vWFKKaU6cFQi+gIhXAIeV7RRG5RSamByWNAHSfS4Cd+gpZRSCscFfUh73CilVDuOSsWmQEjr80op1Y6jUtEXCOldsUop1Y7Dgj6oLXqllGrHUano82uNXiml2nNUKmrpRimlOnJY0GvpRiml2ospFUVkjohsFZFiEbmvk21mi8g6EdkoIu8dzb49xRcIkaBBr5RSbXQ58YiIuIHHgYuwc8OuEpGlxphNEdtkAU8Ac4wxu8MTgce0b0/y+bV7pVJKtRdLKk4Hio0x240xTcALwNx221wPvGKM2Q0tE4HHum+Pab4zVimlVKtYgn4EsCficUl4WaTxQLaIvCsia0Tk60exb4/x6Q1TSinVQSxzxkYbOMZEeZ7TgQuAZGCliHwU4772RUQWAgsBRo0aFcNhdaRDICilVEexpGIJMDLicT5QGmWb5caYOmNMObACOyl4LPsCYIxZbIwpNMYU5ubmxnr8bTRp90qllOoglqBfBYwTkTEikgDMB5a22+Y14DwR8YhICnAmsDnGfXvMhROHcPLwjN56eqWU6pe6LN0YYwIicifwJuAGlhhjNorI7eH1i4wxm0VkObAeCAFPGWOKAKLt20vnwqPzT+2tp1ZKqX5LjIlaMu9ThYWFZvXq1X19GEop1W+IyBpjTGG0dXrlUimlHE6DXimlHE6DXimlHE6DXimlHE6DXimlHE6DXimlHE6DXimlHC4u+9GLSBmw6xh3zwHKe/Bw+oOBeM4wMM97IJ4zDMzzPtpzHm2MiTp+TFwGfXeIyOrObhpwqoF4zjAwz3sgnjMMzPPuyXPW0o1SSjmcBr1SSjmcE4N+cV8fQB8YiOcMA/O8B+I5w8A87x47Z8fV6JVSSrXlxBa9UkqpCBr0SinlcI4JehGZIyJbRaRYRO7r6+PpLSIyUkTeEZHNIrJRRL4TXj5IRP4qItvCX7P7+lh7moi4ReRTEflz+PFAOOcsEXlJRLaE/8/Pdvp5i8g94d/tIhF5XkSSnHjOIrJERA6KSFHEsk7PU0S+H863rSJyydG8liOCXkTcwOPApcAkYIGITOrbo+o1AeBfjTETgbOAb4XP9T7gbWPMOODt8GOn+Q52ispmA+Gcf4Gdj3kCdh7mzTj4vEVkBHAXUGiMmYydmW4+zjznZ4A57ZZFPc/w3/h84OTwPk+Ecy8mjgh6YDpQbIzZboxpAl4A5vbxMfUKY8w+Y8za8Pe12D/8Edjz/U14s98AX+6bI+wdIpIPXA48FbHY6eecAcwEfg1gjGkyxhzC4eeNneI0WUQ8QApQigPP2RizAqhst7iz85wLvGCM8RljdgDF2NyLiVOCfgSwJ+JxSXiZo4lIAXAq8DEw1BizD+ybATCk746sVzwKfA87J3Ezp5/zWKAMeDpcsnpKRFJx8HkbY/YCDwO7gX1AtTHmLRx8zu10dp7dyjinBL1EWebofqMikga8DNxtjKnp6+PpTSJyBXDQGLOmr4/lOPMApwG/NMacCtThjJJFp8I16bnAGGA4kCoiN/btUcWFbmWcU4K+BBgZ8Tgf+3HPkUTEiw35Z40xr4QXHxCRvPD6POBgXx1fL5gBXCUiO7FluS+JyO9x9jmD/b0uMcZ8HH78Ejb4nXzeFwI7jDFlxhg/8ApwDs4+50idnWe3Ms4pQb8KGCciY0QkAXvRYmkfH1OvEBHB1mw3G2MeiVi1FLgp/P1NwGvH+9h6izHm+8aYfGNMAfb/9u/GmBtx8DkDGGP2A3tE5KTwoguATTj7vHcDZ4lISvh3/QLsdSgnn3Okzs5zKTBfRBJFZAwwDvgk5mc1xjjiH3AZ8DnwBfDvfX08vXie52I/sq0H1oX/XQYMxl6l3xb+Oqivj7WXzn828Ofw944/Z2AasDr8//0nINvp5w08AGwBioDfAYlOPGfgeex1CD+2xX7rkc4T+Pdwvm0FLj2a19IhEJRSyuGcUrpRSinVCQ16pZRyOA16pZRyOA16pZRyOA16pZRyOA16pZRyOA16pZRyuP8fHvwUf8D1UvkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Training and validation accuracy improve instantaneously, but reach a plateau after around 30 epochs" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 1s 2ms/step - loss: 0.4555 - accuracy: 0.9272\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.9272000193595886\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[9.67346939e-01 0.00000000e+00 4.08163265e-03 2.04081633e-03\n", + " 1.02040816e-03 6.12244898e-03 1.12244898e-02 1.02040816e-03\n", + " 4.08163265e-03 3.06122449e-03]\n", + " [8.81057269e-04 9.81497797e-01 3.52422907e-03 1.76211454e-03\n", + " 8.81057269e-04 2.64317181e-03 1.76211454e-03 8.81057269e-04\n", + " 6.16740088e-03 0.00000000e+00]\n", + " [9.68992248e-03 5.81395349e-03 9.16666667e-01 2.13178295e-02\n", + " 2.90697674e-03 7.75193798e-03 7.75193798e-03 8.72093023e-03\n", + " 1.55038760e-02 3.87596899e-03]\n", + " [3.96039604e-03 9.90099010e-04 1.48514851e-02 9.15841584e-01\n", + " 0.00000000e+00 2.67326733e-02 0.00000000e+00 9.90099010e-03\n", + " 2.17821782e-02 5.94059406e-03]\n", + " [2.03665988e-03 1.01832994e-03 7.12830957e-03 0.00000000e+00\n", + " 9.18533605e-01 2.03665988e-03 1.01832994e-02 6.10997963e-03\n", + " 4.07331976e-03 4.88798371e-02]\n", + " [1.34529148e-02 1.12107623e-03 7.84753363e-03 4.48430493e-02\n", + " 5.60538117e-03 8.82286996e-01 8.96860987e-03 4.48430493e-03\n", + " 2.35426009e-02 7.84753363e-03]\n", + " [1.46137787e-02 2.08768267e-03 9.39457203e-03 2.08768267e-03\n", + " 8.35073069e-03 1.98329854e-02 9.38413361e-01 0.00000000e+00\n", + " 5.21920668e-03 0.00000000e+00]\n", + " [1.94552529e-03 6.80933852e-03 1.94552529e-02 6.80933852e-03\n", + " 9.72762646e-03 1.94552529e-03 0.00000000e+00 9.23151751e-01\n", + " 9.72762646e-04 2.91828794e-02]\n", + " [1.02669405e-02 4.10677618e-03 9.24024641e-03 2.66940452e-02\n", + " 7.18685832e-03 1.23203285e-02 7.18685832e-03 8.21355236e-03\n", + " 9.08624230e-01 6.16016427e-03]\n", + " [7.92864222e-03 6.93756194e-03 9.91080278e-04 1.48662042e-02\n", + " 3.07234886e-02 4.95540139e-03 9.91080278e-04 1.58572844e-02\n", + " 7.92864222e-03 9.08820614e-01]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3yURf6AnwHUUAJBKSGJQCIlISSkAooKiChNuVNRsJ16CnLieed5nr/zDhHUsyDSxV5ORcSCNGl6KKD0IiAdKSkIoaSHtO/vj3ez7G42m4XskE2Yh8/7IbvvzHdn530zmfedeedRIoLBYDDUZupUdwEMBoNBN6ahMxgMtR7T0BkMhlqPaegMBkOtxzR0BoOh1mMaOoPBUOsxDZ2foJRarpR60PbzXUqpJT6O31YpJUqper6M6+Vn11dKzVNKZSqlZlchjs/rpTpQSn2jlPpDdZfjQuKCaeiUUgeUUr8ppRo6vPegUmp5NRbLLSLysYjccL4/Vyl1p1JqvVIqRymVbvuFvNoHoW8DWgKXiciQcw2iq16UUr1sfwS+dHm/i+395V7GGaOU+qiydCLSX0Q+OMfiGs6BC6ahs1EPeKyqQZRFrao7pdTjwETgBaxGqTUwHRjsg/BtgN0iUuyDWLo4BlyllLrM4b0/ALt99QG18bypMYjIBbEBB4CngBNAkO29B4HlDmmuAtYBmbb/r3LYtxx4HlgF5APtAAH+BOwBsoFxwBXAT0AW8BlwsS1/U2A+1i/USdvPYS7xH7T9fB+w0vbzk0COw1YEvG/b1wR4B0gHUoHngLq2fXWB8UAGsB94xFbeem7qpokt9hAP9XcJVkOYZtsmApfY9vUCUoC/AUdt5bnftu9ZoNBW7hzgj8AY4COH2G0dy2b7/vttdforcJdrvXh5vMbZjlc2sARoVsF3Kyv/DOARh/pLAUbjfI5MAg7bju8G4Brb+/1cvucWD+eN47F+HfjcIf5LwLeAqu7fmdq0VXsBztsXtRq664Evgeds79kbOuBSrAboHqye3zDb68ts+5cDh4Bo2/6LbL+cc4HGtvdP207SCFvj8QvwB1v+y4BbgQZAIDAbmONQPseT3+kX2iHN5ViNzADb6znAG0BDoAWwFhhh2/cwsNOW51Lgf1Tc0PUDit3tc0gzFlht+5zmwI/AONu+Xrb8Y231MgDIA5ra9o/BuWFzfd22rGy275IFdLTtawVEu9aLl8drH9ABqG97/WIF360XVqN2FbDG9t4AYDHl/xjebTuW9bAa9iNAgLvv5eG8cTzWDbB6jfcB12D9YQqr6DiY7dy2C7EbPRp4VCnV3OX9gcAeEfmviBSLyEyshuImhzTvi8h22/4i23sviUiWiGwHtgFLRGS/iGQC3wDxACJyXES+EJE8EcnG+ivf09tCK6XqYzVsk0RkoVKqJdAf+IuI5IrIUeA1YKgty+3ARBE5LCIngP94CH8ZkCGeLy3vAsaKyFEROYbVU7vHYX+RbX+RiCzE6tV09Pb7uVAKdFZK1ReRdFvduuLN8XpPRHaLSD5W7zrO04eKyI/ApUqpjsC9wIdu0nxkO5bFIvIqVk+3su/p7rwpi5eH1XhOAD4CHhWRlEriGc6SC66hE5FtWJeNT7nsCgEOurx3EAh1eH3YTcjfHH7Od/O6EYBSqoFS6g2l1EGlVBbwAxCklKrrZdHfAXaJyEu2122wegfpSqlTSqlTWL27Fg7fx7G8rt/NkeNAs0pGZF3r56DtPXsMl4YyD9t3PxtEJBe4A6tHmq6UWqCUivSiPGVlcjxeR86hPP8FRgG9ga9cdyql/qaU2mEbQT6F1XNvVklMd+eNHRFZi3WprrAaZIOPueAaOhvPAA/h/EuRhtV4ONIa695XGVVZ6uVvWH/5u4lIY+Ba2/uqsoxKqadsef/o8PZhrEvlZiISZNsai0i0bX861mVrGa09fMRPQAHwOw9pXOunte29cyEX65KtjGDHnSKyWET6Yl227gTe8qI8ZWVKdZP2bPgv1n3Xhbbelh2l1DXAP7B6y01FJAjr/mDZMazo/PB43iilHsHqGaZh3ZM1+JgLsqETkb3ALODPDm8vBDrYpljUU0rdAXTC6v35gkCsHt4ppdSlWI1tpSil+tvK+TvbJVjZd0jHusH+qlKqsVKqjlLqCqVU2eXwZ8CflVJhSqmmlO/B4hArE+uSfppS6ne23udFSqn+SqmXbclmAv9SSjVXSjWzpa90KkUFbAauVUq1Vko1Af7P4fu2VErdbJsGdBrrErjETQwtx0tEfsW6pfC0m92BWPcijwH1lFKjse7PlvEb0PZsRlaVUh2wBpHuxroV8KRSyuMltuHsuSAbOhtjsW58A9Y9NGAQVs/rONZf1kEikuGjz5uIdVM8A+um/iIv892BdfN/h21+W45SaoZt373AxViDHieBz7F6QWD1ghYDW4CNWIMwFSIiE4DHgX9h/SIfxrqEm2NL8hywHvgZ2GqL+ZyX38H1s5Zi/aH5GWvk0rFxqoN1DNKwRsh7YvWwXGNoO14islJE3PVWF2Pdd92NdZlcgPNladlk6ONKqY2VfY7tVsFHWPd5t4jIHuCfwH+VUpdU5TsYnFEiZuFNg8FQu7mQe3QGg+ECwTR0BoOh1mMaOoPBUOsxDZ3BYKj1nPclezyh6tUXdUnjyhOeJfGRl1ee6BzQMYxT6aQ6P6OmDWXpqF9ddaCjrAcPHiAjI8Onoes2biNSnF95QkDyjy0WkX6+/Hxv8K+G7pLGXBI1zOdxV62e6POYADpGrJWqWU2drlF7XZMB6tTxff3qqgMd50KPbkk+jynF+VzS8Xav0hZsnlbZUyRa8KuGzmAw1EQU+PnqU6ahMxgMVUMBdbx9ZLt6MA2dwWCoOn5+y8U0dAaDoYqYS1eDwXAh4Oc9Or9rhvteGcmWL/7Jtq+e5ok/9Cm3PyiwPrNeeYC1M59kxQd/pdMV1go/7du0YPXHf7dvvy1/kVHDzqxruWTxImKjOxId2Y5XXn6xXFwR4fG//JnoyHYkx8eyaePGSvMuWbyILtGRdI5qz/gKYv7tr3+mc1R7uiZ0YdOmjV7l1VFW3XHPtR5GPPQAbUJbkhQXUy7fksWLiOscSUxUe8a/4j7uE3/9MzFR7ema6Bz34eEP0CasJUnxznH9sQ6q41zwKQqrR+fNVl3oXL4Ya4nuXcBe4KnK0tdtFCz7Dh+TyJvHSmC3x2XLrhSJu+0FCUh8zL5N+OBbGTtjoQQkPiaxtzwv363Z5bQ/IPExaZD8F0k/likdBo6RgMTHJKegWMIjIuSXXfskM/e0xMTEysYt2yW/SOzbV3MXyA039pO8wlJZvuInSUruKvlFUmHesve379wrp3IKJCYmVjZs3iZ5haX27cuv50vfG/tJ7ukSWb7iR0lK7ip5haWSnV9UYV4dZa1sX1XievouldVDXmGpLPl2uaxas146dYp2ypOVVyTh4RGybcdeOZldIJ1jYmX95m2Se7rUvn0xZ770vaGf5BSUyP9+sOKW7Vu8bLmsXL1eojpF29/Lyivyuzo43+dCQkKi+Pr3XDUMloDu//BqA9brbHMq2rQ1sbaVc6dhLffdCRimlOrkKU/XpAT2Hc7gQOpxiopLmL1kE4N6Ov9FjoxoyfK1lphp98GjtAm5lBaXOi8c2zu5A7+mZnDoyEkA1q1dyxVXtCM8IoKLL76YIXcMZf68r53yzJ/7NXfefS9KKbp1705m5inS09MrzOv6/m2331E+5ryvueuue1BK0bVbdzJPWTHXr6s4r46y6ozr6btUVg8AV19zLZc2vbTcubB+3VoiKom7YN7X3Hm393Fdy+oPdVAd54IW6tT1bqsmdPYluwJ7xfInFAKfUok6LzQkmJTfTtpfpx49RWiLJk5ptu5OY/B1XQBIim5N6+CmhLYIckoz5MYEPlt8pguflpZKWNiZpyNCQ8NITXVeiNZdmrTU1ArzpqWlEhoW5pw+zTVmGmGXO+QNs9KkpVacV0dZtcb18F0qqwdPpKWlEna5c9z0cuVNcypXSGgY6R7i+mMdVMe54HuU31+66vzkUJwXJUzBeelyAJRSw23S5PWUFrnuLjfrfPwHywgKrM/qj//OyDuuYcuuVIpLSu37L6pXl4HXRvPlss0VxrB9rsfPKUtztu9XJaausvprXE/oiOuPdVAdcX2OwhqM8GarJnSOurr7VuVqX0TeBN4EuKr3QAlr2dS+L7RFEGnHspzSZ+eeZsTYmfbXO+eO5kDacfvrG3tEsXlnCkdP5JyJExpGSsqZNjc1NYWQEEevi/s0rUJCKCwsdJs3NDSM1JQU5/StXGOGknLYIW+KlaaosLDCvDrKqjVu2LnXgydCQ8NIOewcN7hceUOdypWWmkKwh7j+WAfVcS5owc+nl+gsXQrOcpYwKpGprNuwiXaXN6NNyKVcVK8uQ26IZ8EP25zSNGlUn4vqWdf69/+uOys37SM797R9/+0ul60AScnJ7N27hwO//kphYSGzZ33KwEE3O6UZeNPNfPLRh4gIa1avpnHjJrRq1arCvK7vf/7ZrPIxB93Mxx//FxFh7ZrVNG5ixUxMqjivjrLqjOvpu1RWD55ITEpmnxdxP/nI+7iuZfWHOqiOc8H3+P+lq84R13pYCrdwLK/BFmwi4gpHbxq0kMF/niG7D/wm+w4fk9HT5ktA4mMy6oVZMuqFWRKQ+Jj0vO812XPwqOz89YjM+XazBPd6yj7a2vSqJyTjZI60uPYfTqOwZaNT7dq3l/CICBkz9jnJLxKZPPV1mTz1dckvEskrLJURD/9JwiMiJDq6s6z8aZ3TyJZr3vwikS+/ni/t2lnvP/PsOMkrLJVJU6fLpKnTJa+wVHJPl8jwh0faY674aa3TKJxr3rzCUm1l1RW3ou/ibT0MuX2otAwOlnr16klIaKhMf+MtWx5rVLVdu/YSHm7FzT1dKpOmTJdJU6ZL7ulSySkokeEjRkp4eIR0iu4sK35cax9hvc017oy3JPd0qV/Wwfk8F7SMujYKkYBeY73aqKZRV63OCKXUACwpTF3gXRF53lP6Og1bio7VS06a1Uu0oev80XVamtVLktiwYb1PA9dpHCqXJD/iVdqC757eICK+X0KlErQ+GSGWsX2hzs8wGAzVjXkEzGAwXAj4+ZWIaegMBkPVMT06g8FQq6nmOXLeYBo6g8FQdczCmwaDoXZjBiPOivjIy7WIbJomj/J5TICT66ZqiVuT0DUdxs+vhAyu+PkB86uGzmAw1EDK1qPzY0xDZzAYqoi5dDUYDBcC5tLVYDDUesyoq8FgqNUoc+lqMBguBPz80tXvmmFd1qO+V0Wx5at/s+3rZ3ji/r7l4gYF1mfWqw+xdtb/seK/T9DpijPrmj16V282fP4062f/kw/+cx+XXFxPa1lNXH1x/dECVpkJze8tYFjTjLzZqg2N69G9CxwFtnmbJz4+QYulqUHCKNl36KhEDhwtgUl/li27DkvcLeMkIO4R+zbh/aUydvp8CYh7RGJ/N1a+W71TAuIekYi+/5RfU45JULe/SEDcI/L54g3y4L8/lEu6jKxRti4Td3uNM6HVFAtYnaA20uDWd73aqG0WMOB9LN2h1+Tm5mqxHiV3butsF1u8kUG9Yp3iRkYEs3ztLgB2H/jNZhcLBKBe3brUv+Qi6tatQ/2Ai0k/lonkHa1Rti4Tt7y5zR8sYFCxCa3GWMDUWWzVhLaGTkR+AE6cTZ6ioiIt1qOQFk2c7WK/nSS0uatdLJXBfeIASIpuQ+tWlxLaMoi0Y5lM/PBbdn8zjl+XPk9WTj7frt6JFOXULFuXieuXFjBP1CQLWJ06dbzaqotqv0fnaAHLys5yt9/ptbvVXCuzHik3f0pcU49/bylBgQ1Y/elTjBzaky27UiguKSUosD6DesUQNegZIm54mob1L2bogOSKvkuVy+ppn4lb+8xtntBVXh34+z26ah91FQcLWMeOkaLDepR69BROdrGWTUk7lukUNzu3gBFjPrK/3rngWQ6kHqfvlVEcSDtOxknLKjbnuy107xLOJ7Mb1Sxbl4nrlxYwT9QkC5i/KwCqvUfnSMOGDbVYj9ZvP0i71s1pE3KZZRe7MYEFy392iutkF/v9VazcuJfs3AIOHzlB15hw6gdcBEDvrh3Z9etvqAYtapSty8Qtb27zBwuYJ2qMBawG3KOr9h6dI0opXps0lZsG3khJSQl/uO8BOkVH89YbMwB4aMTD9Os/gMXfLCQ6sh0N6jfgjbffA6BevXpu8wKUlJTy15c+Y970R6hbR/HB16vZsf8ID952NQBvf76SyIhg3h53DyUlpezcf4SHn/0YgHXbDvLVsk389Mk/KC4pZcvOFN75YhVK1dFS1or2mbi+iaurrBMmTuHmgf0oKS3h3j/cb8V90xZ3uC3uooV0jmpPg/oNmPH2u/bz/g9338kPPyzneEYG7cIv51+jx3Df/X/UVge+RlHNU0e8QJsFTCk1E+gFNAN+A54RkXc85UlMTJJVa9b7vCxmmSaDTjT+Dvk8pg4LWL3LIqTxgOe8Snvyo7s8WsCUUv2ASVjmwLdF5EWX/U2Aj4DWWB218SLyXqVl9Kp054CI+N5baDAY/BJfNMpKqbrANKAvkAKsU0rNFZFfHJI9AvwiIjcppZoDu5RSH4tIoafYfnWPzmAw1EB8d4+uK7BXRPbbGq5PgcEuaQQIVFbL2ghrCltxZYH96h6dwWComfjoMjsUOOzwOgXo5pJmKjAXSAMCgTtEpLSywKZHZzAYqkTZYISX8+ialc2btW3DnUKVx/UG6I3AZiAEiAOmKqUaV1ZG06MzGAxV5ix6dBkeBiNSgMsdXodh9dwcuR94UawRoL1KqV+BSGCtpw81PTqDwVA1FKg6yqutEtYB7ZVS4Uqpi4GhWJepjhwC+gAopVoCHYH9lQX2qx6dAKWlvh+qP7F2is9jAjTt692Q+tlwbNE/fR4ToF5dPX/TdByvmkappuklOg6ZrqPli3t0IlKslBoFLMaaXvKuiGxXSj1s2z8DGAe8r5TainWp+w8Ryagstl81dAaDoWbiqzl/IrIQWOjy3gyHn9OAG842rmnoDAZDlagJT0aYhs5gMFQd/27nTENnMBiqiPL/1UtMQ2cwGKpMdS6q6Q2moTMYDFXHvzt0/jePbsniRcR1jiQmqj3jX3FvPXrir38mJqo9XROdbUoPD3+ANmEtSYp3b1PytaWpb3IEWz4YybaP/sQTw64qFzOoUQCzxt7G2rcfYsX0++nUtjkAYc0bs2jC3Wx6/2E2vDeCR251XrF46ZJFxMdE0aVTB1595SW3Zf3744/RpVMHuifFsdlW1pTDhxlwQx8Su0STHB/D9KmTy9WBLgOWrmPm67i6yqrzmJ3reVtZXl/i7ysMa7PuYM1w/h+wA9gOPFZZnrj4BAkPj5BtO/bKyewC6RwTK+s3b5Pc06X27Ys586XvDf0kp6BE/veDZVMq27d42XJZuXq9RHWKdsqjy9K0L+WERA6bIoHXPy9b9h6RuD+8LgG9xtm3CTN/lLHvLpeAXuMk9p7p8t2G/RLQa5y0veU16f7QWxLQa5w06/+S7D6UYc97KrdQwsMj5Odf9sjxrHzpHBMr6zZtleyCEvv2+Zx50veGGyUrv1i+/X6VJCV3leyCEtnza4qs+GmdZBeUSNqxU3JFu/b2vLoMWFl5RVqOmY64usqq65hV5bytKG+8BgvYxS3aSetH53q1UQstYMXA30QkCugOPKKU6uQpQ15uLhGV2JQWzPuaO+8+O5uSDktTHQX70k5wIP0URcWlzP5uO4N6dHBKE9m2Gcs3HgBg9+HjtGkZRIumDTlyIofNe44AkJNfyM5DGYQ0C7SXNeKKK+xlvXXIHcyf5zw5fMG8uQxzKOupU6c4kp5OcKtWxMUnABAYGEjHyEjSbEIUnQYsXcfM13H1ltX3x6wq5603eX2Jv/fodFrA0kVko+3nbKyeXainPIVFRYRd7mxTSi9nPUpzshuFhIaRXplNSZOlKeXoGZlP6rFsQm2NVRlb9x1l8LUdAUiKDKF1cBNCmzunad2yCXHtglm3w/qs9LRUQp3sTaHlvl9auTTly3rwwAF+3ryZpK7d7Hm02bp0HDMNcXWVVdsxq8J5601eX3LBNnSOKKXaAvHAGjf77Baw7CpYwDzhTZ5ziVv+c5xfj/9kFUGN6rP6rQcZ+ftktuw5QnHJmRVlGgZcxMyxt/H3aUvIziv0WVlzcnK4e9gQXhw/gcaNG1c5rqe8uupWR1x/Luv5PGY68NGzrtrQPuqqlGoEfAH8RUTKtWTiagE77GxTCi5nPQp1shulpaYQXJlNSZOlKazFmdVhQpsHknY822l/dl4hI16eZ3+9c+YoDqSfAqxnT2eOvY1Zy7bx9Ypd9jQhoWGkOtmbUst9v9Byac6UtaioiLuH3sbtQ+9k8O9uccqjzdal45hpiKurrNqOWRXO26LCwkrz+owaMI9Oa49OKXURViP3sYh8WVn6Bg0bss8Lm9InH52dTUmHpalUoF3opbQJDuKienUYcl00C37c7ZSmScNLuKieVcX3D4xn5c+H7D23GU8OYtfBDCbPdu7kJiYls2/vXntZv5g9i4GDbnJKM2DQTcx0KGuTJk0IbtUKEeGREQ/SMTKKRx/7q1MenQYsXcfM13H1ltX3x6wq5603eX2FApTybqs2NI66KuBDYKK3eeITEuWLOfOlXbv2Eh4eIc88O05yT5fKpCnTZdKU6ZJ7ulRyCkpk+IiREh4eIZ2iO8uKH9faR79uu32otAwOlnr16klIaKhMn/GW5J4+MzrVrl17CY+w4uYVlsqkqdNl0tTpkldYKrmnS2T4wyMlPCJCoqM7y4qf1tpHtoa4xn3jLckrLJXB//hEdh/KkH0pJ2T0W99JQK9xMurVBTLq1QUS0Guc9PzTu7Ln8HHZefCYzPl+hwQPekUCeo2T60a9LyIiP+89Ipv3pMvmPeky+B+fSECvcfYRuitsdTB6jPXexCnTZOKUaZJdUCJZ+cXykEMdfL9qjWQXlMjib78XQKI7x0hMbBeJie0in8+ZJ9kFJfZR1XbtrToYM/Y5yS8SmTz1dZk89XXJLxLJKyyVEQ//yV4HK39a5zQi65o3v0jsI5W+Pma64uqIqeuYVfW8dZdXx6jrJS3bS7snvvFqo5pGXXVawK4GVgBbgbIbU/8Ua3UCtyQkJsnKn9ZpKIvPQwJw6Q3P+zymWaap5qFvmSYNFrDuyWz0sQUsILiDtL53cuUJgT2v9PdoAdOFTgvYSvx+vrTBYKgyCupU40CDN5hHwAwGQ5VQmIbOYDBcAPj5oKtp6AwGQ9Xx9+klpqEzGAxVo7qnjniB3zV0OipM11+bjMVP+zxms37/8XlMgJNL9IzmlmgadS2bf+hrzCix77Hm0fl3S+d3DZ3BYKhpKDMYYTAYaj+mR2cwGGo35h6dwWCo7Zh7dAaD4YLAz9s509AZDIaq4+89Or+U4+iQgegQwyxdvIj4zpHERrXnVQ+ildio9nRL7GIXogCMHP4AbcNakuxGtGJJd0aw7b8P88SwK8vtt6Q7t7L2rQdZMf0+B+lOIItevYtN7w1nw7sP8cgtztIdXXKcpUsWkRAbRZfoDkzwJIaJ7sCVyWfEMAUFBfS6ujtXdY2na0IMz48bo728F5IcpyKpk8+xPevqzVZtaFymKQBYC2zBkuM8W1meuPgEn8tA8gpLtYhhcgqKJTw8Qrbu2CsnbKKVdZu3Sc7pUvtWJlrJLiiR72yilbJ9ixxEK455GvR5QfalnpDIO6dJYN//WNKd+96QgN7P27cJn/4kY9/7XgJ6Py+x986Q7zb8KgG9n5e2t06U7sPfloDez0uzAa9Y0h1bXl1ynJM5hdI2PEK2/LJHMjItMczajVslK7/Evs3+ap5cf8ONkplXLMuWr5LEpK6SlV8imXnFknYsU7LyS+R4VoEkJnWVZctXSVa+HplP2TG7EOQ4FUmddCzT1DC0g3T7z3KvNmqhHOc0cJ2IdAHigH5Kqe6eMuTl5mqRgegQw6xbW160ssBNWYe5iFaOOIhWmroRrSRHhrAv9aSDdOcXBl3V3ilNZBsX6U5wE5t0J5fNe34DyqQ7xwlp1khbHYCDGCb8jBhmwXxnMczC+XMZdqdDPWRa9aCUolEjq3xFRUUUFxfZL4HO1zGrrXIcT+X1Pd75ImqlM0IscmwvL7JtHqelFxYVaZGB6BDDuBOtpLnETHcjWqlMUBLSLNBZupORXU6os3Xfbwy+pky604rWLZuUE/NY0p2WrNuRpq0OrO+Y6vIdQ8vVg9u4tnooKSmhR7cErmgdTO/rridZo8znQpLjnG/8fYVh3Uup11VKbQaOAktFpJwcx4sYTq/dLRSqU+ByLp9XWUxPuNvtGmb8zJ8ICgxg9Zt/ZOTvk9xLd569hb9PX+YT6Y6uugWoW7cuq9ZsZMfeQ2xYv45ftm/TVl5dx8wXcX0txznf+HuPTuuoq4iUAHFKqSDgK6VUZxHZ5phGKTUcGA7QomVLLTIQHWIYd6KVVi4xQ9yIVioTlKQey3aW7jQLJC3DnXRngf31zk/+xIEjDtKdZ29l1rLtTtIdXXKcEJc8aamp5erBbVyXeggKCuLqa3uybMliOkV3Pm/HrLbKcc4nqgYsvHleRl1F5BSwHOjnZt+bIpIkIkkhIaFaZCA6xDBJyeVFKwPclHWmi2gluBLRyvqdabQLbUqb4CY26U4nFvy0xymNs3QnjpU/Hz4j3fn7QHYdymDy52ud8uiU4+zfu5cDB86IYQYMdBbD9B94EzM/caiHxlY9ZBw7xqlTVgOdn5/P8u++pX3Hjuf1mNVWOc75xt97dDpHXZsDQbaf62P5IwZ5yhOfkOhzGUheYak2MYyjaGX0s+Mk53SpTJwyXSZOmS45NmmKoxDlhx/X2kdXXUUr02a8JTmnSyWg9/My+KlPLelO6gkZ/fb/JKD38zJqwkIZNWGhBPR+Xno+8r5NupMhc37YKcE3vSoBvZ+X6x79QEREft77m2zec0Q27zkig5/6VAJ6P6+tDspGVa9o117ahkfIv8eMk6z8Enlt8jR5bfI0++jqgyNGSltbPc6SoqMAACAASURBVCxfuUay8kvkx7WbJLZLnER3jpGoTtHyz3+PsY/Uno9jVtvlOO6kTjpGXRuFdZRrJ6z0aqMWynFigQ+Aulg9x89EZKynPAmJSbJqtQ45jp6/JDqWKKppyzQVFZdWnugcqEnLNF3ocpzAyyMl8W/vepX2+7/2qHVynJ+BeF3xDQaDn1ADHur3uycjDAZDzUL5cB6dUqqfUmqXUmqvUuqpCtL0UkptVkptV0p9700ZzbOuBoOhyvjiMlspVReYBvQFUoB1Sqm5IvKLQ5ogYDrQT0QOKaVaeBPb9OgMBkOV8dGE4a7AXhHZLyKFwKfAYJc0dwJfisghABE56k35TENnMBiqhNWIeX3p2kwptd5hG+4QKhQ47PA6xfaeIx2Apkqp5UqpDUqpe70pY4WXrkqpBE8ZRWSjp/0Gg+HC4SyuXDM8jLq6i+I6pF0PSAT6YE1b+0kptVpEdnv6UE/36F71sE+A6zwFPhdqwkqljuiYDK5rGkjTvs9piXty6b+0xNVl69JxetXVdM7mF5b4PKauqTA++r1NAS53eB0GpLlJkyEiuUCuUuoHoAtwbg2diPQ+t7IaDIYLDR+19euA9kqpcCAVGIp1T86Rr4GpSql6wMVAN+C1ygJXOuqqlGoAPA60FpHhSqn2QEcRmX9238FgMNRGFL7p1YpIsVJqFLAY60GDd0Vku1LqYdv+GSKyQym1CPgZKAXedn1+3h3eTC95D9gAXGV7nQLMBkxDZzAYwIfPsYrIQmChy3szXF6/ArxyNnG9GXW9QkReBopsH5KP+5uGBoPhAsXf16PzpkdXqJSqj230Qyl1BdbqwQaDwYAC6vj5IKI3Dd0zwCLgcqXUx0AP4D6dhTIYDDULP2/nKr90FZGlwC1YjdtMIElElusqkC5TlS6jlA5Dk646sOxiI9n20Z94YthVrmFtdrHbWPv2Q6yYfr+DXawxiybczab3H2bDeyN45NbzYxfTYezSecx02Ou+XbqYrvHRJMVGMvHVl93GfeqJv5AUG8k13eLZsvlM3LhO7bi6axw9r0zkumu6lcvrK8oW3qzxFjCshm4C1ty635/lunR1gU3A/MrSxtssYL42VWkzSvnY0KTLWJZfJNLguudkX8oJiRw2RQKvf96yi/3hdQnoNc6+TZj5o4x9d7kE9BonsfdMl+827JeAXuOk7S2vSfeH3pKAXuOkWf+XLLuYLa+u8mblFfnc2JWV53urVmUGuqrY645mFkjb8AjZsHWXpJ/IlejOMbJq3RY5nlNk3z79Yq706XujZGQXyqLvVkhCUrJ93+Wt28juA+lO6bvEJ/h8PbqmbaPk9vc3erXhrxYwpdR04GFgK7ANGKGUmnYWbeljwA5vEua6WMB8ZarSZZTSYWjSZetKjgxhX9oJB7vYdgb16OAUN7Kti12sZZDNLpbD5j1HgDK7WAYhNhmPXruYb41duqxaVYnrKe/G9WsJj7iCtjbD2u9vu4NvFsxzivvN/LncMexulFIkd+1OZmYmR46klyujbpSXW3XhzahrT+BGEXlPRN4DBgC9vAmulAoDBgJve5O+qKhIi6lKl1FKh6FJl62rnF3sWHY5c9jWfUcZfG2ZXSyE1sFNyhnILLtYMOt26Ktbex4fG7u0HbMq2Lo85U1PS3PaF+LGLpae7pIm5EwapRS3De7PdVd35YN33/L4HaqKvy+l7s1gxC6gNXDQ9vpyrMl63jAReBIIrCiBoxznsmbN3O13eu1uReTaZAHTUdaKPtc1+fhPVjF+1I2sfutBtu8/5t4uNvY2/j5tid/bxdxR045ZVcu7cNn3tGoVwrGjR7n15n607xDp4VucO9aoq5bQPsPTQ/3zsKaUNAF2KKXW2l53A36sLLBSahBwVEQ2KKV6VZRORN4E3gTo2DFSdJiqdBmldBiadNm6Uo9lOdvFmgeSdtydXezMpdHOmaM4kO5gFxt7G7OWbTsvdjEdxi5tx6wKti5P9rqQ0FCnfWlu7GIhIS5p0s6kKYvTvEULBt70OzZu8L2mAPDphGFdeLp0HY81+DAa6I81zWSM7edxXsTuAdyslDqAta7UdUqpjzxlaNiwoRZTlS6jlA5Dky5bl2UXu5Q2wUE2u1g0C350fg7a2S4Wz8qfD52xiz05iF0HM5g821nNq9Mu5mtjly6rVlXiesobn5jM/n17OWgzrH31+Sz6DxjkFLffwJuYNfMjRIR1a1fTuHFjgoNbkZubS3a29YcsNzeX/323lKhO0R6/R1WoFaOuVd2w7ulVOuqakJCoxfykyyjla0OTTmNZQK9xMvgfn1h2sZQTMvqt7ySg1zgZ9eoCGfXqAgnoNU56/uldm13smMz5focED3pFAnqNk+tGvS8iIj/vPSKb96TL5j3pMvgfn0hAr3Hayls2quprY5eOY1ZVW1dF9rqyUdUyw9o/R4+V4zlFMn7iVBk/caoczymSjOxCeeChh6VteIREdYqWZT/8JMdzimTD1l0S3TlGojvHSMfITva8OkZdLwvvJH/4ZItXG/5qAVNKdQemAFFYqwXUBXJFpLHHjM4xegFPiMggT+kSE5Nk1Zr13oatdiqru3NB1yWAWabJws+vsJzQsUzTddd0Y/PGDT6thWYR0XLTC596lfb9YbF+awGbirVcymwgCbgXaH82HyLWBOPlZ1k2g8FQQ/D3vx9eyXFEZK9Sqq6IlADvKaUqHYwwGAwXBkrVjmdd85RSFwOblVIvA+lAQ73FMhgMNQk/b+e8mjB8jy3dKCAXax7dLToLZTAYahb+PupaaY9ORMomChcAzwIopWYBd2gsl8FgqCEoVK24dHXHlT4thcFgqLlU86Ka3nCuDZ0WBCjRMK3AFxZxd2iYXUJBke+nFACcWPK0lrhNb56sJe7xOY9qiauD4hI9U2ECLqrr85i6el7+/mTEuXhdFXCRnuIYDIaaiDc3+6uTc/W67vR1QQwGQ82kJviYjdfVYDBUmXp+3qXzq3t0BoOh5mEZvmpoj85gMBi8pcauR2cwGAze4ucdOq+cEUopdbdSarTtdWulVFddBVq6eBHxnSOJjWrPqx7MT7FR7emW2IXNDjalkcMfoG1YS5Ljz49ZS4elCmDZkkV0jetEYkxHJo5/yW3cp574C4kxHbm6azxbHOIClJSU0PPKJIbe6rwmmi4DVt/ENmx58x62vX0vTwxJLLe/cYOL+fyZm1gzdRgbXr+Le/pG2fc9+rs4Nrx+F+un38UHT97IJQ5TKvzNAuYp79Ili0iIjaJLdAcmvOL+mP398cfoEt2BK5Pj7OdtyuHDDLyxD0lx0XRNiGH6VOfpOrrOMV9S5nX1Zqs2vFhL7nVgGrDD9ropsM7LdegOYEl1NuPFOlRx8QkSHh4hW3fslRM289O6zdsk53SpfSszP2UXlMh3NvNT2b5FDuYnxzzaLGA+tlTlni6VY1mnpW14hGzctluOnMyT6M6x8uP6n+VEbrF9m2UzPx3PKZLF/1spCUnJTvvH/ecVuXXIULmh3wD7e1UxVXkyYDUYOFn2pZ2SyPvfk8CbpsiWfUclbvh/JaD/JPv27/dWyfjP1klA/0kSdsebcjwrXwJvmiIRd78tv6afkqDBUyWg/yT5/Ifd8uCrSySg/yS/s4B5qr+TOYXSNjxCtvyyRzIy86VzTKys3bhVsvJL7Nvsr+bJ9TfcKJl5xbJs+SpJTOoqWfklsnt/ivzw4zrJyi+R1KOn5Ip27c/k1VAH8QmJPl+PLrhdtPxz4S6vNm/aAR2bN2Ml3UTkEaxHwBCRk1jr0nlLbxGJ82YNqrzc3HLmpwVubErDXMxPRxwsTU3Pk1lr3VrfW6oANriYn2657Xa+mT/XKc3CBfMYeuc9dvNTVmamvQ5SU1NYumgh99z3gFMeXQas5A4t2Zd2igNHsiy72A97GHRlhFMaARrVt06ZhvUv4mR2gd1FUa9uHepfXI+6dRT1L6lH+vFce3n9yQLmKa9V1isItx2zW4fcwQLXYzZ/LsPudIibaZ23wa1aERdvTVkNDAykY2SkXY6jow50oLzszVVnj86bhq5IKVUX63xFKdUcKPWc5dwoLCoqZ35KczE/pbsxP1WHWUuHpars+4W65klPc0mTWt78lG7F/eeTjzPm+RepU8f50FbFVOWJkMsakZKRY3+dmpFD6GXOi9vMmLeFyMsvZf9Hf2T99Dt54o0fEIG047lM/HIjuz+4n18/fpCs3NN8u+mQrSz+ZQHzbOtKdSlHaLnz1u355fLZBw8e4OfNm0lK7qatDnShlHdbdeFNQzcZ+ApooZR6HlgJvOBlfAGWKKU22Gxf5VBKDVdKrVdKrc/OznK33zmgm+euqsPSVJWYusq6+Jv5NG/egrj48vfJdJXX3W7XMH0T2vDz/mNE3P0O3UbN5LWRPQmsfzFBjS5hUPcIou7/gIi736FhwEUM7d1RW3l1nAe+KmtOTg73DBvCi69MoHHjxj6Le76oo7zbqgtvVi/5WCm1AeiDdd/xdyLilZAa6CEiaUqpFsBSpdROEfnBJb6zBczF/NTKxfwU4sb8VB1mLR2WqrLvl+qaJ7iVS5qw8uan4BDmfvUF3yyYx9LF33C6oIDs7CxGPHAvb7z7YZVMVZ5IzcghrFmjMzGaNSLtRK5Tmnv6RvHq7A0A7E/P5MBvWXS8vCmtWwRy4EgWGVn5AMxZtY/uUa349H+7/M4C5tnWFeZSjtRy563b88uWv6ioiLuH3cbtd9zJzb+7xTmPhnPM15QNRvgz3oy6tgbygHnAXCDX9l6liEia7f+jWL1Cj6O1DRo2LGd+GuDGpjTTxfwUXA1mraRk31uqABJczE9ffv4Z/Qbe5JSm/8BBfPqJFddufmrVitFjX2D7noNs2bGPtz/4mGt69uaNdz8E9Bmw1u/+jXYhQbRp2diyi13bngWr9zulOXwsm15x1uVVi6D6dAhtyq9HMjl8LJuukcHUv8T6e9s77nJ2HT5hL68/WcA85U1MSmb/3r0csB2zL2bPYkC5Y3YTMz9xiNvYOm9FhEcefpCOHaMY9dhfy5VXxzmmA3+/dPVm5HQrlrB6K7AHKAa2e5GvIRDo8POPQD9PeeITEp3MT6OfHSc5p0tl4pTpMnHKdMk5XSrZBSXykIP56Ycf19pHV13NT9NmvCU5p/WZtXRYqspGVcvMT08/M1ZO5BbLq5OmyauTpsmJ3GI5nlMkfxw+0mZ+6izfrljtNOp6IrdY5n6zzGnUtaqmqooMWAH9J8ngf8+R3SknZF/aKRn9/ioJ6D9JRk35VkZN+VYC+k+S8LvelqUbDsrWX4/Jtl8z5L6XF9lHZJ/7aLXsPHRctv2aIR9/u0Ma32SNwPqjBawiW1fZqGrZMfv3mHGSlV8ir02eJq9NniZZ+SWSmVcsD46wjlmn6M6yfOUaycovkcXLvhdAojvHSExsF4mJ7SKzv5onWfklWupAx6hrSIfO8vyyvV5t+KsFzBXbqiYjRGREJekisHpxYF0ifyIiz3vKk5CYJCt+8r1kV9cyTTpMVaeLtYzzEHCRnocRLx08RUtcXcs06ehV6FqmScd5e/WVyWzcsN6ngcM6xsio1+d4lfb/+rTzWwuYEyKyUSmV7EW6/UCXcyqVwWCoUdT4R8CUUo87vKwDJADHtJXIYDDUOHw10quU6gdMwvJHvy0i5R8HsdIlA6uBO0Tk88rietOjC3T4uRhYAHzhRT6DwXABYI26+iCONV93GtAXSAHWKaXmisgvbtK9BCz2NrbHhs4WsJGI/P2sS20wGC4MfDei2hXYa7vthVLqU2Aw8ItLukexOluV3kIrw9NS6vVEpNjDkuoGg8GAAup536VrppRa7/D6TdtcWoBQ4LDDvhSgm9NnKRUK/B64Dl80dMBarPtxm5VSc4HZWF5XAETkS28/xGAw1G7OokeX4WHU1V0U1yHticA/RKTkbO4LenOP7lLgOFYLKrbCCGAaOg3Uv9j35ifQMxUG4NhXo7TEvey6f2uJe3L5cz6PWU/PIdPyKJcmBxh1fBM5Bbjc4XUYkOaSJgn41FY3zYABSqliEfE4v8VTQ9fCNuK6jTMNXBl6fmsMBkONw5Lj+CTUOqC9UiocSAWGAnc6JhCRcPvnKvU+ML+yRg48N3R1gUZ41500GAwXKj56YN82JjAKazS1LvCuiGxXSj1s2z/jXGN7aujSRWTsuQY2GAwXBgrfPcUhIguBhS7vuW3gROQ+b+N6auj8fK6zwWDwF/x99RJPDV2f81YKg8FQo/Hzds6jwPrE+SyIwWComSi8W8G3OvG78hkLmJ6y6izv0iWLiI+JokunDrzqyYDVqQPdk5wNWANu6ENil2iS48sbsPp2a8+WTx5j26d/5Ym7ry0XNygwgFkv3Mna90ex4s2H6RTewml/nTqKn979E1+8dLdX9VNW1nOtWx2GNV3l9Sk2gbU3W7Whcw0oIAj4HNgJ7ACu9JTeWMD0lDW/SLQYpXJPl8qp3EIJD4+Qn3/ZI8ezLAPWuk1bJbugxL59Pmee9L3hRsnKL5Zvv18lScldJbugRPb8miIrflon2QUlknbMMmCV5W1wzb9kX8pxiRwyXgJ7jpYte9Ik7q6JEtDjafs24eMfZOzbyySgx9MSO+w1+W7dXqf9T05eIJ8u2SwLVu6QgB5PyyVX/Z+WutVlWNNxLiRoWI+ubVSMfLDukFcbfmwBqwqTgEUiEom1ZJPHJdiNBUxPWUGfUcpuwIo4Y8CaP2+uS9y5DHMwa5065cGAZZO/JEeFsS/lOAfSTlJUXMLsZVsZdHWUU9zIti1YvsFazXj3oQzatGpKi6aWmCe0eWP6XdmR9+ZtsKeX7DRtdavDsKbrXPA1CqirlFdbdaGtoVNKNQauBd4BEJFCETnlKY+xgOkpqz2PFmtZqpO1LDQ0tFyetHJp3BiwDtgMWF2tRxtDmjcm5WimfX/qsSxCmzd2yrN17xEGX9sJgKSoUFq3bEJoiyYAvPLnATz9+mJKHRaWlcJsPXWrybCm61zQgb8vpa6zRxeBtW7de0qpTUqpt5VSDV0TGQuY/rJWNa6u8paRk5PD3cOG8OL4MwYs93Yx5zjjP/qBoMD6rH7vEUbeeiVb9qRTXFJK/6s6cvRULpt2uT49VJ7aWrfn8nnnjnf356rzHt1ZrzB8lrETgEdFZI1SahLwFOD0EKMYC5j2strzaLGWhTlZy1JTU8vlCS2XxsWANfQ2bh96J4MdDFipR7MIs/XOwLoUTcvIdoqbnXeaEf8588j1ztl/40DaSYb0iWFQj0j6de/AJRfXo3HDS3j337dx398n6qlbTYY1XeeCr7nQR11TgBQRWWN7/TlWw1chxgKmp6ygzyhlxd1rj/vF7FkMHORswBow6CZmOpi1mjRxMGCNeJCOkVE86mLAWr8zlXaXX0abVk25qF5dhlwfw4JVO53SNGkUwEW2J+rvvymJlVsOkJ13mtFvLKXdLa8QOeRV7h3zGcs37OeBcZ+jAkO01a0Ow5quc0EH/t6j0z3qugLoaPt5DPCKp/TGAqavrLqsWmWjqleUHbMx4yS7oEQmTpkmE6dMk+yCEsnKL3Y6Zt+vWiPZBSWy+NvyBqzP58yT7IISCejxtAz+2wey+9Ax2ZdyXEa/sUQCejwto16eI6NeniMBPZ6WnsNnyJ5Dx2TngaMyZ/k2Ce43zmnUNaDH09J31Nv2UdeAHk9rqVtdhjUd54KOUdeIqFj5bFOqVxs1xQJ2Niil4oC3gYuB/cD9InKyovTGAmbN/dKBrmWaSjWdP837jNYSV8cyTbp+h3T0gHp0S2KDjy1g7aK7yMufLPIq7a1xITXDAnY2iMhmrPWjDAZDLaZaL0u9QGtDZzAYLgz8u5kzDZ3BYPABft6hMw2dwWCoGtb0Ev9u6UxDZzAYqozp0RkMhlqOqtELb553fLkksyO6hv91TK1QNczGUa+unjnnOqaBADS9fpzPY55cpsdYVlhc6vOYvo9oLl0NBsOFQDU/sO8NpqEzGAxVxjR0BoOh1qPMpavBYKjNlC286c+Yhs5gMFQZP2/nTENnMBiqjr9fuvrdenk1ydKky36l0yhV06xlvo7bt+sVbPnwT2z7+BGeuPOqcjGDGgUwa9wQ1r4znBWvP0Cn8OYAhDVvzKLX7mHTByPZ8N7DPHJr1/NSB8uWLCIxNoq46A5MqOAce/Lxx4iL7sBVyWfOsYKCAnpf3Z0eXePplhDDC+PGlMvrKxRQR3m3VRsa16LrCGx22LKAv3hcjy4+ocZYmrLzi7TYr3QZpXRZwHRZy3TF3ZdyXCKHTpbAPs/Jlj1HJO7e6RLQc6x9mzBzlYx9d7kE9BwrsfdMk+/W75eAnmOl7e8nSPcH35SAnmOlWb8XZfehDHteXWU9kVMobcMjZPMve+RYpnWOrdm4VTLzS+zb7K/myfU33Cin8opl2fJVkpjUVTLzS+RUXrGkHsuUzPwSycgqkMSkrrJs+SqJ07AeXcfoOPlh1wmvNmqbBUxEdolInIjEAYlAHvCVpzy5ubk1xtKky36lyyilywKmy1SlI64C9qWe5ED6KYqKS5n93XYG9ejoFDOyTXOWb/wVgN2HjtMmuAktmjbkyIkcNu85AkBOfiE7D2YQ0ixQax1sKDvHwq19twy5gwXzXc6x+XMZdqd1zJK7WXGPpKejlKJRo0aAtVx9UXGRvqWUvBTj1FY5jiN9gH0ictBToqKiohpjabJi+t5+pdUoVdOsZT6OqxSkHDsjYLLMYoFOMbfu+43B10QCkBQZQuvgoHJpWgc3Ia59MOt26CtrWZ5y51g5K55zGkcrXklJCVd3S6Bd62B6X3e9/RzzNRe07tCFocBMdzscLWBZVbCAVfS+pzzexK0IX8R0Z7/SUVZ/javrmJ3N93BNO/6TVQQFBrD67YcYeUsyW/YcobjkTJqG9S9i5rND+PvUJWTnFWota1WPWd26dVm5ZiO/7D3ExvXr+GX7tnJpfYXycqsutI+6KqUuBm4G/s/dfnG1gNUQS5MV0/f2K61GqZpmLfNxXBFrUMGev3lj0jJynGJm5xUy4qV59tc7P32UA+nW6v/16tZh5rNDmLVsK1+vOCPq0VkH5c6xclY85zTurHhBQUFcfW1Pli1ZjDb8e9D1vPTo+gMbReS3yhI2bNiwxliadNmvdBmldFnAdJmqdMQVoF3YpbQJDuKienUYcl00C37c7RSzSaNLuKie9Wtx/8B4Vm45ZO+5zXjyJnYdymDy7DVOeXTVQULZOXbA2vfl7FkMGOhyjg28iZmfWMds3RorbnCrVmQcO8apU5YvPj8/n+XffUuHjs73I32J8vJftaF7tAP4FEuKU2nahITEGmVp0mG/0lVWXRYwXdYyXXEHP/mJ7D6UYZnF3vpOAnqOlVGvzpdRr86XgJ5jpefId2TP4QzZefCYzPl+hwQPfFkCeo6V60a9JyIiP+89Ipv3pMvmPeky+MlPJKDnWG1lLRtVvaJde2kbHiH/GjNOMvNLZMLkaTJh8jT76OqDI0ZKW9sx+9/KNZKZXyKr1m6SmC5xEt05RqI6Rcs//z1GMvNLtIy6RnaOkzX7Tnm1UUstYA2Aw0CEiGRWlj4xMUlWrVnv83Lo+o4lGsxauoxlug6zLmuZLi70ZZp69ujKJh9bwKJi4uXDr5d7lbbrFUG10gKWB1ym8zMMBkP1ojAWMIPBUNupAevR+d0jYAaDoebhq+klSql+SqldSqm9Sqmn3Oy/Syn1s237USnVxZvymR6dwWCoOj7o0Sml6gLTgL5ACrBOKTVXRH5xSPYr0FNETiql+mNNTat0JrRp6AwGQxXx2dSRrsBeEdkPoJT6FBgM2Bs6EfnRIf1qIAwv8KuGToBSDSOZuu4f6DAfOc7C9yX16uqpBB0jz6BvpYvjS/7l85hN+5VfVcQXnPjmSZ/H1FGtZauXeEkzpZTj1Io3bQ8NAIRizdIoIwXPvbU/At9486F+1dAZDIYaivcNXYaH6SXuorj9S6qU6o3V0F3tzYeahs5gMFQZH126pgCXO7wOA9LKfZZSscDbQH8ROe5NYDPqajAYqoyPlmlaB7RXSoXbnpEfCjitS6WUag18CdwjIrvdxHCL6dEZDIYq44v+nIgUK6VGAYuBusC7IrJdKfWwbf8MYDTWQwjTbZOUi7150sI0dAaDoWr4cA0mEVkILHR5b4bDzw8CD55tXNPQGQyGKmGNuvr3oxF+d49Op8DlXIUzFeXVVdalSxaREBtFFw9ClL8//hhdojtwpYsQpdfV3bmqazxdE2J43kWIoku6s3TxIuI7RxIb1Z5XPdRDbFR7uiV2sZcXYOTwB2gb1pJkHx+zisqr65j1TQ5ny3sPsu2D4TwxtPyMiKBGlzBrzO9Z++b9rJh6D53aNrPvm/FEfw7OHsX6tx44L3WgA39feFP3Ek1/BbYD27BWGA7wlD4uPkGLwKUqwpmK8pbJcXxd1pM2IcqWX/ZIhk2IsnbjVsnKL7FvZUKUTAchSlZ+iWTmFUvasUzJyi+R4w5ClKx8fdKdTJt0Z+uOvXLCVg/rNm+TnNOl9q2sHrILSuQ7Wz2U7VvkUA+OeXQKjXx9zBr0fUn2pZ6QyLtfl8AbX5Yte3+TuPvfkoA+L9q3CbNWy9j3V0hAnxcl9r435bsNv9r39fnLR9J9xHuybf9Rpzw66iBewzJN0bHx8ktajlcbtU2Oo5QKBf4MJIlIZ6ybi0M95cnLzdUicKmKcKaivLpkM+tdhCi3uhGiLHQQonT1IEQpdhCinE/pzgI3cYe51MMRh7hNfXzMKiqvrmOW3LEV+9JOcSA905LuLN/BoB7tndJEtmnG8k0HANh9+IQl3QlqAMCqrSmcyM4/L3WgC39feFP3pWs9oL5Sqh7QADdzYhwpLCrSI3CpgnCmorxpqXpkM+kuspSQ0FC7IexMXDeiFQchSo9uCVxhE6IkV4N0x7W89U9dBQAAE4JJREFU6W7qodK4moRGOo5ZSLNAUo46SneyCb2skVOarfuOMvhqa4XfpI6taN2ySTnpjrvy6jhmOrhgLWAikgqMBw4B6UCmiCw52zj+KnCpSkxdZQVLiLJqzUZ27D3EBgchir+W93zG1VVWd7tdo4z/dDVBjQJYPeM+Rv4ugS17f6O4xPPCmrrKqwN/v0enbdRVKdUU64HccOAUMFspdbeIfOSSbjgwHKBFy5Z6BC5VEM4UFRa6zRsapkc2E+IiUUlLTaWVN6IVD0KUTtGdz6t0x7W8IW7qodK4moRGOo5Z6rFswlo4SncCSTvuRroz/sysiZ0fPcyBI54X3dZ1zHxNTVh4U+el6/XAryJyTESKsGYzX+WaSETeFJEkEUkKCQnVInCpinCmory6ZDOJScnsdxCifOFGiNLfQYiythIhSnubEOV8SncGuIk706UegjUes7Mpqy+O2fpd6bQLbUqb4CaWdKdXFAt+3OuUpklDB+nOgC6s3HrYLt05n3WgBS8vW6u1LdQ44toNa8S1gVUVfAA86ilPfEKiFoFLVYUz7vLmFeqRzWS5CFH+PWacZOWXyGuTp8lrk6fZR1cdhSjLV66RrPwS+XHtJol1EaKUjdTqku6UjaqW1cPoZ8dJzulSmThlukycMt0aQS0ocZIE/fDjWvvoqms9TJvxluT44JhVVF4dxyygz4sy+P8+k92Hj8u+1BMy+p3vJaDPizLqtUUy6rVFEtDnRek56kPZc/i47DyYIXN+2CnBg1+zj67O+na7pGVkS2FRsaQczZIRryyUgD4vaqkDHaOunbvEy97f8rzaqKVynGeBO4BiYBPwoIicrih9QmKSrPxpnYZy+DwkoEc4o2vZI13LNGkqrrZlmnQcs8sGvOz7oOhZpqlH92Q2+liOExOXIHOWrvIqbbsWDWqlHOcZ4Bmdn2EwGKqbana2eoF5BMxgMFSJs1x4s1owDZ3BYKg6pqEzGAy1HXPpajAYaj1+Po3ONHQGg6Hq+Hk7Zxq6qlBHwx1YXZN9Cos9P250rlxcT8+cc10z7UtKfV8Pxxf6fhoIwKX9yi/LVFVO7zni85hU92RgLzANncFgqBI14REw09AZDIYq49/NnGnoDAaDD/DzDp1p6AwGQ9Ux00sMBkPtx7/bOdPQGQyGquPn7ZyxgDnGPRejVGx0R6Ij2/FKBTEf/8ufiY5sR3J8LJs2bvQqry6r1rIli0jq0on4zh15bbx7u9iTf/sL8Z07clXXeCe72HXXdKdHtwS6J8bygg/tYp7y6qjfpUsWER8TRZdOHXjVk2GtUwe6J50xrKUcPsyAG/qQ2CWa5PgYpk+dXK6seuxiEWx5fzjbPnyYJ4Z2L7c/qFEAs569hbVv/ZEV0/7gYhcbwMHP/8z6t89ag3pWKGXpDr3Zqg2da0ABj2EZwLYDf6ksvT9awDwapSIi5Jdd+yQz97TExMTKxi3bJb9I7NtXcxfIDTf2k7zCUlm+4idJSu4q+UUiOQXFFebVZdU6nn1a2oZHyObtu+XoqTyJjomV1Rt+llN5xfbtsy/nyvV9b5STuUWydPlKSUxKllN5xXIyt0hSjp6SU3nFciwzXxKTkmXp8pVyKq9Yi2Etr7DUYx2da/3mFBRLeHiE/PzLHjmeZRnW1m3aKtkFJfbt8znzpO8NN0pWfrF8+/0qSUruKtkFJbLn1xRZ8dM6yS4okbRjp+SKdu3tebPyNNnFrv+PZRe7a7oE3vCibNl7ROLuf0MCrnvBvk349CcZ+94PEnDdCxL7hxmWXcy2r89j/5XuI96x7GK291RgqM/Xo+sSnyBHs4u82qiFFrDOwENAV6ALMEgp1d5THn+0gFUU1zXmkDuGlo8592vuvPtelFJ0627ZutLT01m3tuK8uqxaG9ZbdrG2ZXax225nYTm72DyG2uoguWt3MjMz3drFioqK7TefdRjWAI91dK71u26tzbAWccawNn+ecx0smDeXYQ5lPWWr2+BWrYiLTwAgMDCQjpGRdgmQNrtYZAj7Uk9yIP2UZRf73w4GXdXBKY1bu1jTMrvYYU5kFZSLqwN/d0bovHSNAlaLSJ6IFAPfA7/3lMEfLWCeYrqauFK9sXWlprp9vyyvLqtWeloaoaGu9Zbmksa5nkJCQ+11W1JSwtXdEmnfphW9+/QhyQd2MU95PdXRmbhnV79paamEOr0fWu7cKZ+m/Pc5eOAAP2/efKYO3Bwz39jFGpFyzMUu1szZHLZ1/1EGX+NiF2vWmPONvy+lrrOh2wZcq5S6TCnVABgAXO6aSCk1XCm1Xim1Pjs7q1yQ2miU8pRXR1kryuN65nmKW7duXVau2cD2PQd9ZhfTVQ/n8nmVxSwjJyeHu4cN4cXxE2jcuHGVy+oJd1M2XOOMn/mTZRd74wFG/j6JLXsqt4v5Hm+trtXX0mkbdRWRHUqpl4ClQA6wBWtJddd0bwJvAnTsGCn+ZgHzFNPVxBXija0rJITCwsIK8+qyaoWEhpKa6pqnlUsa53pKS00tV7dBQUFcfU1Pvl1adbtYRYY1ez34uH5DQ8NIdXq//Pcrn+ZMmYqKirh76G3cPvROBv/uFudy6LCLZWQT1twLu9grC+yvd348kgNHTnmM62usR8DO60eeNVpHXUXkHRFJEJFrgRPAHk/pGzRs6HcWMG9jzp71afmYN93MJx99iIiwZrVl62rVqhVJyRXn1WXVSkhMZp+jXezzz+hfzi42iE9tdbBu7WoaN27s1i72/f++pX2HqtvFPOX1VEfnWr9JybY6+PWMYW3gIOc6GDDoJmY6lLWJrW5FhEdGPEjHyCgefeyv5c4FLXaxnWnOdrHeUSz40flXqJxd7OfK7WI68PdLV92jri1s/7cGdgJNPaX3VwtYRUapr+YukHbtrZhjxj4n+UUik6e+LpOnvi75RSJ5haUy4uE/2WOu/Gmd04iha978ItFm1SobVS2zi/3rmbFyKq9YJkyaJhMmTbOPrj44/Ixd7H8rVsupvGJZuWajxMTGSSebXez//vWMfaRWl2Gtojqqav1+PscyrIWHR8joMeMku6BEJk6ZJhOnTLNGUPOLner2+1VrJLugRBZ/+70AEt05RmJiu0hMbBf5fM48yS4osY+q+twudt0LMvipWWfsYm8vl4DrXpBRE76RURO+kYDrXpCeoz5wtovdPME+wupsF8uUEa/M1zLqGhefKKfySrzaqKUWsBXAZUAR8LiIfOspfU2zgOlYsUGXBUzXfZuatkyTjnrQNT/ssv4almlaN43SrBSfFjg+MUm+X7XWq7RN6tetlRawa3TGNxgM1U91Tx3xBvMImMFgqDp+3tKZhs5gMFSZan28ywv87llXg8FQ8/DVkxFKqX5KqV1Kqb1Kqafc7FdKqcm2/T8rpRK8KZ9p6AwGQ9XxQUunlKoLTAP6A52AYUqpTi7J+gPtbdtw4HVvimcaOoPBUGV89GREV2CviOwXkULgU2CwS5rBwIdisRoIUkp5npCIn92j27RxQ0bDS+oc9CJpMyBDQxFMXH1xa1JZa3PcNr7+4E0bNyxucLFqVnlKAAKUUusdXr9pezoKIBQ47LAvBejmkt9dmlAg3dOH+lVDJyLNvUmnlFqvYy6Oiasvbk0qq4l7dohIPx+Fctflc51Y6k2acphLV4PB4C+k4LzwRxiQdg5pymEaOoPh/9s792Cr6iqOf77eQB4BcekSOGliIiYYPohBVB4N+CgrDSpHhQFKoaIH4TQ54dgDw6QsZ9QBNYJC6AHiaCTgKMrDGiheIgOVYlqMZmAWitHF1R/rd/J0ucC9Z+87cPZdn5k9Z+/f3ue7f2ef/Vv799hr/YJjhfVAb0m9JLUFrgQebHDMg8DYNPo6CHjVzA7bbIVjrOnaDO4+8iGhe4zpVlNeQ/coYGb1kiYDy4EaYI6ZPS1pUto/C/g1HvLtT8DrwPimaLeor2sQBMGxQDRdgyAoPGHogiAoPGHogoNQS8VIyhlJHVtIt0e1XIOgaVSVoZPUR9J5ktokd5G89XPVlHSqpAGSjs9Zt6+koZK65ah5gaQxAGZmeRV0SR+R9KU8tBrofgz4rqTuOeteDCyhkflNMmgOkjQmfbbNUbd3ur9qWqI8FIqjEe2zkgX4OB6l+FHgJ8AXgc45aZ9Wtl6Tk+ZlwBZgJbCw/BwZdS9Nug8AS4EeGfWOA96Oz727DZhUvi+j9kXAJmBkzvfC0HQv5K1byu9zwO05aX40/V/zgEVA75x0L8fnYVkM3A58DuiY5/Uo0nLUM9DEP7UN8HPg/LQ9CpgJTM9q7JJBeh1YUJaWydgBg1NBPDtt34UPlWe9DsOAPwAD0/YSYERO1/irwNT0EJmSg95g4KWyvHbB3Y865KD9FeD6tH4CMBJ3FeqSQXME/spC33S/rQCGZMxnN/xViX5pew7wCaA70C6j7sPAGWl7Av4O2jSgUx73Q9GWamq6dsYjFoAX8F8BbYGrKm1mpT6eycCXgf2S5gOY2YEcmgK3mNnGtH4TUJtDE/YlYKKZrZPUAy/ckyXNljQ6Y3OzHm+uzQMGSrpN0oz0YmYl98luPIR+z9TEfgCPNDE3p7yWWIQX9MnAnZK6VqhZA4w1s6eBjsAO3Ohl6bOsB9oDp0vqjD+oxgI/BKZl6GOsx2vhPQDMbA7wZ6AOf3AHDTnalrYZT7GR+FvRF6btGuAqYD7pfcAKdU/Ab5p34oVmfg55rSHVNNP6u4GNQF1K65bDOb4OTEvr4/Eab10GvfcCX0vrU/Fa7p0Z89gfeBZ327kWbyZPwJvytRl0++GG6GfA+JR2CjALuDhjno9Ln5cALwJnZtQbDfwe+C1wY0r7IDAX6J9BdxLwU2AMcHMqBxPJoeVQxKWaanSr8ebEGElDzOyAmS3ADVX/SkXNbJeZ7TWzv+M3SvtSzU7SOZJOr0DzgJmVZuMW8A9gj5m9LOlqYLqk9pXmOZ3jZjObntZ/DHQiWwf6PqCPpGvxQnQLcJKkiRnyuBmvYcwws3vM7E3z2kdXfGa4SnW3AtfjNdpeKe1Z/KHSpMAQh9F+M30uw70NLstQq8XMFuHN4tX4ww4zewz/v7JEElkILMONZgczu8bMZgPdU+0xKKNqXMDM7A1J9+GRCm5IBujfwLs4QoiWZpxjdyrYMyVtxwvO8Iya9cBeSS9ImoF3eI8zs32VakqSpcd62h6FX4cjOjcfJp+7JL0A3Ah83swekjQc77eqGDPbhg9ylOe1juz/2cN4l8A3JJVCe52NG+i82AxMAW41swOVipjZK5IeAz4paT/QDjfQWzJovgrcJ2lhyThLGgvUAhXntbAc7Splcxe8X2443myZS+rwz/kcU8ih2ZK0lPL8DPA8OY26Je3jgU/jI6b9ctA7ETi3bDvTqGsj12ECbvT65qh7DvAd4Pt5/F+N6P8CODkHnXfgbwo8gQ9QVNxsPYR+6drmfg2KsFStr2saLDBLT7McdbviN/dUM6v4iduI7jhgvXlnd16abfC+y2fMbEeOuv9XY8xLE38t5EUz256ndkvQEtcg6XbC+5T/ecSDm6f7HqCNmWWqgReVqjV0LYmkdmb2Rs6aLVJwgiA4MmHogiAoPNU06hoEQVARYeiCICg8YeiCICg8YeiCICg8YeiqBEkHJG2StFXSLyV1yKA1V9LotH6vDp4NvfzYYZIGV3CO56SD5/o8VPohNMZJuiOP8watmzB01cM+MzvLzPoB+3E3rf9RaRACM/uMuffCoRiGRyIJgqolDF11sho4NdW2VkpaADyVAjDOlLRe0paSn2ry1bxD0jZJS/EwQaR9j0sakNYvkbRB0mZJj0o6GTeoU1Jt8kJJdZIWp3Osl3R++m43SSskbZQ0m8YnGm4USQMlPZm++6SkPmW7T5S0TNIOSTeVfecaSetSvmZXauiD1kHV+LoGjqS34cE3l6Wkgbj7105J1+HzXH5AHhJqraQVuA9oH+BM3Cd2Gx4brVy3DrgHj8G2U1Ktme2RNAvYa2bfS8ctAH5gZmsknYS7M70P9ztdY2bfkvRh4Lpm/Kzt6bz1kkbgLl2jyn8fHk1lfTLUrwGfwuMT/kfSXcDVeCy9IDiIMHTVQ3tJm9L6auBHeJNynZntTOkXAe8v9b/hwS57A0OAheaO6buSg3lDBgGrSlpmtucQ+RgBnKG3QrR1Tm5NQ/Ao0JjZUkmvNOO3dQHmSeqNB21oU7bvETPbDSDpfuACPB7bubjhA4/59rdmnC9oZYShqx72mdlZ5QmpkL9WngR8wcyWNzjuQ7gBORxqwjHg3R3nWYPoKykvlbrZfBtYaWZXpOby42X7Gmpayus8M7uhwvMFrYzooysWy4HPJmd/JJ0mj2K7Crgy9eH1pPHQU78Bhkrqlb5bm9L/hcdOK7ECj+ZLOq5kfFfhzUckXYrHnGsqXYC/pvVxDfaNlFQrj993ObAWnzdktNLEOGl/lthuQcEJQ1cs7sX73zZI2grMxmvtS4A/Ak/h4cyfaPhFM3sZ71e7X9JmPGIxwEPAFaXBCDzU0IA02LGNt0Z/vwkMkbQBb0I/f5h8bpH0l7TcBtwKzJC0Fo8BWM4aPJLuJmCxmf0ujRJPA1ZI2gI8AvRs4jUKWiHh1B8EQeGJGl0QBIUnDF0QBIUnDF0QBIUnDF0QBIUnDF0QBIUnDF0QBIUnDF0QBIXnv9GL3iNoWfjWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Optimizers\n", + "- Many variants of SGD are proposed and employed nowadays\n", + "- One of the most popular ones are Adam (Adaptive Moment Estimation)\n", + "- Doc: https://keras.io/optimizers/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
**Relative convergence speed of different optimizers**

" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, )))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " adam = optimizers.Adam(lr = 0.001) # use Adam optimizer\n", + " model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.9451 - accuracy: 0.3699 - val_loss: 1.2722 - val_accuracy: 0.6564\n", + "Epoch 2/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.9927 - accuracy: 0.6971 - val_loss: 0.8881 - val_accuracy: 0.6953\n", + "Epoch 3/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.7985 - accuracy: 0.7390 - val_loss: 0.7749 - val_accuracy: 0.7396\n", + "Epoch 4/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.7144 - accuracy: 0.7749 - val_loss: 0.6728 - val_accuracy: 0.7953\n", + "Epoch 5/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6378 - accuracy: 0.8063 - val_loss: 0.6361 - val_accuracy: 0.8051\n", + "Epoch 6/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5941 - accuracy: 0.8181 - val_loss: 0.6600 - val_accuracy: 0.7749\n", + "Epoch 7/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5871 - accuracy: 0.8126 - val_loss: 0.5563 - val_accuracy: 0.8247\n", + "Epoch 8/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5237 - accuracy: 0.8369 - val_loss: 0.5161 - val_accuracy: 0.8375\n", + "Epoch 9/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5078 - accuracy: 0.8445 - val_loss: 0.4913 - val_accuracy: 0.8520\n", + "Epoch 10/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4851 - accuracy: 0.8503 - val_loss: 0.4873 - val_accuracy: 0.8559\n", + "Epoch 11/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4705 - accuracy: 0.8582 - val_loss: 0.4657 - val_accuracy: 0.8611\n", + "Epoch 12/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4438 - accuracy: 0.8646 - val_loss: 0.4384 - val_accuracy: 0.8687\n", + "Epoch 13/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4352 - accuracy: 0.8696 - val_loss: 0.4446 - val_accuracy: 0.8697\n", + "Epoch 14/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4218 - accuracy: 0.8725 - val_loss: 0.4232 - val_accuracy: 0.8754\n", + "Epoch 15/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4173 - accuracy: 0.8728 - val_loss: 0.4331 - val_accuracy: 0.8682\n", + "Epoch 16/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4261 - accuracy: 0.8676 - val_loss: 0.4719 - val_accuracy: 0.8498\n", + "Epoch 17/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4320 - accuracy: 0.8639 - val_loss: 0.4157 - val_accuracy: 0.8710\n", + "Epoch 18/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3963 - accuracy: 0.8817 - val_loss: 0.4256 - val_accuracy: 0.8695\n", + "Epoch 19/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4051 - accuracy: 0.8776 - val_loss: 0.3956 - val_accuracy: 0.8751\n", + "Epoch 20/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4002 - accuracy: 0.8765 - val_loss: 0.4634 - val_accuracy: 0.8485\n", + "Epoch 21/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4011 - accuracy: 0.8743 - val_loss: 0.4200 - val_accuracy: 0.8699\n", + "Epoch 22/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3921 - accuracy: 0.8772 - val_loss: 0.3871 - val_accuracy: 0.8741\n", + "Epoch 23/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3995 - accuracy: 0.8748 - val_loss: 0.4094 - val_accuracy: 0.8657\n", + "Epoch 24/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3963 - accuracy: 0.8726 - val_loss: 0.3752 - val_accuracy: 0.8862\n", + "Epoch 25/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3758 - accuracy: 0.8848 - val_loss: 0.3759 - val_accuracy: 0.8874\n", + "Epoch 26/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3663 - accuracy: 0.8856 - val_loss: 0.3769 - val_accuracy: 0.8796\n", + "Epoch 27/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3658 - accuracy: 0.8855 - val_loss: 0.3628 - val_accuracy: 0.8877\n", + "Epoch 28/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3522 - accuracy: 0.8919 - val_loss: 0.3612 - val_accuracy: 0.8877\n", + "Epoch 29/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3452 - accuracy: 0.8934 - val_loss: 0.3527 - val_accuracy: 0.8901\n", + "Epoch 30/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3490 - accuracy: 0.8933 - val_loss: 0.3525 - val_accuracy: 0.8891\n", + "Epoch 31/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3247 - accuracy: 0.9033 - val_loss: 0.3124 - val_accuracy: 0.9029\n", + "Epoch 32/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3141 - accuracy: 0.9048 - val_loss: 0.3266 - val_accuracy: 0.9005\n", + "Epoch 33/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3184 - accuracy: 0.9043 - val_loss: 0.3415 - val_accuracy: 0.8966\n", + "Epoch 34/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3389 - accuracy: 0.8947 - val_loss: 0.3382 - val_accuracy: 0.8965\n", + "Epoch 35/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3442 - accuracy: 0.8932 - val_loss: 0.3452 - val_accuracy: 0.8854\n", + "Epoch 36/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3262 - accuracy: 0.8982 - val_loss: 0.3203 - val_accuracy: 0.8976\n", + "Epoch 37/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2983 - accuracy: 0.9115 - val_loss: 0.3118 - val_accuracy: 0.9008\n", + "Epoch 38/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3099 - accuracy: 0.9062 - val_loss: 0.3347 - val_accuracy: 0.8995\n", + "Epoch 39/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.3169 - accuracy: 0.9037 - val_loss: 0.3332 - val_accuracy: 0.8973\n", + "Epoch 40/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3227 - accuracy: 0.9010 - val_loss: 0.3340 - val_accuracy: 0.8931\n", + "Epoch 41/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3204 - accuracy: 0.9040 - val_loss: 0.3599 - val_accuracy: 0.8857\n", + "Epoch 42/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3347 - accuracy: 0.8958 - val_loss: 0.3392 - val_accuracy: 0.8965\n", + "Epoch 43/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3189 - accuracy: 0.9015 - val_loss: 0.3255 - val_accuracy: 0.9017\n", + "Epoch 44/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3138 - accuracy: 0.9043 - val_loss: 0.3216 - val_accuracy: 0.8975\n", + "Epoch 45/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2959 - accuracy: 0.9082 - val_loss: 0.3105 - val_accuracy: 0.9071\n", + "Epoch 46/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2991 - accuracy: 0.9071 - val_loss: 0.3113 - val_accuracy: 0.9020\n", + "Epoch 47/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2968 - accuracy: 0.9066 - val_loss: 0.3163 - val_accuracy: 0.8985\n", + "Epoch 48/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.3010 - accuracy: 0.9051 - val_loss: 0.3142 - val_accuracy: 0.9045\n", + "Epoch 49/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2798 - accuracy: 0.9125 - val_loss: 0.3023 - val_accuracy: 0.9099\n", + "Epoch 50/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2808 - accuracy: 0.9123 - val_loss: 0.3017 - val_accuracy: 0.9114\n", + "Epoch 51/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2937 - accuracy: 0.9098 - val_loss: 0.2922 - val_accuracy: 0.9113\n", + "Epoch 52/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2871 - accuracy: 0.9123 - val_loss: 0.2874 - val_accuracy: 0.9150\n", + "Epoch 53/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2772 - accuracy: 0.9163 - val_loss: 0.2916 - val_accuracy: 0.9104\n", + "Epoch 54/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2732 - accuracy: 0.9164 - val_loss: 0.2796 - val_accuracy: 0.9141\n", + "Epoch 55/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2533 - accuracy: 0.9233 - val_loss: 0.2639 - val_accuracy: 0.9226\n", + "Epoch 56/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2451 - accuracy: 0.9236 - val_loss: 0.2699 - val_accuracy: 0.9199\n", + "Epoch 57/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2696 - accuracy: 0.9182 - val_loss: 0.3003 - val_accuracy: 0.9076\n", + "Epoch 58/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2795 - accuracy: 0.9151 - val_loss: 0.2868 - val_accuracy: 0.9111\n", + "Epoch 59/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2628 - accuracy: 0.9177 - val_loss: 0.2779 - val_accuracy: 0.9128\n", + "Epoch 60/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2646 - accuracy: 0.9197 - val_loss: 0.2831 - val_accuracy: 0.9109\n", + "Epoch 61/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2584 - accuracy: 0.9196 - val_loss: 0.2931 - val_accuracy: 0.9089\n", + "Epoch 62/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2534 - accuracy: 0.9240 - val_loss: 0.3003 - val_accuracy: 0.9088\n", + "Epoch 63/100\n", + "434/434 [==============================] - 1s 2ms/step - loss: 0.2640 - accuracy: 0.9184 - val_loss: 0.2940 - val_accuracy: 0.9098\n", + "Epoch 64/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2601 - accuracy: 0.9168 - val_loss: 0.2795 - val_accuracy: 0.9128\n", + "Epoch 65/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2542 - accuracy: 0.9207 - val_loss: 0.2839 - val_accuracy: 0.9140\n", + "Epoch 66/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2460 - accuracy: 0.9278 - val_loss: 0.2706 - val_accuracy: 0.9140\n", + "Epoch 67/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2382 - accuracy: 0.9257 - val_loss: 0.2677 - val_accuracy: 0.9167\n", + "Epoch 68/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2400 - accuracy: 0.9259 - val_loss: 0.2707 - val_accuracy: 0.9165\n", + "Epoch 69/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2482 - accuracy: 0.9229 - val_loss: 0.2802 - val_accuracy: 0.9114\n", + "Epoch 70/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2472 - accuracy: 0.9236 - val_loss: 0.2725 - val_accuracy: 0.9195\n", + "Epoch 71/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2364 - accuracy: 0.9297 - val_loss: 0.2587 - val_accuracy: 0.9195\n", + "Epoch 72/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2323 - accuracy: 0.9277 - val_loss: 0.2551 - val_accuracy: 0.9229\n", + "Epoch 73/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2238 - accuracy: 0.9310 - val_loss: 0.2577 - val_accuracy: 0.9217\n", + "Epoch 74/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2425 - accuracy: 0.9268 - val_loss: 0.2779 - val_accuracy: 0.9123\n", + "Epoch 75/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2407 - accuracy: 0.9258 - val_loss: 0.2632 - val_accuracy: 0.9172\n", + "Epoch 76/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2524 - accuracy: 0.9225 - val_loss: 0.2725 - val_accuracy: 0.9128\n", + "Epoch 77/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2481 - accuracy: 0.9215 - val_loss: 0.2562 - val_accuracy: 0.9212\n", + "Epoch 78/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2317 - accuracy: 0.9291 - val_loss: 0.2423 - val_accuracy: 0.9254\n", + "Epoch 79/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2328 - accuracy: 0.9276 - val_loss: 0.2594 - val_accuracy: 0.9229\n", + "Epoch 80/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2310 - accuracy: 0.9278 - val_loss: 0.2780 - val_accuracy: 0.9153\n", + "Epoch 81/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2449 - accuracy: 0.9220 - val_loss: 0.2742 - val_accuracy: 0.9141\n", + "Epoch 82/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2324 - accuracy: 0.9246 - val_loss: 0.2633 - val_accuracy: 0.9185\n", + "Epoch 83/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2283 - accuracy: 0.9263 - val_loss: 0.2536 - val_accuracy: 0.9231\n", + "Epoch 84/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2252 - accuracy: 0.9281 - val_loss: 0.2624 - val_accuracy: 0.9194\n", + "Epoch 85/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2238 - accuracy: 0.9289 - val_loss: 0.2527 - val_accuracy: 0.9215\n", + "Epoch 86/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2262 - accuracy: 0.9286 - val_loss: 0.2575 - val_accuracy: 0.9205\n", + "Epoch 87/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2299 - accuracy: 0.9263 - val_loss: 0.2554 - val_accuracy: 0.9199\n", + "Epoch 88/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 0.2258 - accuracy: 0.9282 - val_loss: 0.2454 - val_accuracy: 0.9204\n", + "Epoch 89/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2156 - accuracy: 0.9313 - val_loss: 0.2489 - val_accuracy: 0.9231\n", + "Epoch 90/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2206 - accuracy: 0.9312 - val_loss: 0.2621 - val_accuracy: 0.9185\n", + "Epoch 91/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2215 - accuracy: 0.9310 - val_loss: 0.2751 - val_accuracy: 0.9172\n", + "Epoch 92/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2148 - accuracy: 0.9359 - val_loss: 0.2611 - val_accuracy: 0.9167\n", + "Epoch 93/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2145 - accuracy: 0.9308 - val_loss: 0.2714 - val_accuracy: 0.9158\n", + "Epoch 94/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2134 - accuracy: 0.9325 - val_loss: 0.2373 - val_accuracy: 0.9263\n", + "Epoch 95/100\n", + "434/434 [==============================] - 2s 5ms/step - loss: 0.2098 - accuracy: 0.9343 - val_loss: 0.2590 - val_accuracy: 0.9237\n", + "Epoch 96/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.1973 - accuracy: 0.9361 - val_loss: 0.2519 - val_accuracy: 0.9227\n", + "Epoch 97/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2035 - accuracy: 0.9341 - val_loss: 0.2390 - val_accuracy: 0.9269\n", + "Epoch 98/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2142 - accuracy: 0.9325 - val_loss: 0.2543 - val_accuracy: 0.9227\n", + "Epoch 99/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.2138 - accuracy: 0.9341 - val_loss: 0.2547 - val_accuracy: 0.9229\n", + "Epoch 100/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.2167 - accuracy: 0.9318 - val_loss: 0.2672 - val_accuracy: 0.9182\n" + ] + } + ], + "source": [ + "model = mlp_model()\n", + "history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXyU5b338c9vJpN9X8kCJEDYZdGAKLhVUFAU9aDFfaml7kt9etT2PLY+7WnPaa3HetRaa6nWahVxwRWsVUBUlFWWsAUIZCML2dfZruePe4CsECCQzOT3fr3yIjNzzz3XNQnfufK7r/u6xRiDUkop/2fr7QYopZTqGRroSikVIDTQlVIqQGigK6VUgNBAV0qpABHUWy+cmJhoMjMze+vllVLKL61du7bCGJPU2WO9FuiZmZmsWbOmt15eKaX8kojs7eoxLbkopVSA0EBXSqkAoYGulFIBotdq6J1xuVwUFhbS3Nzc200JGKGhoWRkZOBwOHq7KUqpk6xPBXphYSFRUVFkZmYiIr3dHL9njOHAgQMUFhaSlZXV281RSp1kfark0tzcTEJCgoZ5DxEREhIS9C8epfqJPhXogIZ5D9P3U6n+o0+VXJRSqjflFtdSVN3E90YmY7d1PRgyxlBU3cSmwhr2HGhgeHIUEwbFkhgZcgpb25EGeivV1dW89tpr3HXXXcf0vEsuuYTXXnuN2NjYLrd57LHHOPfcc5k+ffqJNlMp1cPKapv53dLtLFpXiDEwJi2aX1w+hkmZ8RhjKK1tYXNRDRuLathYWM2mwhoONDg77GdQfDhj06MZkxbD0KRI9tc0kVtSy47SegbFhzNtWCJnD0sgIy78pPRDeusCFzk5Oab9maJbt25l1KhRvdIegPz8fGbPns3mzZvb3O/xeLDb7b3UqhPX2++r8g/GGDYX1ZIYFUxqTBgATreXz7aV8vHm/WQnR3LjWZnEhB37jCm3x0uQvXcqvLXNLpZu3s/7G0soqmpERLAJBNlshDpshATZ+a6wGpfHy61TsxiREsUTn2ynpKaZ8RkxFFQ1UekLb5tAdnIUp2XEMD4jhtMyYslKiGB7aR3r91Wxfl81uSW17KtsPPT6CRHBDEuOZFd5AxX1LQDMP3cIP73k+P5PishaY0xOZ4/pCL2VRx55hF27djFhwgQcDgeRkZGkpqayYcMGcnNzueKKKygoKKC5uZn777+f+fPnA4eXMaivr2fWrFlMmzaNr776ivT0dBYvXkxYWBi33HILs2fPZu7cuWRmZnLzzTfz/vvv43K5ePPNNxk5ciTl5eVcd911HDhwgEmTJrFkyRLWrl1LYmJiL78zyl+s3VvJJ7mljE2LYXJWPCnRod16XmWDk5++vYklW/YDkBYTyui0GNburaSq0UVMmIPFG4p5fvlubpgymIvHpJAWG0ZSZAi2I5Qmappc3PeP9azMqyAzIZzhKVGkxYbh8nhpcXmJCXdwx3lDiY8I7vT5rUsbG4tq2FJcS1ltM5UNTqobXSAQbLcREmRjeEoU07ITmTIkgUanmw37qllfUM3KvAqcbi+D4sM5LSMGDHiNsdrg9tLs8nDxmAE8MD2bwQkRAMw6bQDPL9vFyrwKZoxKYXRaNGNSQhg9MInw4I6xOTkrnsmDoqCoAgacSa3Xwe7yBlJjQkmOCkFEMMaws6yeL/MqGJUa3a2fy7HqsyP0x9/fQm5xbY++5ui0aH5+2ZguH289Ql+2bBmXXnopmzdvPjTlr7Kykvj4eJqampg0aRLLly8nISGhTaAPGzaMNWvWMGHCBK655houv/xybrjhhg6B/tBDD3Hvvffy3HPPsW7dOl588UXuuece0tPTefTRR1myZAmzZs2ivLz8hANdR+inRpPTQ4PTTYvbi004NMo9EcXVTYQE2Ug4Sm3WGMMrq/by/97Pxe09/H86MdIKSqfbi8Nu47wRSVw2Lo2pwxKx24SaJhdr8iv56TubqWlyct/3sokMDWLN3io2F9UwNi2GuTkZnDMske2ldfxx2S4+2lTCwZcIsgkTBsYy94wMLh2XSlTo4dF7QWUjDy/4iBk1izgrrpYNjgl80DSWdfXxhARZI+OK+hZiwx38cs5YZp2WitPtZU1+JV/kVbC5qIbNRTVUNboAcNiF4SlRpMaEkRARTGyEA0Fwebw0Oj1sKKhma0nbzBiaFME52UnMmZDGhIGxxz9JYNl/w7LfQPoZkH0RDL0A4odAeAK4m2H93+HLP0BNAYQnwll3w6QfQGjM8b3eEegI/ThNnjy5zfztp59+mnfeeQeAgoICdu7cSUJCQpvnZGVlMWHCBADOOOMM8vPzO933VVdddWibt99+G4CVK1ce2v/MmTOJi4vr0f6ok8PjNbz+9pskffc8W7yZfOo9gy1mMLPGpvLYZaOPK9h3ldfzzGd5LN5QRKjDzkMXjeCWszM7PVDX7PLw2OLNLFxTyPdGJvPE1ePZV9nImvxKdpbWE2QXHHYbtU0uPs0t5e11RQTbbbi8Xg6O54anRPK32yYzOi0aqvK51bkEKt+FumDYkAX7shhz+s08c93pFFY1sn1/HcXVTRRWN/FpbimPvL2JX7y/hUmZ8aTHhjE0uIqkdX/gZbMMe5Bgs2cw8sCXzANIHw9XvwzxWWwtqeUni77jzlfXMX5gLLvK6qlvceOwCznJhv+J/4Cc4M9xDpxG5Ll3ETzwdPB6oXwbFH4LwREQkwHR6RCRTUWLsHpPJVGhDsYNjCHaIVCwCra+BouXQkQinPcwDDkfuhvuGxfCsl9D1nngbLCCfdmvrceCQsHmAGcdZEyG8/4dchfDvx6HL35vBb7XDcYLIy6xXjsq5Zh/H7qrzwb6kUbSp0pERMSh75ctW8ann37K119/TXh4OOeff36n87tDQg6PpOx2O01NTZ3u++B2drsdt9sNWKMs5V8qG5z86aUF3F/2GDgczPCu40HeojokjRu2Pcj0HeU8OGM41585mLDgtsdhaptdrNtbxdq9Vu21vsVNkE0wwPp9VYQE2fnBtCzyyur55Qe5vLu+iB9fNJxx6TEkRIZQ3ejk1W/28bev8ymtbeHe7w3jwenDsdmE+IhgJgzseJDe6fbyZV4FX+2qIMxhZyBlTM1/mpSQFuyfCrTUQdFaQCDrHCuwyrfB9o+tYLttCRlxmW0O6j0ycyQbCqpZtLaQTUU1uIo38ZD7caKliYaxNxA7/f9A7CCo3AM7P4HPfw0vTodrX2fUwEm8c9dU/rR8F+9/V8Jl41O5aEgY0yrewPHt8+Csh6xzIf9D2PkmpIyFuhJoPNDpzyPREcGs8Hjweqy+OOusB+zBkHkOlG+HV66AwdNg8g8haSTEZ0FQF38B7fsGFt9tbX/9IggKhoYK2LcKagqtEXlLLZx2DWROsz4kTr8JitfD2pfA1WQFvqsB1r0M3/0DptwFU+87KaP3PhvovSEqKoq6urpOH6upqSEuLo7w8HC2bdvGqlWrevz1p02bxsKFC3n44Yf55JNPqKqq6vHXUMfB4wZPC56gcJZu2c8XO8txewxeA7JzKf/p/C1NUYOJveNjQGDnUmI/fZx3kl/k7ojf86sPt/I//9zBxWMGcNGYAeQfaOCzbWWs3VuFx2uwCYxKjSY+IhiP1+D2Gn547hB+eM4QEiNDMMbw4aYSfvFeLrf+dTUASVEh1De7aXJ5mDYskSevmcDUYb7SnNcLJeutEC5aB2IDuwPC4gg+6x4uGDmaC0Ymw/5N8Mpt4G6B5JHWc+0hcMHPYPy1EDvw8HtQthX+Ogv+NgduWwpRA6xQW/YbxBHOxHMeYuKVOdaHwSu/xIRH4L3xU2KTRxzeR3wWnPkjGPo9ePVqeHk2XPokjqEXcM/5Q7nnrCRY9Uf4+I/QUgOj58D5j0LyKGiqtsIwdzEMGGeF56Ap4HFBbaEVrg0V0Fhphb09CEKira/kUTDsQgiJsvq69mX44gl482arXWKDyAEQ6ts+LA4ikyEyxQrlmAz4/itWmIM1yh81+8i/M2kTra/WDuyCz35lvXZTJcz+n+P6dTwSDfRWEhISmDp1KmPHjiUsLIyUlMN/Gs2cOZPnn3+ecePGMWLECKZMmdLjr//zn/+ca6+9ljfeeIPzzjuP1NRUoqKievx11GFltc3sLKsnOMiGw24jLSaU5IMHEutKYd3LeFcvwDRU8K59Bv9VfynOsGSGO8q4yrOUqz0f4kwaQ+xtiyE83nrexBsgagCOv/8bfxq6mG8ueJR31hXx0eYS3l5fhA0v05PreHJsFUMyhzDktLOJiOp6tCYizB6XxgUjkvmuoJrc4hoadn/LMOcWzo6vI66lGD6rgM98T6gthvr9VlCljAWb3fpQyl9pheIZt8Kw6fDOHRASCbd8AEkjunx9wArF69+Cv10Or1wJCcNg63tWEHqc8OKFVhmjcC2ExyM3v4c9LrPzfSVmw+3/gtevhcW+KcL2EKudrkYYOdsqTaSOO/ycsFiYcqf11aFtI4/c9taCQuDM+dYounwrVOy0vmqLrQ+R5lqoK4aS76ChDCKS4LqFh3+2JyJhKFz9V2t0HtHp9SlOWJ89KNoftbS0YLfbCQoK4uuvv+bOO+9kw4YNJ7zfvvK+PrF0O6vzK3n0klGdlgNOtRU7ynn2tUXkuNYxwlbAcCkkXurAFoQjOIRoZyl242aFdxz7vXFcFbQSsTuwpU1ECr4GWxCMuRIu/X3nfz4v+SmsehaufQOyzsH13Zs0rn6VqMpN2NytSnFig+TRkJEDA6fAoDMhZpAVcCLgbITaIuvP+z0rYPNbUL3Pem5INMRlWiNKfDXh0BjrwF32jLZB1Fhp1X9X/wWMBxKy4cZ32o7Ej2b3cmt0bQuCaQ9YB/+MF1a/CF/9r1UzvmkxRKcdfV9uJ+xdaZViqvKtMD/jFhhwWvfbczJ5PWCMNdrvQ450UFQDvQ/ZuXMn11xzDV6vl+DgYJ577jkmTZp0wvvtC+/rV7squO7P3xw6GPf9nIH8+8yRXU5XO1Zer+Ff28rY9MVi9odkEZmQTlpsKPERwcSEOYgJc5AeF8YA3+j7jeXfwb8eZ57dGtY2R2RQH5NNuYmlrKae6vom9ntjWJt4OcNHTWTG6BTGR1Rasx2K1sJpc63wiRrQdaPcLfDnC63wNV6rnps4wio5pI6zQrxuv7W/ojXW6Lalpu0+bEHWQbWDxG7NsBj7bzBshvXn/7HO3Cjban0onHmH9fxjVZFnfWhEthtluq051l3Wo1WPOOFAF5GZwB8AO/CiMea/2j0eBywAhgLNwG3GmM0ddtSKBvqpc6Lva32Lmx2ldeSV1rOrvB4EokMdRIc5uHh0yuESRRcaWtzM/MMKgmw2Fv7oLP60fBd//SofuwhnDonnvOFJXDAymaFJkW2eV9PooqS2iREpUV1ONyurbebDTSW8/FU+M6oX8jPHazQQxnPeq/iz8yKctD0JJjLEzs3hX3Fb4wJipQHP5DsJvuAnVt20lUanm2aX98Q/cMq3wz+uhYxJ1gfAoCldB7DXa5UBCr6BhgPgdVk14uAIiBkIMemQNAoiEjp/vuoXTijQRcQO7ABmAIXAauBaY0xuq21+B9QbYx4XkZHAs8aYC4+0Xw30U+dE3tcNudsJeeMa9ntjWOkdyzeMZwcDcXqs35tB8eEsuvMskqO6DvWfL97M31bt5a1bxnB6ghviBrOzopmFawr4fHs5eWX1AGQlRjB9VDJZiZF8urWUL3aW4/IY5p87hEdnjTwU6g1Vpaxd8jL/KM/i42JrtsWPk1ZzX93/4B1+CTa8sGMJnthMKk+/l5KMS6h0BVFeUsDY9T9nVM0XFEeNI+W657Cn9pE/75XqphOdhz4ZyDPG7Pbt7HVgDpDbapvRwG8AjDHbRCRTRFKMMaUn1nTVm3aX11O28H7Ol0IGxQoX1L0KvAopY3FN+hHrY6Zzyysbuekv3/LGj87q9JTwVTtKKPlmER+mrGf0wq+sA2hiJzsuk5+ljOFnZ09lf3wOn1TE8+m2Cl7+ai9Oj5f02DBunZpFXbOLF1bsprrRya/njCb/k2dIXv0E51LPVGzkDbyImBHTGPDl0zDkfGzXvGT9yZ/3KfZPHiPps4dICnkcRl8O25dYU9ku+k/SptwFtj632KhSJ6Q7gZ4OFLS6XQic2W6b74CrgJUiMhkYDGQAbQJdROYD8wEGDRp0nE1Wp0JFfQt//vOz/IavqZryMHEzf2pNDdv5CXz7Zxwf3MvkiCS+TB/Bd0X1bHsqjPGX30vomEsBa471c59t48JVt/NC8DaMMwkm3W7NuqjcZc0sKNkAW99jAHBT5ABuOutu6ufeSHFTENnJkYdOl06KCuWtf33FntybyfbuYZ19HGHTf8qoui8ZsXoBrFwCaafD9189XL8dNh2GXmhNrVv7V9j4pjWT46oXrBkbSgWg7pRcrgYuNsbc7rt9IzDZGHNvq22isWrsE4FNwEjgdmPMd13tV0sup86R3tf9Nc1sL61jZ2kd+yob8RqDTYTNuwt5rvpOYuKTCLt75eE5uGAd+d+9DNYsgLoSqusbaa4qJo56/j3mt5jUiXyZV8FNLa9xf9Db1H7vv4ie+sPOZwtU74P8L2Hj69Y+Q2Ph7Htg6oOHt3c2UPn0+TjqCvhs+P/l4qt/ROjB9TQaK2Hr+zDqsiNPLXM7rbnYuj688nMnWnIpBFrPa8oAiltvYIypBW71vZgAe3xfAS0yMpL6+nqKi4u57777WLRoUYdtzj//fJ544glycjp9/wF46qmnmD9/PuHhVj24O8vxnqgmp4dffpjLa9/sw4aXMZLPmSH51Es0JcRzkywnRaqQf3uzbZiDFYpDL7C+gFjg2807CHvvMh5r+DU37Pktl8cd4L4D78K4a4k+t5O5wwfFDoIJg2DCtdYsjy9+b518sfcruPola1reu3cS35CH97o3mDPiorbPD4+HM24+eofb90GpANSdQF8NZItIFlAEzAOua72BiMQCjcYYJ3A7sMIX8v1CWlpap2HeXU899RQ33HDDoUD/6KOPjm9HxlhTxzxO8LRYU9zazd6gNJfqZc/wTd5+Jja5uGkADGv8jiCnb7rcwT/YDNa0toyuP4hamzx2OMS/Dn+5mI9T/wLVe62wvuR33W9/xhlw7Wuw7hX44AF4cYb1oZG7GGb8Elv7MFdKtXHUQDfGuEXkHmAp1rTFBcaYLSJyh+/x54FRwN9ExIN1sPQHJ7HNJ83DDz/M4MGDD13g4he/+AUiwooVK6iqqsLlcvGrX/2KOXPmtHle61Uam5qauPXWW8nNzWXUqFFt1nK58847Wb16NU1NTcydO5fHH3+cp59+muLiYi644AISExP5/PPPD63emJiYyJNPPsmCBQsAuP3223nggQfIz8/vfJle5wFoKG/TttraKkprm7nl159yOtv4rfPXBBkP4ySSuOhgQm1hMHo2DLkABk621s6oKbRKGWOuOLY3MG0iXPYUvHun9WHyg0+s062P1ek3WifLLLwRvnkexs2Ds+896tOU6u/67olFHz9irTXRkwacBrP+q8uH169fzwMPPMDy5csBGD16NEuWLCE2Npbo6GgqKiqYMmUKO3fuREQOlVxaB/qTTz7J5s2bWbBgARs3buT0009n1apV5OTkHFp+1+PxcOGFF/L0009z2mmnMTgzi5Vfr2JQmnWSysFA37t3L7fccgurVq3CGMOZZ57J3//+d+Li4jou0zv7Em6YPgFCo3GHJ7G70kUctSRRxcZ9NWzasp5rCn9NlSOFv2c/xY0zzyEp6iSdALLqj9YZg+OuObH9HNgFue/ClLvB0b11vZUKdLp8bjdNnDiRsrIyiouLKS8vJy4ujtTUVB588EFWrFiBzWajqKiI0tJSBgzo/AzBFStWcN999wEwbtw4xo07vB7FwoULeeGFF3C73ZSUlJCbm0tm9ig8Xi97KhpwO+rbhOzKlSu58sorD636eNVVV/HFF19w+eWXd1ymd+dWmD4eE5VKQY2XFmMnMnkgOCNxmHKuL/gFpE4g+Ya3+PHxnB14LDpbb+N4JAyFcx7qmX0p1Q/03UA/wkj6ZJo7dy6LFi1i//79zJs3j1dffZXy8nLWrl2Lw+EgMzOz02VzDzEGcTVb9exWMyr27NnDE088werVq4mLi+OWW26hqamJsroWQEiJDqXF7aWgohaXx8vO0jrK65ppaHZR0+QiItiOy+OltsnF7vJ6xO6guLqJyJAgRGy4m+ogOIoDLTbqmltIiw0jzGEHR6K1ENDk+XDhY8dXAlFK+QU9s6KdefPm8frrr7No0SLmzp1LTU0NycnJOBwOPv/8c/bu3dv1k1vqOOf0Ebz68p9xVuzhy2/XsnHjRrxeQ21tLREREcTExFBaWsrHH39Mi9tLo9NNTHQUIZ4mRobXMsq2jyAxhAXbmTRlKh++/x7bCstZs6uERW+9zbjx4xhgygjCTVVDC/kHGqipqwXjoVJiKKlpJjrUQULrU9YdodbBSQ1zpQJa3x2h95IxY8ZQV1dHeno6qampXH/99Vx22WXk5OQwYcIERo5st1SnuwVPSz3G44IDefzg+qu59aHHyTnvYsaOHs1pE05nb2UDM84dz8SJExkzZgxDsrKYOmkCNFSQaqvhjluvZ9bFM0hNTuTztxcgxktGbBgTsqeRd/tt3HrFRRivhztvuJLLxyWSX7gfG15Gh1bSEJFBlK2FBuwUNTkIsgvpcWHHf6ktpZTf6rsHRfsyY6C2ENNQcXDBUoyBSlss7vAUIkODCXbVElRXgMFGvm0g9S6IDAkiOSqECHcVUluE0wQRLL6V9IJCrQWY3M3WMqmJIyDYd1UYrwdKt/gW4k+2Djg2HrCWVHWEW8uORqfjCU8CDPZ2p7T7zfuqlDoqPSjak7weqNoDLXXUSjS13mDsQSHERUcRHxp6eGQcEg/BoUjFdrJC66mMSKK0toXdFQ2MtJXhIZR8WzojksOxeV3WKetis4K9pgCaqw8HenO1tX51fNbhsklksrV9TYH1b3i873qTOjJXqr/SQD8W7hZM5W5wN1NkEqmXGFLjQokOc3Re4ggOh7B4pPEACckDiAuPoqGuiuAGF/u8sSTHhmCzB7U9Jd4eZIV2UzVEpVoHVhsqrKAPbru8LBGJ1rUSMda62Uqpfq3PpYAxpu/Vf40X6sswdaV4gb3eAQSFxZAdF9qhvNFBZIp1/cCGMmzRaUR5qsEWRGryAILs9s6fExprjbxdTYDxlVQyOl+HJDT6yE3XC08r1W/0qUAPDQ3lwIEDJCQk9I1QN8Yqd9SWgKeFeiIoNvEkxUUTF97FqLw9R6h1dZeGCus0/OYaiEzGEXSEt/5goDdXWxc5EBuEx3W9fZfNNxw4cIDQUD0pR6n+oE8FekZGBoWFhZSXlx9945PJeMHZYK2d7XVjbA4qveE4BRIjXZTWlnNMC717nNalxvaVW5cTiw4C21GWuqmvBW+lVTt3RED1zuPqSmhoKBkZGcf1XKWUf+lTge5wOMjKyurdRng98OJ0KF4Hg6eyZsD3ufHLRAbE2vjbbeMYGB9+fPv9+y8h758wfCZc98bRt1+zCj5+wPr+R19Aqs5SUUodmZ5Y1N7qv0DxOmpn/i93B/+KucsTGZEay6I7zjr+MAc472HrAOaUu7q3/cjZVqklY7J1QWGllDqKPjVC73V1pfDZr6hIPpsZS1NocJbyk4tHMP/cITjsJ/jZN3ASPFLQ/UWmIpPgij/q1XWUUt2mgd6K+ed/4HU2cnXBvzEoI5LfXz2OYck9eLr8sa4YOH5ez722UirgaaD7uHetIGjjQp5zX8G48Wfw27njCAnqYlqhUkr1QRroAK4mDrxxN05vEp6zf8xTs8b1jWmTSil1DPSgKND40f8lxbmP5SP+gwcuGa9hrpTySxrou5cTvv7PvOS+iLMvmtvbrVFKqePWvwO9uQbevYtCWzofDriDIUmRR3+OUkr1Uf070Jf+FFNXwt1NP2L26UN7uzVKKXVC+m+gez2w6S02JF7GFsnmsvFpvd0ipZQ6If0u0Lfvr6OywQlV+eBu4oPKdM4fkUR860u2KaWUH+pX0xbX7avimue/JiIkiGcnFDAN+LYxlTsm6uJVSin/129G6NWNTu59bT0DYkIZMSCKNatX4jXC/pDBXDgqubebp5RSJ6xfjNCNMfxk0UbK6ppZdMfZjMuIoehPT7Bv/wAuzxlGqEPPCFVK+b9+Eeh//TKff+aW8h+XjmL8wFgAMpx7MKMm8bNLdPErpVRg6FbJRURmish2EckTkUc6eTxGRN4Xke9EZIuI3NrzTT0+NVWVRHzyY24bUsMPpvnWWnc2QOVuJGUMNpueFaqUCgxHHaGLiB14FpgBFAKrReQ9Y0xuq83uBnKNMZeJSBKwXUReNcY4T0qru8vtxPXadXzf9jWVoZGIXGfdX74NMJA8ulebp5RSPak7I/TJQJ4xZrcvoF8H5rTbxgBRYi2CEglUAu4ebemx8nrh3TtJLP+afFKJK15hzT0HKPV9FqWM6b32KaVUD+tOoKcDBa1uF/rua+0ZYBRQDGwC7jfGeNvvSETmi8gaEVlz0q8b+sl/wOZFPGO/kU8H/BBprobC1dZjZbngCIe4Xr7cnVJK9aDuBHpnRWbT7vbFwAYgDZgAPCMi0R2eZMwLxpgcY0xOUlLSMTe226r2wqpnqR59I080zCR+3MUgdtix1Hq8dDMkjQRbv5m1qZTqB7qTaIXAwFa3M7BG4q3dCrxtLHnAHmBkzzTxOJRvA2B52PcA4awxQ2HQFNj5T+vx0lxI0fq5UiqwdCfQVwPZIpIlIsHAPOC9dtvsAy4EEJEUYASwuycbekzKtwPwYUkkw1MiSY0Jg+yLoHQTFG+AxgpIGdtrzVNKqZPhqIFujHED9wBLga3AQmPMFhG5Q0Tu8G32S+BsEdkE/At42BhTcbIafVQVOzDhSSzb6+G84b7SzvCLrX+/fMr6V2e4KKUCTLdOLDLGfAR81O6+51t9Xwxc1LNNOwEVO6iOyMRZ6eW84b7T+pNGQswgyF1s3dYZLkqpABN4RwWNgfLt5HnTCHPYycmMs+4XgeEXgfFCRDJEJPZuO5VSqocFXqA3HoDmatrbSm8AAA+ISURBVL6pS2DKkPi267Rk+8ouOjpXSgWgwAt03wHRb+uTOHd4u6mRWedASAykn94LDVNKqZMr8BbnqtgBwC5vGj8b2q6s4giDu76CsPheaJhSSp1cARnoTgmlMWwA2cmdXPQ5Ri9moZQKTIFXcqnYQT5pTMpK1JUUlVL9SsAFurt0G7nuAZw5JKG3m6KUUqdUYAW6s5GgukJ2edM4M0vr5Eqp/iWwAv3ATgCKHIMYldphbTCllApogRXoFVagR6SNwq71c6VUPxNQgd5QtAWPEQZln9bbTVFKqVMuoKYt1hTkUmaSmTQstbebopRSp1xAjdDtB3awRzIYm6b1c6VU/xM4ge71ENe8j6boIQTZA6dbSinVXQGTfDXFOwnGTVjqqN5uilJK9YqACfR9uasASB6mC28ppfqngAn0pr3rcBo7Q8ZO7u2mKKVUrwiYQA8/sIl9QYMJD4/o7aYopVSvCIhAN14vGc07qIzW64QqpfqvgAj0or07iKUe0ib2dlOUUqrXBESgl2y1DogmZGv9XCnVfwVEoLfsW4vL2Bk0Kqe3m6KUUr0mIAI9snIzhY7BOELCe7spSinVa/w+0F1uD4NbdlIdowdElVL9m98H+p5d24iTOmzpekBUKdW/+X2g79/2DQDJI87s5ZYopVTv6lagi8hMEdkuInki8kgnj/9ERDb4vjaLiEdETsk14NyF63BjY0D2Gafi5ZRSqs86aqCLiB14FpgFjAauFZE2BWtjzO+MMROMMROAR4HlxpjKk9Hg9qKrtlDsyESC9YCoUqp/684IfTKQZ4zZbYxxAq8Dc46w/bXAP3qicUfT2OIiy7WT2rgxp+LllFKqT+tOoKcDBa1uF/ru60BEwoGZwFtdPD5fRNaIyJry8vJjbWsHeXnbSZA67HpAVCmluhXonV1t2XSx7WXAl12VW4wxLxhjcowxOUlJSd1tY5dsJeusBqZNOOF9KaWUv+tOoBcCA1vdzgCKu9h2Hqeo3AIQUbaeFuPAk6IXhVZKqe4E+mogW0SyRCQYK7Tfa7+RiMQA5wGLe7aJXYupWMdGk4UjJOxUvaRSSvVZRw10Y4wbuAdYCmwFFhpjtojIHSJyR6tNrwQ+McY0nJymtuNqJqZ6C2u9wwnWa4gqpRRB3dnIGPMR8FG7+55vd/sl4KWeathRlXyH3etinTeby4M00JVSyn+TsMA6Q3SddzjBGuhKKeXfgV4TNpAKYnBoyUUppfw00I2Bgm8piR4HQIiO0JVSyk8DvSofGsooirCmK+pBUaWU8tdAL/gWgL0RYwmyCTZbZ+c+KaVU/+Kngf4NBEdRHJypB0SVUsrHP9Ow4FvIyKHFIxroSinl439p2FwLZVtg4Jm4PF6tnyullI//pWHRWjBeGDgZp9urI3SllPLxvzQMjoCRs30lFw10pZQ6qFun/vcpAyfDvFcBrBG6llyUUgrwxxF6K1pyUUqpw/w6DXWErpRSh/l1Gjq1hq6UUof4dRpqyUUppQ7z6zTUkotSSh3m12no0pKLUkod4tdp2KIlF6WUOsSv09Dp8epa6Eop5ePXaag1dKWUOsyv09Dp9url55RSysev01DnoSul1GF+m4Yer8HjNRroSinl47dp6HR7ATTQlVLKx2/T0OnxBbrW0JVSCuhmoIvITBHZLiJ5IvJIF9ucLyIbRGSLiCzv2WZ2dHCErtMWlVLKctT10EXEDjwLzAAKgdUi8p4xJrfVNrHAc8BMY8w+EUk+WQ0+6NAIXQNdKaWA7o3QJwN5xpjdxhgn8Dowp9021wFvG2P2ARhjynq2mR1pDV0ppdrqThqmAwWtbhf67mttOBAnIstEZK2I3NRTDezKoUC320/2SymllF/oziXopJP7TCf7OQO4EAgDvhaRVcaYHW12JDIfmA8waNCgY29tKwcD3WHvrHlKKdX/dGeEXggMbHU7AyjuZJslxpgGY0wFsAIY335HxpgXjDE5xpicpKSk420zAE6PB9CSi1JKHdSdNFwNZItIlogEA/OA99ptsxg4R0SCRCQcOBPY2rNNbatFa+hKKdXGUUsuxhi3iNwDLAXswAJjzBYRucP3+PPGmK0isgTYCHiBF40xm09mw3XaolJKtdWdGjrGmI+Aj9rd93y7278DftdzTTsyl8cq4+tBUaWUsvjt8FanLSqlVFt+m4Z6UFQppdry2zTUEbpSSrXlt2l4+MQiv+2CUkr1KL9NwxYNdKWUasNv01AX51JKqbb8Ng21hq6UUm35bRo63V7sNsFu07VclFIK/DjQXR6v1s+VUqoVv01Ep9ur5RallGrFbxPR6dFAV0qp1vw2EVvcWnJRSqnW/DYRnW6vrrSolFKt+G0iOt1eHDpCV0qpQ/w2EbWGrpRSbfltIuosF6WUastvE9GpB0WVUqoNv01El5ZclFKqDb9NxBYtuSilVBt+m4h6UFQppdry20R0ur2EaA1dKaUO8dtE1FkuSinVlt8mopZclFKqLb9NRD1TVCml2vLbRNSSi1JKteWXiej1GtxeoycWKaVUK91KRBGZKSLbRSRPRB7p5PHzRaRGRDb4vh7r+aYepheIVkqpjoKOtoGI2IFngRlAIbBaRN4zxuS22/QLY8zsk9DGDg4Gui6fq5RSh3UnEScDecaY3cYYJ/A6MOfkNuvInG4doSulVHvdScR0oKDV7ULffe2dJSLficjHIjKmsx2JyHwRWSMia8rLy4+juZZDga41dKWUOqQ7iSid3Gfa3V4HDDbGjAf+F3i3sx0ZY14wxuQYY3KSkpKOraWt6AhdKaU66k4iFgIDW93OAIpbb2CMqTXG1Pu+/whwiEhij7WyHT0oqpRSHXUnEVcD2SKSJSLBwDzgvdYbiMgAERHf95N9+z3Q04096OAIXU8sUkqpw446y8UY4xaRe4ClgB1YYIzZIiJ3+B5/HpgL3CkibqAJmGeMaV+W6TEtWnJRSqkOjhrocKiM8lG7+55v9f0zwDM927SuHRyh62qLSil1mF8moktr6Eop1YFfJqLOclFKqY78MhF1lotSSnXkl4moJxYppVRHfpmIWnJRSqmO/DIRW7TkopRSHfhlImrJRSmlOvLLRNSSi1JKdeSXiagjdKWU6sgvE9Hl8WITCNJAV0qpQ/wyEZ0evUC0Ukq155ep6HR7tdyilFLt+GUqtri9BAfZe7sZSinVp/hloDvdXr1AtFJKteOXqag1dKWU6sgvU9Hp9uCwd3apU6WU6r/8NNB1hK6UUu35ZSo6PTrLRSml2vPLVHS5jY7QlVKqHb9MxRaPTltUSqn2/DLQ9cQipZTqyC9T0en26Dx0pZRqxy9TUeehK6VUR36ZilpyUUqpjvwyFZ1uL44gPbFIKaVa89tAD7brLBellGqtW4EuIjNFZLuI5InII0fYbpKIeERkbs81sSOtoSulVEdHTUURsQPPArOA0cC1IjK6i+3+G1ja041szRiDy6MnFimlVHvdScXJQJ4xZrcxxgm8DszpZLt7gbeAsh5sXwdOj3U9UZ22qJRSbXUnFdOBgla3C333HSIi6cCVwPNH2pGIzBeRNSKypry8/FjbCugFopVSqivdScXOppOYdrefAh42xniOtCNjzAvGmBxjTE5SUlJ329jGoUDXEbpSSrUR1I1tCoGBrW5nAMXttskBXhcRgETgEhFxG2Pe7ZFWtnKw5KKBrpRSbXUn0FcD2SKSBRQB84DrWm9gjMk6+L2IvAR8cDLCHLTkopRSXTlqoBtj3CJyD9bsFTuwwBizRUTu8D1+xLp5T9OSi1JKda47I3SMMR8BH7W7r9MgN8bccuLN6lqLL9AdOkJXSqk2/C4VddqiUkp1zu9S0aUlF6WU6pTfpaLOclFKqc75XSrqLBellOqc36WiznJRSqnO+V0qJkeHcMlpA4gNd/R2U5RSqk/p1rTFvuSMwfGcMTi+t5uhlFJ9jt+N0JVSSnVOA10ppQKEBrpSSgUIDXSllAoQGuhKKRUgNNCVUipAaKArpVSA0EBXSqkAIca0vzzoKXphkXJg73E+PRGo6MHm+Iv+2O/+2Gfon/3uj32GY+/3YGNMpxdl7rVAPxEissYYk9Pb7TjV+mO/+2OfoX/2uz/2GXq231pyUUqpAKGBrpRSAcJfA/2F3m5AL+mP/e6PfYb+2e/+2GfowX77ZQ1dKaVUR/46QldKKdWOBrpSSgUIvwt0EZkpIttFJE9EHunt9pwMIjJQRD4Xka0iskVE7vfdHy8i/xSRnb5/43q7rT1NROwisl5EPvDd7g99jhWRRSKyzfczP6uf9PtB3+/3ZhH5h4iEBlq/RWSBiJSJyOZW93XZRxF51Jdt20Xk4mN9Pb8KdBGxA88Cs4DRwLUiMrp3W3VSuIGHjDGjgCnA3b5+PgL8yxiTDfzLdzvQ3A9sbXW7P/T5D8ASY8xIYDxW/wO63yKSDtwH5BhjxgJ2YB6B1++XgJnt7uu0j77/4/OAMb7nPOfLvG7zq0AHJgN5xpjdxhgn8Dowp5fb1OOMMSXGmHW+7+uw/oOnY/X1Zd9mLwNX9E4LTw4RyQAuBV5sdXeg9zkaOBf4C4AxxmmMqSbA++0TBISJSBAQDhQTYP02xqwAKtvd3VUf5wCvG2NajDF7gDyszOs2fwv0dKCg1e1C330BS0QygYnAN0CKMaYErNAHknuvZSfFU8C/A95W9wV6n4cA5cBffaWmF0UkggDvtzGmCHgC2AeUADXGmE8I8H77dNXHE843fwt06eS+gJ13KSKRwFvAA8aY2t5uz8kkIrOBMmPM2t5uyykWBJwO/NEYMxFowP/LDEflqxvPAbKANCBCRG7o3Vb1uhPON38L9EJgYKvbGVh/pgUcEXFghfmrxpi3fXeXikiq7/FUoKy32ncSTAUuF5F8rFLa90Tk7wR2n8H6nS40xnzju70IK+ADvd/TgT3GmHJjjAt4GzibwO83dN3HE843fwv01UC2iGSJSDDWAYT3erlNPU5EBKumutUY82Srh94DbvZ9fzOw+FS37WQxxjxqjMkwxmRi/Vw/M8bcQAD3GcAYsx8oEJERvrsuBHIJ8H5jlVqmiEi47/f9QqxjRYHeb+i6j+8B80QkRESygGzg22PaszHGr76AS4AdwC7gZ73dnpPUx2lYf2ptBDb4vi4BErCOiu/0/Rvf2209Sf0/H/jA933A9xmYAKzx/bzfBeL6Sb8fB7YBm4FXgJBA6zfwD6xjBC6sEfgPjtRH4Ge+bNsOzDrW19NT/5VSKkD4W8lFKaVUFzTQlVIqQGigK6VUgNBAV0qpAKGBrpRSAUIDXSmlAoQGulJKBYj/D1U/v3JaesP4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Training and validation accuracy improve instantaneously, but reach plateau after around 50 epochs" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 1ms/step - loss: 0.2678 - accuracy: 0.9173\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.9172999858856201\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[9.68367347e-01 0.00000000e+00 1.02040816e-03 3.06122449e-03\n", + " 0.00000000e+00 9.18367347e-03 1.02040816e-02 4.08163265e-03\n", + " 3.06122449e-03 1.02040816e-03]\n", + " [0.00000000e+00 9.77092511e-01 1.76211454e-03 5.28634361e-03\n", + " 1.76211454e-03 0.00000000e+00 5.28634361e-03 0.00000000e+00\n", + " 7.92951542e-03 8.81057269e-04]\n", + " [1.16279070e-02 6.78294574e-03 9.08914729e-01 2.90697674e-02\n", + " 4.84496124e-03 2.90697674e-03 1.16279070e-02 7.75193798e-03\n", + " 1.55038760e-02 9.68992248e-04]\n", + " [2.97029703e-03 9.90099010e-04 1.78217822e-02 9.09900990e-01\n", + " 0.00000000e+00 2.77227723e-02 9.90099010e-04 1.28712871e-02\n", + " 2.27722772e-02 3.96039604e-03]\n", + " [3.05498982e-03 3.05498982e-03 6.10997963e-03 0.00000000e+00\n", + " 9.32790224e-01 3.05498982e-03 8.14663951e-03 3.05498982e-03\n", + " 7.12830957e-03 3.36048880e-02]\n", + " [1.56950673e-02 2.24215247e-03 4.48430493e-03 4.70852018e-02\n", + " 8.96860987e-03 8.72197309e-01 1.56950673e-02 6.72645740e-03\n", + " 2.01793722e-02 6.72645740e-03]\n", + " [1.56576200e-02 3.13152401e-03 1.14822547e-02 1.04384134e-03\n", + " 1.46137787e-02 1.46137787e-02 9.29018789e-01 0.00000000e+00\n", + " 9.39457203e-03 1.04384134e-03]\n", + " [0.00000000e+00 9.72762646e-03 1.65369650e-02 1.07003891e-02\n", + " 3.89105058e-03 9.72762646e-04 0.00000000e+00 9.37743191e-01\n", + " 9.72762646e-04 1.94552529e-02]\n", + " [1.23203285e-02 5.13347023e-03 1.02669405e-02 2.66940452e-02\n", + " 9.24024641e-03 2.97741273e-02 1.33470226e-02 8.21355236e-03\n", + " 8.51129363e-01 3.38809035e-02]\n", + " [4.95540139e-03 7.92864222e-03 0.00000000e+00 1.48662042e-02\n", + " 5.25272547e-02 1.78394450e-02 9.91080278e-04 1.88305253e-02\n", + " 8.91972250e-03 8.73141724e-01]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3xUVdqAnwNBQwfpSQQSCCSEhFRgEbEiSFlcFQXbqquAK+ru6u63a0FF3aKIoICorG1tiJUmxYICUgIIAkqvKUgCJKSS9n5/3MkwM5lMBjLHzITz8Ls/MnPPeeedc29O7r3n3vMoEcFgMBjqMw3qOgGDwWDQjenoDAZDvcd0dAaDod5jOjqDwVDvMR2dwWCo95iOzmAw1HtMR+cnKKVWKKXusv18s1JqmY/jd1VKiVIqyJdxvfzsxkqpBUqpXKXUvFrE8Xm71AVKqS+UUr+v6zzOJc6Zjk4pdUAp9YtSqqnDe3cppVbUYVpuEZF3ReSqX/tzlVI3KaU2KKXylVKZtl/IgT4IfT3QAWgjIqPPNoiudlFKXWr7I/CJy/t9bO+v8DLOE0qpd2oqJyJXi8hbZ5mu4Sw4Zzo6G0HAA7UNoizqVdsppf4CTAP+idUpdQZmAaN8EL4LsEtEynwQSxdZwAClVBuH934P7PLVB9TH/SZgEJFzYgEOAH8HjgOtbO/dBaxwKDMASAVybf8PcFi3AngGWA0UAd0BAf4I7AbygKeAbsAa4CTwIXCerX5rYCHWL9QJ289hLvHvsv18O7DK9vPfgHyHpRR407auJfBfIBNIB54GGtrWNQSmANnAPuBeW75BbtqmpS32aA/tdz5WR5hhW6YB59vWXQqkAQ8CR2353GFb9yRQYss7H/gD8ATwjkPsro652b7/Plub7gdudm0XL7fXU7btlQcsA9pW890q858N3OvQfmnAJJz3kenAYdv23QhcbHt/qMv33OJhv3Hc1i8DHznE/w/wFaDq+nemPi11nsCv9kWtju5K4BPgadt79o4OuACrA7oV68hvrO11G9v6FcAhIMa2vpHtl3M+0ML2/inbThph6zx+An5vq98GuA5oAjQH5gGfOeTnuPM7/UI7lLkQq5MZZnv9GfAK0BRoD6wHxtvWTQB22OpcAHxD9R3dUKDM3TqHMpOBtbbPaQd8DzxlW3eprf5kW7sMAwqB1rb1T+Dcsbm+7lqZm+27nAR62tZ1AmJc28XL7bUX6AE0tr3+dzXf7VKsTm0AsM723jBgKVX/GN5i25ZBWB37ESDY3ffysN84busmWEeNtwMXY/1hCqtuO5jl7JZz8TB6EnCfUqqdy/vDgd0i8j8RKROR97E6ipEOZd4Uke229aW29/4jIidFZDuwDVgmIvtEJBf4AkgAEJFjIvKxiBSKSB7WX/lLvE1aKdUYq2ObLiKLlVIdgKuBP4lIgYgcBV4Axtiq3ABME5HDInIc+JeH8G2AbPF8ankzMFlEjopIFtaR2q0O60tt60tFZDHWUU1Pb7+fCxVAb6VUYxHJtLWtK95srzdEZJeIFGEdXcd7+lAR+R64QCnVE7gNeNtNmXds27JMRJ7HOtKt6Xu6228q4xVidZ5TgXeA+0QkrYZ4hjPknOvoRGQb1mnj311WhQAHXd47CIQ6vD7sJuQvDj8XuXndDEAp1UQp9YpS6qBS6iTwHdBKKdXQy9T/C+wUkf/YXnfBOjrIVErlKKVysI7u2jt8H8d8Xb+bI8eAtjWMyLq2z0Hbe/YYLh1lIbbvfiaISAFwI9YRaaZSapFSKsqLfCpzctxeR84in/8BE4HLgE9dVyqlHlRK/WwbQc7BOnJvW0NMd/uNHRFZj3WqrrA6ZIOPOec6OhuPA3fj/EuRgdV5ONIZ69pXJbWZ6uVBrL/8/USkBTDI9r6qqaJS6u+2un9wePsw1qlyWxFpZVtaiEiMbX0m1mlrJZ09fMQaoBi4xkMZ1/bpbHvvbCjAOmWrpKPjShFZKiKDsU5bdwCveZFPZU7pbsqeCf/Duu662Ha0ZUcpdTHwf1hHy61FpBXW9cHKbVjd/uFxv1FK3Yt1ZJiBdU3W4GPOyY5ORPYAc4H7Hd5eDPSw3WIRpJS6EeiFdfTnC5pjHeHlKKUuwOpsa0QpdbUtz2tsp2CV3yET6wL780qpFkqpBkqpbkqpytPhD4H7lVJhSqnWVD2CxSFWLtYp/Uyl1DW2o89GSqmrlVLP2oq9DzyqlGqnlGprK1/jrRTVsBkYpJTqrJRqCfzD4ft2UEr91nYb0CmsU+ByNzG0bC8R2Y91SeERN6ubY12LzAKClFKTsK7PVvIL0PVMRlaVUj2wBpFuwboU8DellMdTbMOZc052dDYmY134BqxraMAIrCOvY1h/WUeISLaPPm8a1kXxbKyL+ku8rHcj1sX/n233t+UrpWbb1t0GnIc16HEC+AjrKAiso6ClwBZgE9YgTLWIyFTgL8CjWL/Ih7FO4T6zFXka2AD8CGy1xXzay+/g+lnLsf7Q/Ig1cunYOTXA2gYZWCPkl2AdYbnG0La9RGSViLg7Wl2Kdd11F9ZpcjHOp6WVN0MfU0ptqulzbJcK3sG6zrtFRHYDDwP/U0qdX5vvYHBGiZiJNw0GQ/3mXD6iMxgM5wimozMYDPUe09EZDIZ6j+noDAZDvedXn7LHEyqosajzW9Rc8AxJiLqw5kKGs8IMZXlxI6QfcfDgAbKzs32acsMWXUTKimouCEhR1lIRGerLz/cG/+rozm/B+VFjai54hqxeN93nMQ0WFRWB1dUpDb2S0hFUExf1S/Z5TCkr4vyeN3hVtnjzzJqeItGCX3V0BoMhEFHg57NPmY7OYDDUDgU08PaR7brBdHQGg6H2+Pnpu+noDAZDLTGnrgaD4VzAz4/o/K4bHvybKLZ8/DDbPnuUh26/ssr6Vs0bM3fKH1j/wf+x8q2/0Kub9Qx7ZJf2rH3vr/bll2//w8Sxp+e1XLZ0CXExPYmJ6s5zz/67SlwR4S9/up+YqO6kJMTxw6ZNNdbVETNQ48b3jiI2OpIpz7mP+9Cf7yc2OpK+SX344YfTcSeMu5MuYR1IToitUk9H3GVLl9AnJore0ZFMqaYNHvzz/fSOjqRvonNMT3UDbZv5FIV1ROfNUlfonL4Ya4runcAe4O81lW/YrKPsPZwlUSOflOZ9/yxbdqZJ/HXPSHDi/fZl6ltfyuSXF0tw4v0Sd+3T8vW6nU7rgxPvlybJD0hmVq70GPa4BCfeL/nFZRIeESE/7dwruQWnJDY2TjZt2S5FpWJfPp2/SK4aMlQKSypkxco1kpzSV4pKpdq6OmLWtM4f454sLJXw8AjZ9vMeOZFXLL1j42TD5m1ScKrCvnz82UIZfNVQyS8ul2+++16SU/ra1y39coWsWrtBonvFONXREfdkYamER0TI9h17JCe/WGJj42Tj5m1SWFJhXz75fKEMHjJUCk6Vy4qVVszCkgrJK6q+biBts8TEJPH177lq2lGC+/+fVwuwQWefU92irYu1zZw7E2u6717AWKVUL091+iYnsvdwFgfSj1FaVs68ZZsYcanzX+SoiI6sSLXETLsOHKVLyAW0v6C5U5nL+vZgf1o2h46cACB1/Xq6detOeEQE5513HqNvHMPCBZ871Vk4/3NuuuU2lFL069+f3NwcMjMzq62rI6auXHXG3ZC6ngiHddffcGOVuIsWfM5Nt9yKUoq+/fqTm2PFBRh48SAuaH1BlX1BR9wNqc7fw13MhQs+5+abq8b0VDfQtpkWGjT0bqkjdB5L9gX2iOVPKAE+oAZ1XmhIR9J+ybG/Tv8lh9B2LZ3KbN2VwajL4gBIjulM546tCW3vXGb0VYl8uPT0IXxGRjphYaefjggNDSM93XkiWndlMtLTq62rI6auXLXHvTDMaV1mlbgZTvVDQsPIzPA8EbCOuBkZ6YSGOcfMyHAT80KH7xpmlclIr75uoG0z36P8/tRV5yeH4jwpYRrOU5cDoJQaZ5Mmb6Ci1HU1rtPlTXlzOa1aNGHte3/lnhsHsWVnOmXlFfb1jYIaMvyS3nzy5WaHGFXv3ne9m726Mmf6fm1i6srVX+N6Qkdcf2yDuojrcxTWYIQ3Sx2hc9TV3beq0voi8irwKsCAy4ZLWIdW9nWhHVqRkZ3rVD6v4BTjn3zP/nrHgkkcyDhmfz3komg270jj6PG803FCw0hLO93npqenERLi6HVxX6ZTSAglJSVu6+qIqStX7XEPpzmt61glbqhT/Yz0NDp2ci7jio64oaFhpKc5x+zUyU3Mww7fNc0qU1pSUm3dQNtmWvDz20t0ZpeGs5wljBpkKqkbf6D7he3oEnIBjYIaMvqqRBZ9u82pTMtmjWkUZJ3r3/G737Bq017yCk7Z198wJIkPlzjPYp2cksKePbs5sH8/JSUlzJv7AcNH/NapzPCRv+W9d95GRFi3di0tWrSkU6dO1dbVEVNXrjrjJiWnsNdh3Ucfzq0ad8Rvee+d/yEirF+3lhYtrbie0BE3Kdn5e1QX8913q8b0VDfQtpnv8f9TV50jrkFYCrdwLK/BFmwi4mpHb5q0l1H3zZZdB36RvYezZNKMBRKceL9MfGauTHxmrgQn3i+X/H6q7D54VHbsPyKffbVZOl7yf/bR1tYDHpTsE/nSftDfnEZhK0enukdGSnhEhDwx+WkpKhV5ccbL8uKMl6WoVKSwpELGT/ijhEdESExMb1m1JtVpZMu1rq6YgRa3cvSze/dICQ+PkMeffEoKTlXI9JdmyfSXZknBqQrJLy6XcePvkfDwCOkV01tWfr/ePhJ6/Q1jpEPHjhIUFCQhoaEya/ZrTqOqvo77yee2mBFWzMKSCpk+Y5ZMnzFLCksqpOBUuYybcI+9DVauWe80Iutat7CkIqC2mZZR12YhEnzpZK8W6mjUVaszQik1DEsK0xB4XUSe8VS+QdMOomP2khNm9hJtmNlLAm/2ko0bN/g04QYtQuX8lHu9Klv89SMbRcT3U6jUgNYnI8Qyti/W+RkGg6GuMY+AGQyGcwE/P6o1HZ3BYKg95ojOYDDUa+r4HjlvMB2dwWCoPWbiTYPBUL8xgxFnRELUhVpENq1TJvo8JsCJ1Bk+j6nrdh9dt0A0aKAnbiC1g65bbHS1rRbMqavBYKjXVM5H58eYjs5gMNQSc+pqMBjOBcypq8FgqPeYUVeDwVCvUebU1WAwnAv4+amr33XDuqxHgwdEs+XTx9j2+eM8dMfgKnFbNW/M3OfvZv3cf7Dyfw/Z7WIA9918GRs/eoQN8x7mrX/dzvnnBWnNtTamqvF330mX0A4kx7u3agWSqUpHOwSiCc3vLWBYt+14s9QZGuejex04Cmzztk5CQqIWm1KTxImy99BRiRo+SZon3y9bdh6W+GufkuD4e+3L1DeXy+RZCyU4/l6Ju2ayfL12hwTH3ysRgx+W/WlZ0qrfnyQ4/l75aOlGueuxt+X8PvdoydWTbaomU1VhSYUs+2qFrF63QXr1inGqE0imKl3tUBkzUExogWIBa9CqizS57nWvFuqbBQx4E0t36DUFBQVarEcpvbuy93D2abvY0k2MuDTOKW5UREdWrN8JwK4DvzjZxYIaNqTx+Y1o2LABjYPPIzMrFyk8qs2qdbamKqjeqhVopiod7eAa099NaAFjAVNnsNQR2jo6EfkOOH4mdUpLS7VYj0LatyTtlxP2dem/nHBjF0tn1BXxACTHdKFzpwssZ0VWLtPe/opdXzzF/uXPcDK/iK/W7kBK8/WYnzzYpk7HdW+q8kSgmap0tENGegCa0ALEAtagQQOvlrqizq/ROVrATuaddLfe6bW7R4Nqsh4pN39KXEtPeWM5rZo3Ye0Hf+eeMZewZWcaZeUVtGremBGXxhI94nEirnqEpo3PY8ywlOq+S61z9bSuprieqE1cXfn+2u0QSLnqzFcH/n6Nrs5HXcXBAtazZ5TosB6lH80hrEPr0zE6tCYjy9UuVsz4J96xv96x6EkOpB9j8G+iOZBxjOwT+QB89vUW+vcJ5715zfSYn8LO3lTliUAzVeloh9CwADShBYgFzN+nk6/zIzpHmjZtqsV6tGH7Qbp3bkeXkDaWXWxIIotW/OgU19kuNoBVm/aQV1DM4SPH6RsbTuPgRgBc1rcnO/f/gmrSXptV62xNVZ4INFOVjnZwjenvJrSAsYAFwDU6rSMdQFfOYNQ1MTFJi00pOP5eGTVxpmUXO3RUJr00X4Lj75WJT78vE59+X4Lj75VLbpsiuw/+Ijv2ZcpnX/4gHS9+yD4i+/TsRbJjX6Zs250u7y5YJy1SHpDg+Hu15FqdbcpbU9VoV/vVK68FnKlKZzsEkgktUCxgDS8Il5Y3/c+rhfpmAVNKvQ9cCrQFfgEeF5H/eqqTlJQsq9dt8HkuZpom/z+1cCWQ2iGQpmnSYQELahMhLYY97VXZE+/c7NECppQaCkzHMgfOEZF/u6xvCbwDdMa69DZFRN6oMUevsjsLRGSsrtgGg8G/8MUfEKVUQ2AmMBhIA1KVUvNF5CeHYvcCP4nISKVUO2CnUupdESnxFNuvrtEZDIYAxHfX6PoCe0Rkn63j+gAY5VJGgObK6lmbYd3CVlZT4DofdTUYDIHPGRzRtVVKOV6fetV25wVAKHDYYV0a0M+l/gxgPpABNAduFJGKmj7UdHQGg6FWKM7oHrlsD9fo3AVxvQA6BNgMXA50A5YrpVaKSNWbcB0wp64Gg6HW+OiG4TTgQofXYVhHbo7cAXwiFnuA/UBUTYFNR2cwGGqHAtVAebXUQCoQqZQKV0qdB4zBOk115BBwBYBSqgPQE9hXU2C/OnUVoFzDUP3x9S/5PCZA66v+6fOYvyz+u89jAjTSNAGsrttWNN2xgdJw20qFplthGtTpHbZnhi/2AxEpU0pNBJZi3V7yuohsV0pNsK2fDTwFvKmU2op1qvt/IpJdU2y/6ugMBkNg4qs/eCKyGFjs8t5sh58zgKvONK7p6AwGQ604w8GIOsF0dAaDofb4dz9nOjqDwVBLlP8/Ymg6OoPBUGvqclJNbzAdncFgqD3+fUDnf/fRLV+6hITeUcRFR/K8B5tSXHQk/ZL6sNnBpnTPuDvpGtaBlGpsSr42Sg1OiWDLW+PZ9r8JPDT2N1VitmoWzNzJ17H+tbtYOet2enVtZ183+6/DOfjxA2z4791V6n25bAlJcdHEx/Rg6nP/cZvr3/7yAPExPRiQEm9vg+LiYi4b2J+L+ibQLzGWfz71hM/awFNdXaYqHfuCLlvX8mVLSIiNpk+vHjxfzTb7618eoE+vHvRPPr3N0g4fZthVV5DUJ4aUhFhmzXixSr7GAuYDNM5FdyHwDfAzsB14oKY68QmJEh4eIVt/3iPHbTal1M3bJP9UhX2ptCnlFZfL1zabUuW6JQ42Jcc6usxae9OPS9RNM6X54H/Jlj1HJP72VyT4smfsy9QP1sjkN76V4MuekbjbZsvXG/fb113xwNvSf9wc2bbvqFOd4/kl0jU8Qjb/tFuycoukd2ycrNu0VXKLyu3LvE8XyJVXDZGcwjL5csVqSUruK7lF5ZJTWCbpWbmSW1Qu2SeLJSm5r3y5YrXkFpXXqg081dVlAcu1mbV8uS/karJ15RSUSHh4hPz40245dtLaZqk/bJW84nL78tFnC2TwVUPkZFGZfPXtaklO6St5xeWye3+arFyTKnnF5ZKRlSPdukfa6waKBey89t2l833zvVqohxawMuBBEYkG+gP3KqV6eapQWFBQxaa0yI35aayLTemIg02ptRubkg6jVAMFe9NPcCAzh9KyCuZ9/RMjBkQ6lYnq0pYVmw4AsOvwMbp0bEn71k0BWP3jYY6fLK6S68bU9UR060Z4uJXrtaNvZNFC55vDFy2cz9ibrFxT+lnmpyOZmSilaNasGWCJhkrLSu1/RWvTBp7q6rSA+Xpf0GXr2lC5zWxxrxt9IwsXuGyzBfMZ69C2ObZcO3bqRHxCIgDNmzenZ1QUGTaJTcBYwPD/IzqdFrBMEdlk+zkP68gu1FOdktLSKjalDBdzUaYbm1KNBixNZq20o6efI07PziO0XXOn9Vv3/sKoi3sCkBzVic4dWhLa1rlMlVwz0gl1sjeFVjFKZbqUcWyD8vJyBvZLpHvnjlx2+ZUk97Umf6hNG3iqq9Uu5uN9QZety3V7hIaGVqlTdbtWzfXggQP8uHnz6W0WMBawc7ijc0Qp1RVIANa5WWe3gOXVwgLmCW/qnE3cqp/j/HrK+2to1TyYta/+gXt+l8yW3UcoK/c8o0xtc23YsCGr1m3ipz2H2LQhlZ+2b6t1XE91/TFudejaD3wRNz8/n1vGjubfU6bSokWLWsf1xf58JvjoWVdtaB91VUo1Az4G/uRuKhVxtYC52JQ6uZiLQtzYlGo0YGkya4W1b3G6ftvmZGTnOa3PKyxh/LOL7K93vPdHDhzJ8ZxraBjpTvam9CpGqRCXMu7aoFWrVgwcdAlfLltKr5jetWqD0pKSautqtYv5eF/QZety3R7p6elV6lTdrqdzLS0t5ZYx13PDmJsYdc21zvkGggUsAO6j03pEp5RqhNXJvSsin9RUvknTplVsSsPc2JTed7EpdazBpqTDKFUh0D20NV06tqRRUANGX96LRWt2O5Vp2fR8GgVZTXzH8HhW/XiYvEKPMz6TmJzC3j17OHDAyvWTeXMZNnykU5lhw0fy/ntWrqnrLPNTx06dyM7KIifH6kiLiopY8fVX9OjZs9Zt4KmuTguYr/cFXbaupMptZov78by5DB/hss1GjOR9h7ZtactVRLh3/F30jIrmvgf+7FQnUCxgClDKu6XO0DjqqoC3gWne1klITHKyKU168inJP1Uh016aJdNemmWNoBaXy90ONqXvvl9vH1VztSnNnP2a5J+q0GaUGvX3D2TXoWzZm35cJs35RoIve0YmTl0sE6culuDLnpFL7n1Tdh8+JjsOZstn3+2QjiOft4+uzv1qm2Rk50lJaZmkHc2V8c8ulODLnrGPqnbrHildwyPk0Seektyicpn64kyZ+uJM++jqXePvka62Nvhm1TrJLSqX1et/kNg+8RLTO1aie8XIw489YR+prW0buKur0y5WOarq631Bh62rclS1W2WuTzwlecXlMu2lmTLtpZmSV1wuJ4vKnHL9dvU6ySsul6VffSuAxPSOldi4PhIb10c++myB5BWXB4wF7PwOkdL9oS+8WqiHFrCBwEpgK1B5YephsWYncEtiUrKsXJPq81x0XRq4YMi/fB5T3zRNehpB1ymLjum6QM99rbqmaQpq6PsTLh0WsOCOPaTzbS/WXBDY/dzVHi1gutBpAVuF398vbTAYao3So2b0JeYRMIPBUCsUpqMzGAznAH4+6Go6OoPBUHv8/fYS09EZDIbaUde3jniBX3V0Cmjo5+f6jmR94fsR0nZX65ll4sSyh7XELSmr0R18VpwXpOcWT12juTrQcUeEjm9v3Ufn37+3ftXRGQyGQESZwQiDwVD/MUd0BoOhfmOu0RkMhvqOuUZnMBjOCfy8nzMdncFgqD3+fkTnd3IcXTIQHXF1CVF0SXd0ta1OmY/Pt5km+ZJOOY4OoZFPsT3r6s1SZ2icpikYWA9swZLjPFnjNE0JiVpEKzokI/nFZVqEKE2u+KcW6Y4uiY0umY/ObeZr+ZIuOY4OoVGChmmamob2kH7/WuHVQj2U45wCLheRPkA8MFQp1d9ThYKCAi0yEB2SkdT1eoQoKVEhWqQ7ukQrumQ++raZHvmSjn1Bl9DI93jni6iXzgixyLe9bGRbPN6YXVpaqk+04uO4biU2PhCihLRtrk26o6tttch8NG0zHfIlbXIcTUIjHfj7DMO6p1JvqJTaDBwFlotIFTmOFzGcXrt7LKYuBC61iVmJOyGKu53BNcyvLd3R1bbw68p8fLHN3KFrX9C1zXTg70d0WkddRaQciFdKtQI+VUr1FpFtjmWUUuOAcQDtO3TQJ1rxcVy3EhsfCFHSs/K0SXd0ta0WmY+mbaZDvqRNjqNJaORrVABMvPmrjLqKSA6wAhjqZt2rIpIsIsmhIaFaZCA6JCPJKXqEKBt2ZGiR7ugSreiS+ejbZnrkSzr2BV1CIx2cs0d0Sql2QKmI5CilGgNXAlXH3Z3r8ML0GYwcPoTy8nJ+f/ud9IqJ4bVXZgNw9/gJDL16GEu/WExMVHeaNG7CK3PesL5IUJDbup7W1TbulGkvcs3Iq6koL+fW399BdK8Y/vuaFfMPd09gyNBhLFvyBX169aBxkya8/Op/AVjz/Wref+8dYnrHMqCvdSH68clPM2ToMMorhD+/tIwF/xlDw4YNeOuLLfx8IJu7RiYAMGfBD0R1acucv4+kvELYcTCbCc+dPrp769FRXNynC21bNmbP3Ik89eZK3vpii7Y2CAoKYsoLL3LtyKspLy/nFjftcNXQYSxb+gXxMT1o0qQJM1+x2uHIkUwm3H0HFeXlVFRU8LvrRjN02Ait2+z5aS9xzYihlJeXc+vtd9CrVwxzXrVi3jVuAkOuHsbSJYuJi46kcZMmzH7tdXvb3n7rTaz8bgXHsrPpEXEhjzz2BL+/4w9WG2jYF4KCgpg67SV+O3wo5RXl3Pb7O6w2sOV79zhbGyxZTO/oSJo0bsLsOa/b28BdXV34+W10WuU4ccBbQEOsI8cPRWSypzpJScmyet0GLfnooKbrYmeDmabJIpCmadL1O6RjyrKL+qewycdynOYXRknSg6/XXBD49s8X1Ts5zo9Agq74BoPBT/DhiKpSaigwHesAaY6IVPnLr5S6FJiGdSdHtohcUlNc8wiYwWCoFQrfXH9TSjUEZgKDgTQgVSk1X0R+cijTCpgFDBWRQ0qp9t7ENh2dwWCoNT46ze4L7BGRfQBKqQ+AUcBPDmVuAj4RkUMAInLUm8B+96yrwWAIPM7ghuG2SqkNDss4hzChwGGH12m29xzpAbRWSq1QSm1USt3mTX7miM5gMNQKqxPz+ogu28NghLsgriM9QUAScAXQGFijlForIrs8fWi1HZ1SKtFTRRHZ5Gm9wWA4d/DRAHEacKHD6zAgw02ZbBEpAAqUUt8BfYCz6+iA5z2sE+ByT4HPBXQM/+u6DaT1pY9qiXtixdNa4oqvPr4AACAASURBVFZosnXp2Gaa7i7RcuuOrlx9dDNwKhCplAoH0oExWNfkHPkcmKGUCgLOA/oBL9QUuNqOTkQuO+t0DQbDOYUv+jkRKVNKTQSWYt1e8rqIbFdKTbCtny0iPyullgA/AhVYt6Bsqz6qRY3X6JRSTYC/AJ1FZJxSKhLoKSILa/GdDAZDPUEBDX10I52ILAYWu7w32+X1c8BzZxLXm1HXN4ASYIDtdRqg53zFYDAEHl4+5+rv89F1E5FngVIAESnC/eiIwWA4R/H3+ei8ub2kxPZQvgAopbphzR5sMBgMKKCBnz/V701H9ziwBLhQKfUucBFwu86kDAZDYOHn/VzNp64ishy4Fqtzex9IFpEVuhIKJAtYbQxN4+++ky6hHUiOr2qU0tUGg/tFsuW9B9j2wZ956JZBVeK2ah7M3H/exPo3J7Ly1Qn0CrceIzz/vCBWvjqBdW/ey8b/3cejdzrfWaRzm8X3jiI2OpIpHoxdsdGR9E1ybt8J4+6kS1gHkl2MXTpz1bEvfLlsCcl9epHQuycvTKnGsPbgn0jo3ZMBfROcDGuXX9yfi/ol0j8prophzZdUTrwZ8BYwrI5uKta9db87E/sO1jDxD8DCmsoGnAXsLA1NhSUVsuyrFbJ63Qbp1SvGqY4uW1eTix+VvWnHJGr0FGl+ySTZsjtD4m+eJsEXPWJfpr77nUye86UEX/SIxI19Qb5O3WNf1+bKJyX4okek2aDHZP32QzJo3MsSfNEj2vI9WVgq4eERsu3nPXLCZuzasHmbFJyqsC+Vxq784nL5xmbsqly31MHYVfneycJSLbnWxtblaV84lnfKMqxt3yVHcwolJjZO1m78UXIKy+zLh5/MlysHD5ETBaWyfMUqSUpOkZzCMjlRUCppR3Mkp7BMsnKLJCk5RZavWCXxCb63gLXuGi03vLnJqwV/tYAppWYBE4CtwDZgvFJq5hn0pQ8AP3tTMNAsYGdraALLKHWBG6OULltXSnQYe9OOcSDjBKVl5cz7cisjBkY7xY3q2p4VG/cBsOtQNl06tbbbxQqKrBmMGwU1JKhhQ/uNp7rytcxantt30YLPuekW79vX1Yzly1x17AsbN1h2sa42w9p119/AYhfD2uKFCxhji5vStz+5ubnuDWulZSiNY4jKy6Wu8GbU9RJgiIi8ISJvAMOAS70JrpQKA4YDc7wpH3gWsLMzNHlCl60rpF0L0o7m2telZ50ktN1pNwXA1j1HGDWoFwDJ0aGWXax9S8A6NVn7xr0cWvB3vt6wh9Sf0rTm687Y5WoXy3Bj7HK1b9WUh09yrYWtyxOZGRmEhrp+vwyXMs6fHeJgILMMa0lEdunEZVdcYbeL6aA+3F6yE+js8PpCrLuSvWEa8DesO5jdopQaVzmTwcm8k+7WO712N5troFrA3KEjV+v/mj9ryjvf0ap5Y9a+cS/3XPcbtuzOtM+iXFEh9L9jJt2vfY7k6DD79Ttd+epo30DKtbo6rhvSU1zLsLaR7bsPstHBsOZrrFFX75a6wtND/QuwbilpCfyslFpve90P+L6mwEqpEcBREdlomxHULSLyKvAqQM+eURJYFrCzMzR5QpetK/3oScJsR2cAoe1auLGLnWL8vz6xv94x70EOZJxwKpObX8x3P+znqv6R/LT/qFa7mKuxy9UuFurG2OVq36opD5/kWgtblydCQkNJT3c1knVyKeP82RluDGStWrVi4MWX8NXypR4/76yp46M1b/B0RDcFa/BhEnA11m0mT9h+fsqL2BcBv1VKHQA+AC5XSr3jqULTpk0DygJ2toYmT+iydW3YkU73C9vQpVNrGgU1ZPSVsSxavcMpbstmwTQKagjAHSOTWbXlAHmFp2jbqgktmwUDEHxeEJcnd2PnwWyt+VpmrZrb9713vG9fVzOWL3PVsS8kJjkb1j7+6EOudjGsXT18BB/Y4qauX0uLFi3cGta+/eYrInv09Ph5taFejLrWdsG6plfjqGtiYpJ8On+RdI+MlPCICHli8tNSVCry4oyX5cUZL0tRqUhhSYWMn/BHCY+IkJiY3rJqTarTiJlrXU/rahv3k88XSvfu1vuPP/mUFJZUyPQZs2T6jFlSWFIhBafKZdyEe+wxV65Zbx9RG33DGOnQsaMEBQVJSGiozHrlNSksqdCWa/BFj8ioB9+SXYeyZG/aMZn0yjIJvugRmfjsZzLx2c8k+KJH5JJxs2X3oSzZceCofLZim3Qc+pQEX/SIJN/2ovywM11+3J0p2/YekSdf+9I+Gqsr38pR1e7dIyU83GrfglMVMv2lWTL9pVlScKpC8ovLZdz4eyQ8PEJ6xfSWld+vt4+wXu/avrNfk4JTFVpyrRxV9fW+UDmq2q17pHQNj5BHH58sOYVlMnX6TJk6faZ9dPWucfdIV1sbfLNyreQUlsmqdZskNi5eevWOleheMfKPRx+XnMIyLaOubcJ7ye/f2+LVQh2NutZoAVNK9QdeAqKxpkVpCBSISAuPFZ1jXAo8JCIjPJULNAtYTW13Nug6BTDTNFnoOKrQsR+AnmmaLr2oHz9s8q0FrG1EjIz85wdelX1zbJzfWsBmYM0LNQ9IBm4DIs/kQ8S6wXjFGeZmMBgCBP++QuflVOoiskcp1VBEyoE3lFI1DkYYDIZzA6Xqx7OuhUqp84DNSqlngUygqd60DAZDIOHn/ZxX99Hdais3ESjAuo/uWp1JGQyGwMLfR11rPKITkYO2H4uBJwGUUnOBGzXmZTAYAgSFqhenru74jU+zMBgMgUsdT6rpDX7ldRWwP3LkS4IaBo6nu/BUmZa4x7725h7vM6f1NWcyv4P3ZH18j5a4SsOdIOWaboU5L8j3+62uDsnfn4w4G6+rAhrpScdgMAQi/n4ocbZe1x0e1hkMhnMIRQAf0YnxuhoMBi/RcJbtU/zqGp3BYAg8LMNXgB7RGQwGg7fU5cQk3mA6OoPBUGv8/IDOK2eEUkrdopSaZHvdWSnVV1dCy5ctISE2mj69evD8c+6tR3/9ywP06dWD/snxdutR2uHDDLvqCpL6xJCSEMusGS861fM3C5inul8tX0rfhBiS46KY9vyzbuP+/aE/kRwXxcX9Etiy+XTc+F7dGdg3nkt+k8TlFztPna3DqgUwOLEzW2bfxLZXb+Gh66sO1rdoch4fTRrGupduZOPMsdx6ZRQAkaGtWPvijfbllw/vZuJv4+z1dOwLumxdOvdbHfn6kkqvqzdLneHFXHIvAzOBn22vWwOpXs5DdwBLqrMZL+ahik9IlPDwCPnxp91y7GSR9I6Nk9Qftkpecbl9+eizBTL4qiFysqhMvvp2tSSn9JW84nLZvT9NVq5JlbzicsnIypFu3SPtdf3NAubJGnU0t1i6hkfIxq07JfN4gcT0jpXVqVvkWH6pffng4/lyxeAhkp1XIku+XimJySn2dRd27iK7DmQ6lT+WX6rFqlVwqkKajJwpezNyJOrOt6X5qFmyZV+WxE94V4KHz7Avj725RqbM2yjBw2dI2Ng5cuxkkTQfNcupTJORMyXzeIH0uP0tCR4+Q3IKSny+L+QUlGixdenINa+4XItdLCHR9/PRdeweIw8v3unV4k0/oGPxZqykn4jci/UIGCJyAmteOm+5TETivZmDqrCggIhu3ew2petG38jCBc7Wo0UL5jPWwaaUk5PDkcxMOnbqRHyCdTTRvHlzekZFkWGTl/ibBcyTNWrThvWER5w2P/3u+hv5YtECp7hfLJzPjWNvcTY/Hcn02LY6rFoAKT3aszczlwO/nKS0rIJ53+1mRP9wpzKC0Kyxdetl08aNOJF3qsqN4Zf1CWN/Zi6HsvIc8vXtvqDL1qUj18q4OvL1NcrLo7m6PKLzpqMrVUo1xHpwAaVUOzzIbmpDSWkpoU6mpdAqVifLvuViaXIpc/DAAX7cvNluPfI3C5gna1RmRka1VqdKMjNdyoScLqOU4vpRV3P5wL689fprzt/Px1YtgJA2zUjLyre/Ts/OJ7SN8+Q2sxduJerC1ux7+3Y2zBjLQ6+uxHWuytGDIvnwu92nv2OV7Vz7fcHVmOU7W5fvcwV9djEdKOXdUld409G9CHwKtFdKPQOsAv7pZXwBlimlNiqlxrkr4GgByzt59hawSvLz87ll7Gj+PWUqLVq08KqOpzJn+n5tYtY2V4DFX37LN6tTmfvJQv776st8v2qlT+JWh7u1rmEGJ3bmx33ZRNz2Jv3un8sLEwbRvPHph2saBTVgeN+ufLJqzxnlcqb7gq420JGrr+L+Wvi7BazGjk5E3sVSFv4Lay66a0RknpfxLxKRRCyhzr1KqUFu4r8qIskiktymTRvSnUxLVY1Gln3LxdJkK1NaWsotY67nhjE3Meqaa53qnK39qbq6tbGAebJGhYSG1mh1CglxKZNxukxlnHbt2zN85DVs2ph6+vv52KoFkH4sn7B2zU7HaNuMjOMFTmVuvTKKz9dYYux9ttPcnhe2tq8fktSFzXuzOJpTdPo7VtnOtd8XXI1ZvrN1+T5X0GcX8zWBMBjhzahrZ6AQWADMBwps79WIiGTY/j+KdVTocbS2SdOmlvXIZlP6eN5cho9wth4NGzGS9x1sSi1btqRjp06ICPeOv4ueUdHc98Cfner4mwXMkzUqISmFfXv3cNBmfvr0o7lcPcxZtTF0+Ejmvv8OIg7mp46dKCgoIC/PusZVUFDAN18vJ7pXDKDHqgWwYddRuoe0pEuH5jQKasDoQZEsWnfAqczhrHwu7WOdgrVv1ZgeYa3Yf+T00fsNlziftp7O17f7gi5bl45cdearA38/dfVm5HQrlrB6K7AbKAO2e1GvKdDc4efvgaGe6iQkJslHny2Qbjbz06QnnpK84nKZ9tJMmfbSTMkrLpeTRWVyt4P56dvV6ySvuFyWfvWtABLTO1Zi4/pIbFwf+eizBZJXXO6XFjB3dQtLKuyjqpXmp4cnTZZj+aUyZdoMmTJthhzLL5XsvBK58+4J0jU8QqJ7xciX362RY/mlsnHrTonpHSsxvWOlZ1Qve91j+aXarFrBw2fIqMcXyK60E7I3I0cmvbVGgofPkIkzvpGJM76R4OEzJPzW12X5xoOydX+2bDuQLbc/t8w+2tr62tmSnVsk7Ue/6jQKWzlS6et9QYetS1euOuxiOkZdQ3r0lme+3OPVgr9awFyxzWoyXkTG11AuAusoDqwbk98TkWc81UlMSpbvvl9/Rvl4g65pms607byhqKTc5zEBghs11BK3zbWztMTVNU1TQw0XinRN06Qj14v6p7Bpo28tYGE9Y2Xiy595VfYfV3T3WwuYEyKySSmV4kW5fUCfs8rKYDAEFAH/CJhS6i8OLxsAiUCWtowMBkPA4auRXqXUUGA6lj96johUfRzEKpcCrAVuFJGPaorrzRFdc4efy4BFwMde1DMYDOcA1qirD+JY9+vOBAYDaUCqUmq+iPzkptx/gKXexvbY0dkCNhORv55x1gaD4dzAdyOqfYE9tsteKKU+AEYBP7mUuw/rYKvGS2iVeJpKPUhEyjxMqW4wGAwoIMj7Q7q2SqkNDq9fFZFXbT+HAocd1qUBTjNTKKVCgd8Bl+OLjg5Yj3U9brNSaj4wD8vrCoCIfOLthxgMhvrNGRzRZXsYdXX7oI3L62nA/4lI+ZlcF/TmGt0FwDGsHlRsyQhwznd0Ou4qaHK+nikCdd0Ckf3JH7XEbXvF41rinvhmss9j6hpx1PEol55UFQ18EzkNuNDhdRiQ4VImGfjA1jZtgWFKqTIR8Xh/i6ffqva2EddtnO7gKtHzW2MwGAIOS47jk1CpQKRSKhxIB8YANzkWEBH71DhKqTeBhTV1cuC5o2sINMO7w0mDwXCu4qMH9m1jAhOxRlMbAq+LyHal1ATb+tlnG9tTR5cpIr4/zjcYDPUKhe+e4hCRxcBil/fcdnAicru3cT11dH5+r7PBYPAX6nSadC/w1NFd8atlYTAYAho/7+c8CqyP/5qJGAyGwETh3Qy+dYnf5RdIFrDlS5eQ0DuKuOhInvdg1YqLjqRfUh97rgD3jLuTrmEdSHFj1dKRq858dcUd3Lc7W969n23vP8BDN19cZX2rZsHMfWYM69/8IytfGUev8PYAnH9eECtfGce6N/7Ixrcn8uidl3nVPpW5nk3b6jKs6crXp9gE1t4sdYbOOaCAVsBHwA7gZ+A3nsoHnAUsPEK2/rxHjtusWqmbt0n+qQr7UmnVyisul69tVq3KdUscrFqOdXTkWlQqkmuzgPk6X11xmwyaJHvTjknU6KnS/NInZMvuTIm/5UUJHviYfZn63kqZPOcrCR74mMTdNF2+3rDXvq7N4KckeOBj0uySx2X99sMyaNwrcv5Fj2hpW12GNR37QqKG+ei6RsfKW6mHvFrwYwtYbZgOLBGRKKwpm372VDjQLGCuVq1FbgxNY12sWkccDE2t3RiadOQK7i1gvshXV9yU6DD2ph/nQOYJSsvKmffVVkYMjHIqE9W1PSs2WlO07zqUTZeOrWjf2hLzFBSVANAoqCFBQQ0QQPIyfrW29YVhTde+4GsU0FApr5a6QltHp5RqAQwC/gsgIiUikuOpTqBZwFytWhkuMTPdWLVqMjTpyNVeR1e+GuKGtGtO2tFc++v0rJOEtm3hVGbrniOMuqQXAMnRoXTu0JLQdlaZBg0Ua1+/h0Pz/8bXqXtJ/SkNKTn5q7WtLwxruvYFHfj7VOo6j+gisOate0Mp9YNSao5SqqlroXPRAuYJHbnWNq6ufD2h3NzdJC73qU95ZyWtmgez9vV7uOe6fmzZfcTui62oEPrf+TLdr3ue5Ogw+/W7s8010Nr2bD7v7PHu+lxdXqPT82Dl6diJwH0isk4pNR34O/CYYyHbzAWvAvTsGSX+ZgErKSmp1gLmatXq5BIzxI1VqyZDk45c7XV05ashbnrWScLatzz9Oe1akJGd51Qmr/AU4/91+umfHR/+mQOZzicNufnFfPfDfq7qF8m2LZt+tbb1hWFN177ga871Udc0IE1E1tlef4TV8VVLoFnAXK1aw9wYmt53sWp1rMHQpCNXcG8B80W+uuJu2JFO97AL6NKpFY2CGjL6ilgWrdrhVKZls2AaBVkujDtGJrFqy0HyCk/RtlUTWjYLBiD4vCAuT+7GzkNZqOYhv1rb+sKwpmtf0IG/H9HpHnVdCfS0/fwE8Jyn8oFmAXO0ak168inJP1Uh016aJdNemiX5pyw7lGOu332/3j6q6GrVmjn7Nck/VaEt18rRT1/nqytu8MDHZNRDb8uuQ1myN+2YTHpluQQPfEwmPve5THzucwke+JhcMv5V2X0oW3YcOCqfrdguHYc+I8EDH5Pk38+QH3ZmyI97MmXb3iPypG1kNnjgY1raVpdhTce+oGPUNSI6Tj78Id2rhUCxgJ0JSql4YA5wHrAPuENETlRXPtAsYDqmPtJhfgJ90zTpIpCmaarQ1LYNdFjA+iWz0ccWsO4xfeTZ95Z4Vfa6+JDAsICdCSKyGWv+KIPBUI+p09NSL9Da0RkMhnMD/+7mTEdnMBh8gJ8f0JmOzmAw1A7r9hL/7ulMR2cwGGqNOaIzGAz1HBXQE2/+6ij03Aqia/hfx605FRU+DwkElqkK9NwGAtD6kkd8HvPEt8/4PCZgf5zNl+j4TTCnrgaDof5Txw/se4Pp6AwGQ60xHZ3BYKj3uJttxp8wHZ3BYKgVlRNv+jOmozMYDLXGz/s509EZDIba4++nrn43X14gWZp0Gst0GaX6xETROzqSKdW07YN/vp/e0ZH0TXSO66muzm3m67iD+0Wy5f0/sW3uX3jolkFVYrZqHszcf97M+rfuY+Vr91SZmbhBA8WaN+7l42dv/VXaQNc+5ksU1u1L3ix1hsa56HoCmx2Wk8CfPM5Hl5AYMJamypi+NpbpMkrlFZVKeESEbN+xR3LyiyU2Nk42bt4mhSUV9uWTzxfK4CFDpeBUuaxYacUtLPFcV5e1TFfcvWnZEnX9c9J80GOyZVeGxN/0ggQPeNi+TH33O5n82pcSPOBhiRszVb5O3eO0/m/TF8kHSzfLolU/29/TlWtOQYnP97EEDfPR9YyJl+92Hvdqob5ZwERkp4jEi0g8kAQUAp96qlNQUBAwliYrpu+NZbqMUhtSndvHXdyFCz7n5purxvVUV5epSkdcBexNO86BjEqz2I+MuDjaKaZlFtsL2MxinU6bxULbtWDogJ68sWCDUx295jbf72M+x0sxTn2V4zhyBbBXRA56KlRaWhowlqaqNjIfGst0GKXS0wkNc7F1Vck3g7ALHfINs8p4qqvVWubjuErhbBY7epLQdi2dYm7dk+lgFgujc4dWhNrcFc89MJxHZi2hwuWJGF1tkKlpH/M157Tu0IUxwPvuVjhawE7mnb0FrLr3PdXxJm51+CKmr41lnqhNXF1tWxdxXXEtO+V/39GqeWPWvjmRe67vz5bdmZSVV3D1gJ4cPVHADzszaozhq1x17WM6UF4udYX2UVel1HnAb4F/uFsvLhawQLE0VbWR+dBYpsMoFRZGepqLratKvqGkHXbIN80qU1pSUm1drdYyH8cVwdks1r4FGdnOf1zzCk8x/p+f2F/v+OghDmScYPSVcYwYGMXQ3/Tg/POCaNH0fF6fNJo7J8/T1gYhmvYxLfj3oOuvckR3NbBJRH6pqWDTpk0DxtJkxfS9sUyXUSop2bl9qov77rtV43qqq8tUpSOuAN3D2tClU2ubWSyuBrNYMqs2HyCv8BSTZi+j+++eJer6Kdz2+FxWbNzHnZPnaW0DXfuYDpSX/+oM3aMdwAdYUpwayyYmJgWUpUmHsUxXrpWjqt27W+3z+JNPSWFJhUyfMUumz5glhSUVUnCqXMZNuMfetivXrHcakXWtW1iiz1qmK+6oB9+UXQezZG9atkyavUyCBzwsE5/9TCY++5kED3hYLrn7Zdl9KMtmFtsmHYdMdhp1DR7wsAy+9zWnUVdduVaOqvpyH9Mx6hrVO17W7c3xaqGeWsCaAIeBCBHJral8UlKyrF63oaZiZ4yuaZpcL0r7Al3zeum6DuzvUhRXzvVpmgYN6MsmH1vAomMT5O3PV3hVtm+3VvXSAlYItNH5GQaDoW5R+P8fPL97MsJgMAQYPryPTik1VCm1Uym1Ryn1dzfrb1ZK/WhbvldK9fEmRfOsq8FgqDW+OJ5TSjUEZgKDgTQgVSk1X0R+cii2H7hERE4opa7GumOjxhsEzRGdwWCoPb65ka4vsEdE9olICdZA5ijHAiLyvYicsL1cC4ThBaajMxgMtcTbm0tq7OlCsQYvK0mzvVcdfwC+8CZDvzp1FaBcwwiprlkTdAhBdHx/gIaaGqFUw8gg6Mv32DdP+zxm6xv/6/OYAEfeud3nMXXcZFE5e4mXtFVKOd5a8artoYHKUK64zVgpdRlWRzfQmw/1q47OYDAEKN53dNkebi9JAy50eB0GVHnmTikVB8wBrhaRY958qDl1NRgMtcZHp66pQKRSKtz26OgYwGm6FqVUZ+AT4FYR2eVtfuaIzmAw1Bpf3EYnImVKqYnAUqAh8LqIbFdKTbCtnw1Mwro3d5bt3r0yb25ANh2dwWCoNb66oioii4HFLu/Ndvj5LuCuM41rOjqDwVA76noOJi8wHZ3BYKgV1qirf/d0fjcYsXzpEhJ6RxEXHcnzHsQwcdGR9EvqY5eBANwz7k66hnUgxcdimPF330mX0A4kxzvH1SWxWb5sCYlx0fSJ6cFUT0KUmB78JuW0EKW4uJhLB/ZnQN8E+ibG8sxTT/wq+X65bAlJcdHEe8j3b395gPiYHgxwyfeygf25qG8C/RJj+adLvjr2BV1tMDg+lC0vXse2GaN56HdxVda3aNKIj/4xmHXPX8PGaddy62WR9nU7Xr6B1Km/Y+2Ua1j1H+fpnb5ctoTkPr1I6N2TF6ZU07YP/omE3j0Z0DfBqW0vv7g/F/VLpH9SXJW29TX+PvGm7ima/gxsB7ZhzTAc7Kl8fEKihIdHyNaf98hxmxgmdfM2yT9VYV8qxTB5xeXytU0MU7luiYMYxrFObcQwhSUVsuyrFbJ63Qbp1SvG/l5ekR6JzYn8EukaHiFbftot2bmWEGX9pq1ysqjcvsz7dIFcedUQyS0sky9XrJak5L5ysqhccgvLJCMrV04Wlcuxk8WSlNxXvlyx2qqnSbpz3Jbv5p92S5Yt33WbtkpuUbl9qcw3xyHf3KJyySksk/SsXMktKpdsh3xzi8ol15avL/eFXE1t0OT6/8rezFyJumeuNL/hddmyP1vi7/9Igq+dY18eeydVpnyyRYKvnSNht78jx04WS/MbXpfga+fIgV9OSujv/+dUPvjaOXIs75TVttt3ydGcQomJjZO1G3+UnMIy+/LhJ/PlysFD5ERBqSxfsUqSklMkp7BMThSUStrRHMkpLJOs3CJJSk6R5StWSXyC76dpiolLkJ8y8r1aqG9yHKVUKHA/kCwivbFGUcZ4qlNYUFBFDLPIjcBlrIsY5oiDGKa1j8UwlXHdy3H0SGwiunUjPPy0EGXRQmchyuKF8xl7k0PcXKsNlFI0a9YMsGaXLSsrtc8qoSvfjS75Xusm30UO+aZ4yLe0hnxruy/oaoOU7u3Ye+QkB37Jo7Ssgnmr9jEipbNTGRGhWeNGADQNDuJE/qkap2HauMFq266V+8L1N7C4yr6wgDG2/Talb39yc3Pdt21pmdaJL/194k3dp65BQGOlVBDQBDc3/zlSUlpaRQzjai7KdCOGcZWBuFIbMYynmDokNpkuspSQ0NAqbeBWtGKLW15ezkX9EunWuSOXXX4lKbqlO+4ELlW2mXOZEJd8B/ZLpLstX0+SoNruC7raIOSCJqRlF9hfpx8vJLRNU6cys7/4maiwluybM5YNU6/lodfX2p9SEIEFk4ay+tlR3Dm4p9P3Cw11zcX5V8hq2zCHMqcFOlbbJhHZ1wPe+gAAFUBJREFUpROXXXGFNjkOnMMWMBFJB6YAh4BMIFdElp1pnLoWw/yaMX0Rt2HDhqxet4mf9xxi44ZUftq+ze/zXbVuEz/tOcQmzfnqagN3q13jDI4P5cf9x4m46336PfQpL9z1G5rbjvAuf2QhA/76Odc8vZTxQ6O5qFfHanNx/bCa23Yj23cfdNoXdODv1+h0nrq2xpp5IBwIAZoqpW5xU85uASssLKgihunkIhkJcSOGcZW8uFIbMYynmDokNiEuEpWM9PQqbeBWtOISt1WrVgwcdAlfLlt6uo4O6Y47gUuVbeZcxt028ybf2u4Lutog/VghYW1PH8GFXtCEjOOFTmVuvbwHn687AMC+I3kcOJpHz1BL1JN5wiqbdbKY+esOktK9rf37pae7fj9nN4jVtmkOZaoKdFq1asXAiy/hq+VLPX6Ps6Vy4k1vlrpC56nrlcB+EckSkVKsxzYGuBYSkVdFJFlEkkNCQquIYYa5Ebi87yKG6ahRDOMppi6Jzb49ezhw4LQQZdhwZyHK1cNH8v57DnFbWG2QnZVFTk4OAEVFRaz4+isie/bUmm9ipcDFlu8nbvId5pBvag359vCQb233BV1tsGFPFt07taBL+2Y0CmrA6IERLNpwyKnM4ex8Lo21OqD2LYPpEdKS/b/k0eT8IJoFW0d2Tc4P4so+oWw/ZM1ClJjk3LYff/QhV1fZF0bwgW2/TV2/lhYtWrht22+/+YrIHj3Rgg8n3tSGxhHXflgjrk2spuAt4D5PdRISk5zEMJOefEryT1XItJdmybSXZlkjqMXlTjKQ775fbx9VcxXDzJz9muT7QAwz2lU488prUliiR2JTOararXukdA2PkMeeeEpOFpXLCy/OlBdenGkfXb1r/D3S1RZ3xap1crKoXL5f/4PE9YmXmN6xEt0rRh5+7An7SK0u6U6uS76PPvGU5BaVy9QXZ8rUF2faR1cd8/1m1TrJLSqX1et/kFiXfCtHavNd8vXVvqCjDYKvnSOjnl4iu9JzZG9mrkx6N1WCr50jE2evkomzV0nwtXMk/A/vyfIf0mTrgWOy7eBxuX3aNxJ87RyJumeubNmfLVv2Z8v2Q8ftdYOvnWMfVbW37eOTJaewTKZOnylTp8+0j67eNc6hbVeulZzCMlm1bpPExsVLL1vb/uPRxyWnsEzLqGvvPgmy55dCrxbqqRznSeBGoAz4AbhLRE5VVz4xKVlWrkn1eR66pmnS0XSBNk1TWYDlqyNqm7Gva4iqZ5qmSy/qxw+bfCvHiY1PlM+Wr/aqbPf2TeqlHOdx4HGdn2EwGOqaOna2eoF5BMxgMNSKM5x4s04wHZ3BYKg9pqMzGAz1HXPqajAY6j1+PnmJ6egMBkPt8fN+zv86Oh0XNXXdQdNAQ7K6bvYpKi3XEvf8ID33nGu7HUaDtezY+3f6PCZAm2tn+TzmqX1HfR6Tur4Z2Av8rqMzGAyBReUjYP6M6egMBkOt8e9uznR0BoPBB/j5AZ3p6AwGQ+0xt5cYDIb6j3/3c6ajMxgMtcfP+zn/s4DVxtblqa4O+9OypUuIi+lJTFR3nqsm17/86X5iorqTkhDHD5s2eVVXlwntq+VL6ZcQQ0pcFNOff9Zt3H889CdS4qIY1C+BLZtPx03o1Z2L+8Zz6W+SuOJi5ym5ly9bQkJsNH169eB5T9ayXj3on3zaApZ2+DDDrrqCpD4xpCTEMmvGi071dLSvzly12MUSO7Nl9k1se/UWHro+scr6Fk3O46NJw1j30o1snDmWW6+MAiAytBVrX7zRvvzy4d1M/G1VO5kvUMrSHXqz1Bk654ACHsAygG0H/lRT+fiExLO2dXkyfekwYJ0stD7vp517JbfglMTGxsmmLdulqFTsy6fzF8lVQ4ZKYUmFrFi5RpJT+kpRqUh+cVm1dXXYr/JPVcgvucXSNTxCNmzdKRnHCySmd6ysTt0i2fml9uX9j+fLFYOHSFZeiSz5eqUkJqfY113YuYvsPJDpVD47v1RyCkokPDxCfvxptxw7aVnAUn/YKnnF5fblo88WyOCrhsjJojL56tvVkpzSV/KKy2X3/jRZuSZV8orLJSMrR7p1j7TX9dRGZ9u++cVlWnLVZVhrMnKm7M3Ikag735bmo2bJln1ZEj/hXQkePsO+PPbmGpkyb6MED58hYWPnyLGTRdJ81CynMk1GzpTM4wXS4/a3RLW80Ofz0fVJSJSjeaVeLdRDC1hv4G6gL9AHGKGUivRUp7Cg4KxtXZ5MXzrsT66fN/rGMVVznf85N91yG0op+vW37FeZmZmkrq++rg77FcCmDesJjzhtlPrd9TfyxaIFTmW+WDifG8beglKK5Eqj1JFMT5vstLUs4rS1bOECFwvYgvmMddhmObZ8O3bqRHyCdZTSvHlzekZF2QU4ntrobNs3db2eXLXZxXq0Z29mLgd+OWnZxb7bzYj+4U5lBAe7WONGnMirahe7rE8Y+zNzOZSV53Fb1oZz1hkBRANrRaRQRMqAb4HfeapQUlp61rYuT6YvHfYndyaudG9sXenpHuvqsF9V1gmpxhZlL5OZ4WyUCjldRinF9aOu5vKBfXnr9dcc4rqxgFXZZq5lquZ78MABfty82dkC5uP2dWss81WuOuxibZqRlpVvf52enV/VLrZwK1EXtmbf27ezYcZYHnp1ZZUngUYPiuTD73Z7/Kza4u9Tqevs6LYBg5RSbZRSTYBhwIWuhRzlOHl5J6sE8dbSVN37nup4E7c6ahPz187VF3EXffkt36xOZe4nC3n91Zf5ftVKn+Wbn5/PLWNH8+8pU2nRokWt455Nu9dVrp5wt9Y1zODEzvy4L5uI296k3/1zeWHCILtdDKBRUAOG9+3KJ6v2ePys2uGt1bUeynFE5GfgP8ByYAmwBWtKdddydjlOmwvanLWty5PpS4f9yZ2JK8QbW1dIiMe6OuxXlXUyarBFhYSEOhulMk6XqYzfrn17ho28hk0bU21x3VjAqmwz1zKn8y0tLeWWMddzw5ibGHXNtU51fN2+bo1lvspVi10sn7B2zU7HaNuMjOMFTmVuvTKKz9fsA2Cf7TS354Wt7euHJHVh894sjuYUefys2mA9AnbuHtEhIv8VkUQRGQQcBzwePzdp2vSsbV2eTF867E+unzdv7gdVY478Le+98zYiwrq1lv2qU6dOJKdUX1eH/QogISmFfXv3cNBmlPr0o7kMHTbCqczQ4SP58P13EBE2VBqlOnaioKCAvDzr+k5BQQErvl5OdK8Yh3z32PP9eN5cho9wsYCNGMn7DtuspS1fEeHe8XfRMyqa+x74s1MdT210tu2bnKInV212sV1H6R7Ski4dmlt2sUGRLLIpEys5nJXPpX2s0+b2rRrTI6wV+4+cPjO64RL9p63g/x2d7lHX9rb/OwM7gNaeyickJtXK1uWurlVHj/3p0/mLpHuk9XlPTH5aikpFXpzxsrw442UpKhUpLKmQ8RP+aM911ZpUpxFD17pFpaLNflU5qhphM0o9PGmyZOeXynPTZshz02ZIdn6pZOWVyJ13T5Cu4RES3StGln+3RrLzS2XD1p0S0ztWYnrHSs+oXva62fml9pHKbpX5PvGU5BWXy7SXZsq0l2Zao5JFZU75frt6neQVl8vSr74VQGJ6x0psXB+JjesjH322QPKKy6tto9q2r45cde1fwcNnyKjHF8iutBPy/+2de7BVdRXHP1+vIGCCgJfwLSViiClCjE98DCikhQ8sU2HQ8lHRA3UanTB7aKiUZYMGaASGYOVrNFNwFBVQB+QpMlIqvmI0UbFUDMHVH+t39Xjv5d5zz95n7j2H9ZnZc/bjd777d/bZv7V/j73W7/l1G+wnM56wDidOsrGT5tnYSfOsw4mTrNeoafbgkpfs6bXrbdWL623MxLkfj7Z2PXWyrX9no/U4ferH+8ox6npw/wG24f0tRS1U6Sxg84HuwIfARWb2UFPpDxkw0BY+mf8sYOX6ieUI01SuWcA+qLAwTdvXlEe3HGGayvV+WFnCNC24ho82vJxrhvsPGGiPLlxUVNouHWuqchawo8qpHwRB69Par44UQ7iABUGQnTZu6cLQBUGQmVZ17yqCNufrGgRB5ZGXZ4SkYZLWSHpO0qWNHJek36XjKyU1dABuhDB0QRBkJwdLJ6kGuAEYDvQFviGpb71kw4HeaTkf+H0x2QtDFwRBZnLyjBgEPGdmL5jZJuA2YES9NCOAW8x5EthZUtMvJNLG+uiWLV2yvlP77V4qIukuwPoyZCF0y6dbSXmtZt298z7xsqVL5nRqr12KTN5B0lMF21PNbGpa3x14peDYq8CnY4I1nmZ3oMnoE23K0JlZbTHpJD1VjndxQrd8upWU19BtGWY2LCepRt17S0jTgGi6BkHQVniVTwf+2ANYV0KaBoShC4KgrbAY6C2pl6T2wBnAPfXS3AOMTqOvhwLvmFnTQRNpY03XFjC1+SSh28Z0KymvodsKmNlmSWOBOUANMM3MnpF0YTo+Gfg7HvLtOeB94JxitMvq6xoEQdAWiKZrEARVTxi6IAiqnjB0QQPUXIzvNoKkHZtPVZJuz0q5BkFxVJShk9RH0mGS2iV3kbz1c9WUtK+kgZJ2yFn3AElHS+qeo+aRkkYBmJnlVdAlfUXSD/LQqqc7ArhGUo+cdU8A7qKR+U0yaB4qaVT6bJ+jbu90f9WUozxUFa0R7bOUBTgVj1L8EHAL8H2gc07a+xWs1+SkeRKwEpgHzC48R0bd4Un3buA+oGdGve2Az+Bz764GLiw8llH7eGA5MDTne+HodC/krVuX3xeB63PS/Gr6v2YAtwO9c9I9GZ+H5Q7geuA7wI55Xo9qWlo9A0X+qe2APwNHpO3TgInAlVmNXTJI7wOzCvZlMnbA4akg9k/bN+JD5VmvwzHAP4BBafsuYEhO1/hHwMXpITIuB73DgdcL8toFdz/qlIP2RcAlaX03YCjuKtQlg+YQ/JWFA9L9NhcYnDGf3fFXJfql7WnA6UAPoENG3fuBvmn7XPwdtPHATnncD9W2VFLTtTMesQC8gP8NaA+cWWozK/XxjAV+CGySNBPAzLbk0BS42syWpfUrgG45NGFfBy4ws0WSeuKFe6ykKZJGZmxubsabazOAQZKukzQhvZhZyn3yJh5Cf9fUxL4bjzQxPae81nE7XtDHAjdI6tr4V5qlBhhtZs8AOwJrcKOXpc9yM9AR2F9SZ/xBNRr4LTA+Qx/jZrwW3hPAzKYBLwG1+IM7qE9rW9oWPMWG4m9FH5W2a4AzgZmk9wFL1N0Nv2l2wQvNzBzyWkOqaab1PYBlQG3a1z2Hc/wYGJ/Wz8FrvLUZ9D4PXJrWL8ZruTdkzONBwAu42855eDP5XLwp3y2Dbj/cEN0GnJP2fQ6YDJyQMc/bpc9hwGvAgRn1RgJLgCeBy9O+44DpwEEZdC8E/gSMAq5K5eACcmg5VONSSTW6+XhzYpSkwWa2xcxm4YbqoFJFzWydmb1rZuvxG6VjXc1O0iGS9i9Bc4uZ1c05J2AD8JaZvSHpLOBKSR1LzXM6x1VmdmVa/yOwE9k60DcCfSSdhxeiq4G9JF2QIY8r8BrGBDO7ycw+Mq99dMVnhitVdxVwCV6j7ZX2vYA/VIoKDNGE9kfp8wHc2+CkDLVazOx2vFk8H3/YYWYP4/9Xlkgis/H5ko/DuwPONrMpQI9UewwKqBgXMDP7QNKteKSCy5IB+h/wWZoJ0dKCc7yZCvZESc/iBefYjJqbgXclvSJpAt7hPcbMSp5RWJIsPdbT9mn4dWjWubmJfK6T9ApwOfBdM7tX0rF4v1XJmNlqfJCjMK+1ZP/P7se7BH4qqS60V3/cQOfFCmAccK2ZlTyNmpm9Lelh4GuSNgEdcAO9MoPmO8CtkmbXGWdJo4FuQHmmfKtkWrtK2dIF75c7Fm+2TCd1+Od8jnHk0GxJWkp5fh54mZxG3ZL2DsA38RHTfjno7QkMKNjONOrayHU4Fzd6B+SoewjwS+DXefxfjej/BdgnB52d8TcFHsUHKEputm5Fv+7a5n4NqmGpWF/XNFhglp5mOep2xW/ui82s5CduI7pjgMXmnd15abbD+y6fN7M1Oep+qsaYlyb+WshrZvZsntrloBzXIOnuhPcp/6fZxC3T3RtoZ2aZauDVSsUaunIiqYOZfZCzZlkKThAEzROGLgiCqqeSRl2DIAhKIgxdEARVTxi6IAiqnjB0QRBUPWHoKgRJWyQtl7RK0l8ldcqgNV3SyLR+sxrOhl6Y9hhJh5dwjhelhnN9bm3/VjTGSJqUx3mDbZswdJXDRjM72Mz6AZtwN62PKTUIgZl9y9x7YWscg0ciCYKKJQxdZTIf2DfVtuZJmgU8nQIwTpS0WNLKOj/V5Ks5SdJqSffhYYJIxx6RNDCtD5O0VNIKSQ9J2gc3qONSbfIoSbWS7kjnWCzpiPTd7pLmSlomaQqNTzTcKJIGSXo8ffdxSX0KDu8p6QFJayRdUfCdsyUtSvmaUqqhD7YNKsbXNXAkbY8H33wg7RqEu3+tlXQ+Ps/ll+QhoRZKmov7gPYBDsR9YlfjsdEKdWuBm/AYbGsldTOztyRNBt41s1+ldLOA35jZAkl74e5MX8D9TheY2c8lnQic34Kf9Ww672ZJQ3CXrtMKfx8eTWVxMtTvAV/H4xN+KOlG4Cw8ll4QNCAMXeXQUdLytD4f+APepFxkZmvT/uOBL9b1v+HBLnsDg4HZ5o7p65KDeX0OBR6r0zKzt7aSjyFAX30Soq1zcmsajEeBxszuk/R2C35bF2CGpN540IZ2BcceNLM3ASTdCRyJx2MbgBs+8Jhv/27B+YJtjDB0lcNGMzu4cEcq5O8V7gK+Z2Zz6qX7Mm5AmkJFpAHv7jjM6kVfSXkp1c3mF8A8MzslNZcfKThWX9NSXmeY2WUlni/Yxog+uupiDvDt5OyPpP3kUWwfA85IfXi70njoqSeAoyX1St/tlvb/F4+dVsdcPJovKV2d8X0Mbz4iaTgec65YugD/Sutj6h0bKqmbPH7fycBCfN6QkUoT46TjWWK7BVVOGLrq4ma8/22ppFXAFLzWfhfwT+BpPJz5o/W/aGZv4P1qd0pagUcsBrgXOKVuMAIPNTQwDXas5pPR358BgyUtxZvQLzeRz5WSXk3LdcC1wARJC/EYgIUswCPpLgfuMLOn0ijxeGCupJXAg8CuRV6jYBsknPqDIKh6okYXBEHVE4YuCIKqJwxdEARVTxi6IAiqnjB0QRBUPWHogiCoesLQBUFQ9fwfXTyTwAF2la4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4. Batch Normalization\n", + "- Batch Normalization, one of the methods to prevent the \"internal covariance shift\" problem, has proven to be highly effective\n", + "- Normalize each mini-batch before nonlinearity\n", + "- Doc: https://keras.io/optimizers/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "
Batch normalization layer is usually inserted after dense/convolution and before nonlinearity" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import BatchNormalization" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, )))\n", + " model.add(BatchNormalization()) # Add Batchnorm layer before Activation\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(BatchNormalization()) # Add Batchnorm layer before Activation\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(BatchNormalization()) # Add Batchnorm layer before Activation\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(BatchNormalization()) # Add Batchnorm layer before Activation\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " sgd = optimizers.SGD(lr = 0.001)\n", + " model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.2577 - accuracy: 0.2309 - val_loss: 2.1423 - val_accuracy: 0.3283\n", + "Epoch 2/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.0092 - accuracy: 0.4118 - val_loss: 1.9131 - val_accuracy: 0.4936\n", + "Epoch 3/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.8629 - accuracy: 0.5313 - val_loss: 1.7874 - val_accuracy: 0.5751\n", + "Epoch 4/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.7558 - accuracy: 0.6006 - val_loss: 1.6936 - val_accuracy: 0.6354\n", + "Epoch 5/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.6728 - accuracy: 0.6499 - val_loss: 1.6170 - val_accuracy: 0.6753\n", + "Epoch 6/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.6026 - accuracy: 0.6830 - val_loss: 1.5533 - val_accuracy: 0.7066\n", + "Epoch 7/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.5452 - accuracy: 0.7104 - val_loss: 1.4961 - val_accuracy: 0.7273\n", + "Epoch 8/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.4932 - accuracy: 0.7289 - val_loss: 1.4461 - val_accuracy: 0.7475\n", + "Epoch 9/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.4490 - accuracy: 0.7432 - val_loss: 1.4011 - val_accuracy: 0.7611\n", + "Epoch 10/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.4034 - accuracy: 0.7623 - val_loss: 1.3597 - val_accuracy: 0.7724\n", + "Epoch 11/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.3643 - accuracy: 0.7720 - val_loss: 1.3216 - val_accuracy: 0.7833\n", + "Epoch 12/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.3265 - accuracy: 0.7821 - val_loss: 1.2849 - val_accuracy: 0.7918\n", + "Epoch 13/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.2935 - accuracy: 0.7892 - val_loss: 1.2520 - val_accuracy: 0.8002\n", + "Epoch 14/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.2617 - accuracy: 0.7946 - val_loss: 1.2178 - val_accuracy: 0.8113\n", + "Epoch 15/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.2269 - accuracy: 0.8076 - val_loss: 1.1883 - val_accuracy: 0.8180\n", + "Epoch 16/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 1.1994 - accuracy: 0.8105 - val_loss: 1.1623 - val_accuracy: 0.8205\n", + "Epoch 17/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 1.1727 - accuracy: 0.8147 - val_loss: 1.1338 - val_accuracy: 0.8268\n", + "Epoch 18/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.1472 - accuracy: 0.8247 - val_loss: 1.1071 - val_accuracy: 0.8311\n", + "Epoch 19/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.1204 - accuracy: 0.8271 - val_loss: 1.0810 - val_accuracy: 0.8375\n", + "Epoch 20/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.0948 - accuracy: 0.8294 - val_loss: 1.0572 - val_accuracy: 0.8406\n", + "Epoch 21/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.0694 - accuracy: 0.8338 - val_loss: 1.0331 - val_accuracy: 0.8448\n", + "Epoch 22/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.0492 - accuracy: 0.8370 - val_loss: 1.0105 - val_accuracy: 0.8475\n", + "Epoch 23/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 1.0260 - accuracy: 0.8400 - val_loss: 0.9882 - val_accuracy: 0.8497\n", + "Epoch 24/100\n", + "434/434 [==============================] - 2s 5ms/step - loss: 1.0056 - accuracy: 0.8409 - val_loss: 0.9691 - val_accuracy: 0.8529\n", + "Epoch 25/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.9889 - accuracy: 0.8452 - val_loss: 0.9488 - val_accuracy: 0.8545\n", + "Epoch 26/100\n", + "434/434 [==============================] - 2s 5ms/step - loss: 0.9668 - accuracy: 0.8499 - val_loss: 0.9288 - val_accuracy: 0.8574\n", + "Epoch 27/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.9474 - accuracy: 0.8496 - val_loss: 0.9112 - val_accuracy: 0.8608\n", + "Epoch 28/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.9267 - accuracy: 0.8545 - val_loss: 0.8918 - val_accuracy: 0.8640\n", + "Epoch 29/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.9103 - accuracy: 0.8566 - val_loss: 0.8737 - val_accuracy: 0.8640\n", + "Epoch 30/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.8967 - accuracy: 0.8548 - val_loss: 0.8578 - val_accuracy: 0.8665\n", + "Epoch 31/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.8778 - accuracy: 0.8613 - val_loss: 0.8417 - val_accuracy: 0.8685\n", + "Epoch 32/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.8625 - accuracy: 0.8600 - val_loss: 0.8268 - val_accuracy: 0.8670\n", + "Epoch 33/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 0.8493 - accuracy: 0.8611 - val_loss: 0.8127 - val_accuracy: 0.8712\n", + "Epoch 34/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.8324 - accuracy: 0.8646 - val_loss: 0.7994 - val_accuracy: 0.8717\n", + "Epoch 35/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.8195 - accuracy: 0.8636 - val_loss: 0.7836 - val_accuracy: 0.8744\n", + "Epoch 36/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.8086 - accuracy: 0.8633 - val_loss: 0.7703 - val_accuracy: 0.8751\n", + "Epoch 37/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 0.7919 - accuracy: 0.8652 - val_loss: 0.7590 - val_accuracy: 0.8753\n", + "Epoch 38/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.7804 - accuracy: 0.8693 - val_loss: 0.7449 - val_accuracy: 0.8776\n", + "Epoch 39/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.7654 - accuracy: 0.8723 - val_loss: 0.7343 - val_accuracy: 0.8774\n", + "Epoch 40/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.7548 - accuracy: 0.8715 - val_loss: 0.7237 - val_accuracy: 0.8786\n", + "Epoch 41/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.7433 - accuracy: 0.8734 - val_loss: 0.7134 - val_accuracy: 0.8796\n", + "Epoch 42/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.7343 - accuracy: 0.8709 - val_loss: 0.7016 - val_accuracy: 0.8811\n", + "Epoch 43/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.7209 - accuracy: 0.8765 - val_loss: 0.6905 - val_accuracy: 0.8828\n", + "Epoch 44/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.7131 - accuracy: 0.8770 - val_loss: 0.6826 - val_accuracy: 0.8825\n", + "Epoch 45/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.7016 - accuracy: 0.8760 - val_loss: 0.6709 - val_accuracy: 0.8840\n", + "Epoch 46/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.6923 - accuracy: 0.8755 - val_loss: 0.6602 - val_accuracy: 0.8852\n", + "Epoch 47/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6808 - accuracy: 0.8790 - val_loss: 0.6511 - val_accuracy: 0.8837\n", + "Epoch 48/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6713 - accuracy: 0.8805 - val_loss: 0.6436 - val_accuracy: 0.8855\n", + "Epoch 49/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6668 - accuracy: 0.8792 - val_loss: 0.6344 - val_accuracy: 0.8859\n", + "Epoch 50/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6575 - accuracy: 0.8804 - val_loss: 0.6265 - val_accuracy: 0.8884\n", + "Epoch 51/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6490 - accuracy: 0.8815 - val_loss: 0.6185 - val_accuracy: 0.8877\n", + "Epoch 52/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6425 - accuracy: 0.8804 - val_loss: 0.6095 - val_accuracy: 0.8889\n", + "Epoch 53/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6318 - accuracy: 0.8835 - val_loss: 0.6041 - val_accuracy: 0.8891\n", + "Epoch 54/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.6248 - accuracy: 0.8831 - val_loss: 0.5958 - val_accuracy: 0.8896\n", + "Epoch 55/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.6166 - accuracy: 0.8846 - val_loss: 0.5871 - val_accuracy: 0.8906\n", + "Epoch 56/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.6118 - accuracy: 0.8833 - val_loss: 0.5818 - val_accuracy: 0.8906\n", + "Epoch 57/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.6027 - accuracy: 0.8852 - val_loss: 0.5747 - val_accuracy: 0.8912\n", + "Epoch 58/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5949 - accuracy: 0.8880 - val_loss: 0.5671 - val_accuracy: 0.8916\n", + "Epoch 59/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5899 - accuracy: 0.8852 - val_loss: 0.5631 - val_accuracy: 0.8914\n", + "Epoch 60/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5832 - accuracy: 0.8875 - val_loss: 0.5564 - val_accuracy: 0.8923\n", + "Epoch 61/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5764 - accuracy: 0.8875 - val_loss: 0.5503 - val_accuracy: 0.8928\n", + "Epoch 62/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5708 - accuracy: 0.8877 - val_loss: 0.5465 - val_accuracy: 0.8931\n", + "Epoch 63/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.5641 - accuracy: 0.8882 - val_loss: 0.5389 - val_accuracy: 0.8943\n", + "Epoch 64/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5583 - accuracy: 0.8894 - val_loss: 0.5346 - val_accuracy: 0.8939\n", + "Epoch 65/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.5518 - accuracy: 0.8902 - val_loss: 0.5295 - val_accuracy: 0.8953\n", + "Epoch 66/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.5449 - accuracy: 0.8901 - val_loss: 0.5236 - val_accuracy: 0.8946\n", + "Epoch 67/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5405 - accuracy: 0.8927 - val_loss: 0.5189 - val_accuracy: 0.8958\n", + "Epoch 68/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5362 - accuracy: 0.8928 - val_loss: 0.5131 - val_accuracy: 0.8958\n", + "Epoch 69/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5319 - accuracy: 0.8928 - val_loss: 0.5097 - val_accuracy: 0.8949\n", + "Epoch 70/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.5238 - accuracy: 0.8967 - val_loss: 0.5052 - val_accuracy: 0.8961\n", + "Epoch 71/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5204 - accuracy: 0.8947 - val_loss: 0.5005 - val_accuracy: 0.8973\n", + "Epoch 72/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5179 - accuracy: 0.8940 - val_loss: 0.4948 - val_accuracy: 0.8983\n", + "Epoch 73/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5132 - accuracy: 0.8936 - val_loss: 0.4918 - val_accuracy: 0.8973\n", + "Epoch 74/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5038 - accuracy: 0.8990 - val_loss: 0.4866 - val_accuracy: 0.8976\n", + "Epoch 75/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.5024 - accuracy: 0.8961 - val_loss: 0.4833 - val_accuracy: 0.8987\n", + "Epoch 76/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4987 - accuracy: 0.8988 - val_loss: 0.4798 - val_accuracy: 0.8992\n", + "Epoch 77/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.4934 - accuracy: 0.8973 - val_loss: 0.4756 - val_accuracy: 0.8997\n", + "Epoch 78/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4913 - accuracy: 0.8963 - val_loss: 0.4738 - val_accuracy: 0.9007\n", + "Epoch 79/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4850 - accuracy: 0.9006 - val_loss: 0.4684 - val_accuracy: 0.9000\n", + "Epoch 80/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.4837 - accuracy: 0.8996 - val_loss: 0.4650 - val_accuracy: 0.9005\n", + "Epoch 81/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4798 - accuracy: 0.8998 - val_loss: 0.4603 - val_accuracy: 0.9003\n", + "Epoch 82/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4761 - accuracy: 0.8996 - val_loss: 0.4584 - val_accuracy: 0.9022\n", + "Epoch 83/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4718 - accuracy: 0.8980 - val_loss: 0.4558 - val_accuracy: 0.9017\n", + "Epoch 84/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.4708 - accuracy: 0.9009 - val_loss: 0.4514 - val_accuracy: 0.9027\n", + "Epoch 85/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4634 - accuracy: 0.9030 - val_loss: 0.4470 - val_accuracy: 0.9032\n", + "Epoch 86/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4592 - accuracy: 0.9028 - val_loss: 0.4442 - val_accuracy: 0.9039\n", + "Epoch 87/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 0.4563 - accuracy: 0.9037 - val_loss: 0.4418 - val_accuracy: 0.9027\n", + "Epoch 88/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4532 - accuracy: 0.9029 - val_loss: 0.4403 - val_accuracy: 0.9044\n", + "Epoch 89/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4511 - accuracy: 0.9045 - val_loss: 0.4362 - val_accuracy: 0.9040\n", + "Epoch 90/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4497 - accuracy: 0.9020 - val_loss: 0.4315 - val_accuracy: 0.9035\n", + "Epoch 91/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4452 - accuracy: 0.9054 - val_loss: 0.4300 - val_accuracy: 0.9042\n", + "Epoch 92/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4405 - accuracy: 0.9045 - val_loss: 0.4285 - val_accuracy: 0.9054\n", + "Epoch 93/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4372 - accuracy: 0.9040 - val_loss: 0.4254 - val_accuracy: 0.9052\n", + "Epoch 94/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4349 - accuracy: 0.9093 - val_loss: 0.4219 - val_accuracy: 0.9066\n", + "Epoch 95/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4321 - accuracy: 0.9045 - val_loss: 0.4199 - val_accuracy: 0.9071\n", + "Epoch 96/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4299 - accuracy: 0.9086 - val_loss: 0.4168 - val_accuracy: 0.9069\n", + "Epoch 97/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4231 - accuracy: 0.9079 - val_loss: 0.4151 - val_accuracy: 0.9074\n", + "Epoch 98/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4227 - accuracy: 0.9058 - val_loss: 0.4124 - val_accuracy: 0.9089\n", + "Epoch 99/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4199 - accuracy: 0.9100 - val_loss: 0.4094 - val_accuracy: 0.9088\n", + "Epoch 100/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 0.4188 - accuracy: 0.9071 - val_loss: 0.4078 - val_accuracy: 0.9086\n" + ] + } + ], + "source": [ + "model = mlp_model()\n", + "history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXRc5Znv++9Tk0rzbFmWLMsGgwewDRYGAmFOYjPEJBjaEBKgw/GFbkLCvesc4HafpDmd7kuvsGiSG2hfoJ2QDoEQIImTY4aGhjiEIbbBMR7xbMuDJmsqqUo1PfePXZiyLFtlLFGqquezVi2rau/a9byy/dOrd7/73aKqGGOMyXyudBdgjDFmZFigG2NMlrBAN8aYLGGBbowxWcIC3RhjsoQnXR9cVVWljY2N6fp4Y4zJSGvWrGlX1eqhtqUt0BsbG1m9enW6Pt4YYzKSiOw+1jYbcjHGmCxhgW6MMVnCAt0YY7JE2sbQhxKJRGhubiYUCqW7lKzh9/upr6/H6/WmuxRjzCgbU4He3NxMcXExjY2NiEi6y8l4qkpHRwfNzc1Mnjw53eUYY0bZmBpyCYVCVFZWWpiPEBGhsrLSfuMxJkeMqUAHLMxHmH0/jckdY2rIxRhjxqKeUIRtrQFm15fhdh3ZSersC5PndZHvdX/SgQr1QNduiMdo64/xx+2dVBYXclZjFSWF+ZBXAv6SEa8zpUAXkfnADwE38KSqPjhoezmwDDgFCAF/rarrR7jWUdfV1cUvfvEL/uZv/uaE3nfllVfyi1/8grKysmPu893vfpeLLrqIK6644mTLNMaMoN5QhNbeAaryPZTEOpBQN7g84HLT29fH6++uZuPGDymLtrM7P8rscW7qCoWDvRF2HgrR0R/FzwDFMkC5O0iDtFIa7zp8/Grgq4M+c8up3+T0mx8e8bbIcDe4EBE38BHwBaAZWAXcqKobk/b5ARBQ1QdEZBrwqKpefrzjNjU16eArRTdt2sT06dM/VUNGwq5du7j66qtZv/7In0WxWAy3252mqk5eur+vxqRMFQKt0LkTPHngK3L+7O9wXg+00t/bSVtHB93dnXgivfijAXyxAH1SSLurioNaTnE8QH1sLzXh3biiIfrVQ1/UQ9jlx1dQTGFxGfF4nJ6udjTYRQXdjKMLj8SPWVpMPPRRQE/cx4B6EZR8t1LocxF15xOSfPrwsyNaxbr+CnbGqiksyOfCKeWc11hCX3CArQe72NHSTcP0Jq5acM2n+haJyBpVbRpqWyo99HnANlXdkTjYs8BCYGPSPjOA/wdAVTeLSKOI1Khqy6eqOE3uu+8+tm/fzpw5c/B6vRQVFVFbW8vatWvZuHEj1157LXv37iUUCvHtb3+bJUuWAJ8sYxAIBFiwYAEXXnghb7/9NnV1dfz2t78lPz+fW2+9lauvvppFixbR2NjILbfcwu9+9zsikQi/+tWvmDZtGm1tbdx00010dHRwzjnn8PLLL7NmzRqqqqrS/J0xOScWdULUVwh5RUds2nSgB7coU4sGkEALhLrRgV4OtnUQDfVSnRfFHw9B8BAEWqC3BaIh+t1F7Ax4aA9CiTtMsWsAPxFi4iKGG088TFVwBwXR7uOWVgBMAgbUQw8F9Ggh7RRQQh9zXR34iRDFxV6t4f34BPoln8o8pawghisaYqCnHeludprpKSa/rJZI8Zl86BlHC5V0xAuJRCPEIhG8Ph8XzD2bU6bOwF00jmJgw45DvL29nUunjWPyxLKjzlNNBS6LxdnXGaS+PB+P+5NTlVNG4K/meFIJ9Dpgb9LzZuDcQfv8Bee3irdEZB7O97seOCLQRWQJsASgoaHhuB/6wO82sHF/TwrlpW7GhBK+d83MY25/8MEHWb9+PWvXruXNN9/kqquuYv369Yen/C1btoyKigqCwSDnnHMO1113HZWVlUccY+vWrTzzzDM88cQT3HDDDbzwwgvcfPPNR31WVVUV77//Po899hgPPfQQTz75JA888ACXXXYZ999/Py+//DKPP/74iLbfZKFIELr2OGO2/lLn4fJAzz7n0d/h9HoBXG7IL4eCKsgrItLdwpatmziwZzvj6aBWOiiNtOHpb0X6O4DE+3xFUFhNKAZ9fQHGRUOU0ock9WYFqB1UWlD89Lgr6fdV0hPzEg82Uyp9THdH6SOfnlgeHepGULzEiYuLd+Jnsyk+kV06Hg8xCgmSJxE6tZg+byWTJk1makMdp0+sYVpdBUU+D/54nMq4UpjnwesSCHbi8RUy2ZPHhGgMr8uFK2ncOxqLs/lgLy4RzqwtPhzIk1L4dgtw/imVnH9K5XH387pdNFYVpnDEkZVKoA81TWLwOM2DwA9FZC3wIfABED3qTaqPA4+DM+RyYqV+9ubNm3fE/O0f/ehH/PrXvwZg7969bN269ahAnzx5MnPmzAFg7ty57Nq1a8hjf/WrXz28z4svvgjAW2+9dfj48+fPp7y8fETbY9IgHodwAKKhxGMAxOWEq7hhoMcJ3f4OJ5TDfc4j0u/sGw1Bfzv07Ifufc7rHj94/U6YBz79L8Fe4IzEo11LOKgVfKAVtOpsutzlBL3llLjDjJNuyvs66Q6GUXcep9ZVcTC/nA09+bzX5qHPXcLU+vHMaKyloKiE7d3CR51xmrujtAcGaA8MUJTn4fpLJ3J9Uz3jiv2Ha4jFFZd8MhtrLs71E/3hGLs7+tnRHuBgd4jZE8uYM7EMr3uoiXmDhkMLKg5/mec5eqjU43ZxRl3pp/6+jWWpBHozMDHpeT2wP3kHVe0BbgMQ529mZ+LxqR2vJ/1ZKSz85Cfsm2++yWuvvcY777xDQUEBl1xyyZDzu/Py8g5/7Xa7CQaDQx774/3cbjfRqPOzz27YnWZde6GvLdHTLQM00dPdD33tEI86j1gkEbwBJ5ADrdB70Anlj/s68bizbaAH9Njjssfk8qCefPDkEfeXES2aQLjuQoKST7C/j4FQP31uNwfya2jWajpi+RRpP4UaYCA8wLqeQg7EK2inlLg6YemRGOUSoFx6qXCHaGho5NzZZ9J05kzy8BE62EtrSy+HAmG6gxG6ghF2hKP0h2OEIjEuPLWKWy+YTFGeExszgRtw/t0mDztcfALNHDxjBJxwL8zzMGNCCTMmjPxMkGyWSqCvAqaKyGRgH7AYuCl5BxEpA/pVNQzcDqxMhHxGKS4upre3d8ht3d3dlJeXU1BQwObNm3n33XdH/PMvvPBCnnvuOe69915effVVOjs7R/wzcsJArxPCPfudcK48xfkzFoVD26F1oxPQ0QGIBqF9K+x+G7r3Dn/sZG4f5BVDUQ3xwnGEixvweT24RABB84rpdRWxP+hjW2eMze1h9nTHKPG7OX1cAadW+TkU9fNhp5v321wcGMijnzz61U9I3Qz3873A56a8wEd5oZcCvwcUFKWg1ENTUzm3TalkVn0peR7XsNcjeIGmxgqaGiuOu99Q7FqHsWPYQFfVqIjcBbyC87vNMlXdICJ3JLYvBaYDPxORGM7J0m+OYs2jprKykgsuuIAzzjiD/Px8ampqDm+bP38+S5cuZdasWZx++umcd955I/753/ve97jxxhv55S9/ycUXX0xtbS3FxcUj/jkZKRaF7j3Q9hG0b4HOXc7QhcfvjBl3NzthfWgHhIY4qVZQCQMBiA0cva1wHEw6Hz73LSidSCjQSaCrnWg8TmH1JIqqGwh6K1i1t5c/butkU1uIuCcfj8+PKuzt7Gdfc5BoXPG4hNoyPxWFeexq76M7GAHA73VxTmMFc+eWs7O9jx9t76Bt1wAicNq4YubMKKOpyHe4JLdL8LhceNyC3+sm3+sm3+eiLN/HhLJ8asv8lPhtfR5zpGGnLY6WsThtMd0GBgZwu914PB7eeecd7rzzTtauXXvSxx2T39dYFIKdzliyywOxcKJXnRjiCLQ4j54DTlB37oZ45JP351eACERCzntLJkDFFOdR1gAldVA8HkJd9O7fwoGdGzkw4GN9pI4/942n3VVJVVkJ4ypKieOlpXeAA91BWnoGCAwcefrH53ahKJGYUpTnYfbEUuJxCEVjqEJdeT6TKgqoLs6jrXeAfV1B2gMDTKosZHptCTNqSzijruSI8VxVZc+hfioKfRRbMJsTcLLTFs1nZM+ePdxwww3E43F8Ph9PPPFEukv6dPoPOVfJhboh2OWcvItHQWPOOHXzn6F5DUT6jnMQgcIqJ5RrZsL0a6DiFLTqNN7oKOMn73fREQjTL1GCkRglcS/jwnlUB/IoiXkp6PXgcwvv7vCwarcL1elUFPporCygsbaQclX2dQX5044e4gq1ZX5OH1/M56dWM77Uz/gSP163i5aeEC29IQThoqlVNDVW4POc/IoZIsKkys9+FoTJbhboY8jUqVP54IMP0l1G6jq2O1Pmwn3OuPWBv8DOldC64djvETeMPwPm3ARVpxEYCLOjpYvWQIx4cS2u0noG8mv4sMfHpoNBWnpCnCmlnFNWQVWBjx//fhvv79lGQ0UBp9UUU5jnxu9x0xUM09Y7wJo9nQRCUfoGYoRjcU6rKeI7l5/GVbPGc+o4G74y2c0C3RxbqAcOfghtm535y5WnOEMZW1+F1T9xetrJPH6YeC5c9vcwboYzU8RfCr4CcHmdoRV/Ka0hFy9+sI+XVh1g3b5uVJ3RE2f0T4GD+NwuTh1XRE2Jn9c2tfCrNc6FIONL/Dz41TNZNLf+iAs2hhKNxYfdx5hsYoGey1Sh94AzHAIQ7ofmVc6Mj73vOicYj6VyKnzx+1A3l7ingE2H4nT7aqgqK6G6KI+SfO/hKWl9A1G2tPSy5WAvr2/awBtb2ojFlTkTy7jnitO49PRxzJxQQl84Sld/hHAsTkNFweE5x/G4sr0twM72Pi46rRq/N7VlGCzMTa6xQM810TDsfgu2vOQ8hpqql18BDefDnJvQ8bN4P1RLXrSHuth+SgcOEq6Zzb7Ss2nuCvHGX1p5af0BWnoGgANHHMbtEnxuF8FI7PBr44rzWHLRFK6fW8+U6iMvKS/2e4c8QehyCVNriplaY0MmxhyPBXou0DhsXA6bfgcfvQID3eDJh1Mudabq+RIn51xemDAHqk4DEba29PJ3v1nPn3d+HPqFuOQU4hoAVgLg87i45LRqrppVS02Jn7beAVp7BwiEooRjMcLROMV+L9PGFzNtfAn15flHXIZtjBk5FugnoaioiEAgwP79+7n77rt5/vnnj9rnkksu4aGHHqKpachZRgA88sgjLFmyhIKCAiC15XiPSdW5kjEaci4TH+hxLhl/5evOOPj0a2D61TD5YrpjXl5Zf5C1u7r4sLmbHW0BJla0cPr4fgp8Hn61ei+FeR6+f+0ZTKwooLmznwNdIQrzPNSW+qkp8XNmfenhKweNMell/xNHwIQJE4YM81Q98sgj3HzzzYcDfcWKFSd2gOiAM0Uw1O2EePKl5t588BcT/fpy3I2fQ9xeDnaHWPbaTn7x3h4CA1GK/R5m1Zdy3dx6mjuDrN7VyYHuIF89u577F0yjsijv2J9tjBkzLNCT3HvvvUyaNOnwDS7+4R/+ARFh5cqVdHZ2EolE+P73v8/ChQuPeF/yOurBYJDbbruNjRs3Mn369CPWcrnzzjtZtWoVwWCQRYsW8cADD/CjH/2I/fv3c+mll1JVVcUbb7xxeDneqqoqHn74YZYtWwbA7bffzne+fTe7tm5mwTXXcuG5Z/P2e6upG1/Nb5c9TH5xmbMwkccPHj/qyacnrLRFNrDgiUOIvEqex0UkpqgqV82awH/7/GTOmFB61DCIzRAxJvOM3UB/6T5nytxIGn8mLHjwmJsXL17Md77zncOB/txzz/Hyyy9zzz33UFJSQnt7O+eddx5f/vKXj7l+xb/9279RUFDAunXrWLduHWefffbhbf/0T/9ERUUFsViMyy+/nHXr1nH33Xfz8MMP88Ybbxy17vmaNWv4yU9+wntv/wntP8S5l3yRi2fUUl5axNbtO3jm0X/miUf+mRtuv4cX3trMzbfcBjhh3NkfoaOzn3A0Tiyu/O2lp+AWIRSNk+dxcf3ciTRUFhzze2FhbkzmGbuBngZnnXUWra2t7N+/n7a2NsrLy6mtreWee+5h5cqVuFwu9u3bR0tLC+PHjx/yGCtXruTuu+8GYNasWcyaNevwtueee47HH3+caDTKgQMH2Lhx4xHbj6Bx3nrzNb4y/zIKAzsB5atXXs4fP9jMlxde6yzTe8UiYnHlzKbz2LJzD519YQIDUbqDEeKqFPg81Fb48fTk8d/PmzbS3y5jzBgzdgP9OD3p0bRo0SKef/55Dh48yOLFi3n66adpa2tjzZo1eL1eGhsbh1w2N9lQvfedO3fy0EMPsWrVKsrLy7n11luPPo6qs75JPAotm9BAm3Nys6ASCiuhsBr1lzHgLsLj9bGjLUBfOEZXf5T+/iB7O/txiVBe4KWiMI98nzNfe7+thmdMTrDfqwdZvHgxzz77LM8//zyLFi2iu7ubcePG4fV6eeONN9i9e/dx33/RRRfx9NNPA7B+/XrWrVsHQE9PD4WFhZSWltLS0sJLL710+D3FxcX0drRC+0fOGiiqkF/KRV+4ht+8/g593gpaeyP86vkXmTjjbHa09xGJxYnGlaoiH+WFPsoLfJxeU8yM2hLqygsOh7kxJneM3R56msycOZPe3l7q6uqora3la1/7Gtdccw1NTU3MmTOHadOOP3Rx5513cttttzFr1izmzJnDvHnzAJg9ezZnnXUWM2fOZMqUKVxwwQXOG6Ihlnx9EQuuuorammre+M+Xwe2F0npmT57N9TfezFlzzyGuynU3fYOzzzqbzpZm8rxuTktcaOP3uol6XOSleAWlMSY72fK56aDqrJPS3+YsaoWghVVE8mvoizq33wqGYwQjMVQVv9dNVZGP0nzfkHd4GU7OfF+NyQG2fO5YEul3bsYQ7gOXl3jReA5GCunuh0ivs5ysS4R8nxPiJX4vBT633RXGGDMsC/TPQjzmBHmwy7nhr8sDpROJ+svZ2d5PKBKnNN9LYZ6bAp8Hv3f4W4YZY8xgYy7QB99wNqOFepybB0f6OXzz4MIqKK4loi52tvURjsWZVFlASf7o3LXGbjxtTO4YU4Hu9/vp6OigsrIys0M9FnFupRbsBHceFI1zFsDyFRLDTVd/mLbefqJxpbGykCL/6Pw1qCodHR34/f5ROb4xZmwZU4FeX19Pc3MzbW1t6S7l04uGoK/DWU/FXwJ5ecTpIhw9RDDinOyMK3jdQnmBj709oztz1O/3U19fP6qfYYwZG1IKdBGZD/wQcANPquqDg7aXAj8HGhLHfEhVf3KixXi9XiZPnnyibxs7mlfDzxY6Nyy+/in2eBr5v3/9Ie/t7CASU/xeF1edOYGbzm3g7IayzP4txBgz5gwb6CLiBh4FvgA0A6tEZLmqbkza7W+Bjap6jYhUA1tE5GlVDY9K1WPRwfXw8+ucMfJvLCeQV83tj/2Jg90h/vqCyXx+ajVNjeUp323HGGNOVCo99HnANlXdASAizwILgeRAV6BYnC5nEXAIiI5wrWNX6yb4j2udcfJvLCdeNJ57fr6G7W19/Oyv53HBqVXDH8MYY05SKgO4dUDyfcqaE68l+zEwHdgPfAh8WzV5UW6HiCwRkdUisjqjx8mTbVwOT14B4oJv/BbKJ/HI61v5z40t/P1V0y3MjTGfmVQCfaiB3sFz4b4ErAUmAHOAH4tIyVFvUn1cVZtUtam6uvqEix1T4jF4/X/Bc1+H6mmw5E1a8ybyD8s38KPXt3L93Hpu/Vxjuqs0xuSQVIZcmoGJSc/rcXriyW4DHlRn0vM2EdkJTAP+PCJVjjXBTnjhdtj2Gpx9C92X/DOPvrWXn73zFyIx5cZ5DXzvmhl20tMY85lKJdBXAVNFZDKwD1gM3DRonz3A5cAfRaQGOB3YMZKFjhktG+DZrzmX71/9r7xeeBX3/7/v0hYY4Ctz6rj78qk0VhWmu0pjTA4aNtBVNSoidwGv4ExbXKaqG0TkjsT2pcA/Aj8VkQ9xhmjuVdX2Uaw7PTavgBe+CXkl9H1tOd97v5Dn16zm9Jpi/v2WczizvjTdFRpjclhK89BVdQWwYtBrS5O+3g98cWRLG2M+egWe+waMP5OOLz/Fzb/czUct+7jr0lP51uWnkuex6YjGmPQaU1eKjlnb34Bffh1qZtKy8Flu+vkm9nUFWXbrOVx8Woaf3DXGZA0L9OHs+hM8cyNUnsq+q5/mxqc20hEY4Knb5nHulMp0V2eMMYdZoB/PvvfhF38FpfVsW/A0X3tqM8FwjJ/ffi5nNZSnuzpjjDmC3VP0WFo3O5fy55ez7vKnuO5nW1GF5+4438LcGDMmWaAPpXM3/MdXwOVh1cXLuOGZPVQU+njhzs8xbfxR10sZY8yYYIE+2EAAnr4eIn2EbnyBu17upqGigF/dcT4TKwrSXZ0xxhyTjaEnU4Xl34KOrfD13/DElnxaegb48U1nU1WUl+7qjDHmuKyHnuy9/w82vAiX/U/aqs9j6R+286WZNZzTWJHuyowxZlgW6B/b8x68+ndw+lVw4T088tpHDETj3Dt/WrorM8aYlFigA0TD8OJ/g9KJcO1jbGvr49lVe/nauQ1MqS5Kd3XGGJMSC3SA95+Crt1w5UPE80p54HcbKPC6ufvyqemuzBhjUmaBHu6HlQ9Bw+fg1Mt54o87+OPWdv7HgmlU2olQY0wGsVkuq56AwEG4/ie8v7eLH7yyhQVnjOfmcxvSXZkxxpyQ3O6hh7rhrX+FU6+ge9w53P3MB9SU+Hnwull2cwpjTMbJ7R76O485dx+67O/5+9+s52B3iOfuOJ/SfG+6KzPGmBOWuz30/kPwzqMw/cu8E2zgd3/Zz7cum8rZtk6LMSZD5W6g/+mHEA4Qu/h+/vH3G6kry+f/uHhKuqsyxphPLTcDPdAGf34czlzE83uL2High/sWTMPvtbsOGWMyV24G+p8egWiIwHn/Jz945SPmTirn6lm16a7KGGNOSu4Fes8BWPUkzFrMox+6aA8M8N2rZ9isFmNMxksp0EVkvohsEZFtInLfENv/u4isTTzWi0hMRMbmilZv/SvEIgTOu4ef/mkXC+dMYPbEsnRXZYwxJ23YQBcRN/AosACYAdwoIjOS91HVH6jqHFWdA9wP/EFVD41GwScl1ONc5j/nRn6/108wEuOWzzWmuypjjBkRqfTQ5wHbVHWHqoaBZ4GFx9n/RuCZkShuxG15CaIhOOsb/HL1XqaOK+Is650bY7JEKoFeB+xNet6ceO0oIlIAzAdeOMb2JSKyWkRWt7W1nWitJ2/Dr6Gkjq2+aXywp4u/OmeijZ0bY7JGKoE+VOLpMfa9BvjTsYZbVPVxVW1S1abq6upUaxwZwS7Y9hrM/ArPrdmHxyVce9aQP5eMMSYjpRLozcDEpOf1wP5j7LuYMTvcsgLiESLTFvLi+/u4YnqN3VbOGJNVUgn0VcBUEZksIj6c0F4+eCcRKQUuBn47siWOkA2/htIGXu+ZSEdfmBvOqU93RcYYM6KGDXRVjQJ3Aa8Am4DnVHWDiNwhInck7foV4FVV7RudUk9C/yHY/l8w81qeW9NMTUkeF039jId8jDFmlKW02qKqrgBWDHpt6aDnPwV+OlKFjajN/xviUbpPuYY/vNnGkoum4HHn3jVVxpjslhuptuHXUN7IK4fGE4srV55hl/kbY7JP9gd6sAt2vAkzruXVjS3UleVzRl1JuqsyxpgRl/2Bvust0Bj9jZezcms7X5o53uaeG2OyUvYH+o43wVvAG30NhKNxvjSzJt0VGWPMqMj+QN/5B5h0AS9v6qSy0EdT49hcM8wYY05Wdgd69z5o/4jIpM/zX5ta+OLMGtwuG24xxmSn7A70nX8A4APPbPrCMb44c3yaCzLGmNGT3YG+400oqOLF5jKK8zx87pTKdFdkjDGjJnsDXRV2/IH45It5dXMbl04bR57H7hlqjMle2RvobVsgcJDWqnM51Bfm4tPsUn9jTHbL3kDf8SYAq1yzAJjTYDeyMMZkt+wO9PLJvN1RSInfw+TKwnRXZIwxoyo7Az0Wda4QnXIxH+zpYvbEMlw2XdEYk+WyM9DbNkG4l9CE8/iopdfuG2qMyQnZGeitmwDYwiTiauPnxpjckJ2B3rIBXF7e63Eu859db4FujMl+2RnorRuh6jTeb+6joaKASrt3qDEmB2RnoLdshJoZrN3bxRwbPzfG5IjsC/RgF/Q001tyGgd7QhboxpickX2Bnjgh+pHWA3ZC1BiTO1IKdBGZLyJbRGSbiNx3jH0uEZG1IrJBRP4wsmWegNYNALzbPx6vW5hRa7ebM8bkBs9wO4iIG3gU+ALQDKwSkeWqujFpnzLgMWC+qu4RkXGjVfCwWjdBXgkrD/qZUevD77UFuYwxuSGVHvo8YJuq7lDVMPAssHDQPjcBL6rqHgBVbR3ZMk9Ay0a0ejof7u+x8XNjTE5JJdDrgL1Jz5sTryU7DSgXkTdFZI2IfGOoA4nIEhFZLSKr29raPl3Fx6MKrRvoKZlKfzjGmTb/3BiTQ1IJ9KEWQdFBzz3AXOAq4EvA/xSR0456k+rjqtqkqk3V1aOwnG3Pfgh1sz9vCgCnVNuCXMaY3DHsGDpOj3xi0vN6YP8Q+7Srah/QJyIrgdnARyNSZapanWH9jxLlTqku+kw/3hhj0imVHvoqYKqITBYRH7AYWD5on98CnxcRj4gUAOcCm0a21BS0ODNc3g/WUlXkozTf+5mXYIwx6TJsD11VoyJyF/AK4AaWqeoGEbkjsX2pqm4SkZeBdUAceFJV149m4UNq3QTFtWzodDOlynrnxpjcksqQC6q6Algx6LWlg57/APjByJX2KbRugHEz2LGrjy/OqElrKcYY81nLnitFY1Fo+4hQxTQO9YWZYidEjTE5JnsC/dAOiA1wwO/McLEhF2NMrsmeQO/cCcCOuDPUYj10Y0yuyaJA3wXApmAFHpcwsaIgvfUYY8xnLIsCfTd48vmwy0dDZQFed/Y0zRhjUpE9qde1G8onsaO938bPjTE5KXsCvXM3WjaJ3R39dsm/MSYnZUegq0LXbnrzJxCOxe2EqDEmJ2VHoAc7YcjAIlwAAA0xSURBVKCHVtd4wNZwMcbkpuwI9MQMl51xZwXHKVXWQzfG5J7sCPSu3QBsCpVTmu+lotCX5oKMMeazl9JaLmNepxPoH/SUMKU6H5GhlnA3xpjslj099PxyNnTYJf/GmNyVHYHeuZtYaQOtvQM2w8UYk7OyI9C7dhPIrwdgsp0QNcbkqMwP9HgcuvbQ7Z8AQE1JXpoLMsaY9Mj8QO89ALEw7Z5aACoLLdCNMbkp8wM9MWXxgIwDoKrYAt0Yk5syf9piYsriHq0mz6MU+txpLsgYY9IjS3rowvZwBVVFeTYH3RiTs1IKdBGZLyJbRGSbiNw3xPZLRKRbRNYmHt8d+VKPoXM3lEygpV9tuMUYk9OGHXIRETfwKPAFoBlYJSLLVXXjoF3/qKpXj0KNx9e5C8om0d4bZkKp/zP/eGOMGStS6aHPA7ap6g5VDQPPAgtHt6wTkLixRUdggKoi66EbY3JXKoFeB+xNet6ceG2w80XkLyLykojMHJHqhhMdgJ79aGkDHX1hqoptUS5jTO5KZZbLUGcZddDz94FJqhoQkSuB3wBTjzqQyBJgCUBDQ8MJljqE7mZA6SucSCyuNgfdGJPTUumhNwMTk57XA/uTd1DVHlUNJL5eAXhFpGrwgVT1cVVtUtWm6urqkyg7odv5xaHLa3PQjTEmlUBfBUwVkcki4gMWA8uTdxCR8ZKYLygi8xLH7RjpYo8S7AKgPe6ssFhl66AbY3LYsEMuqhoVkbuAVwA3sExVN4jIHYntS4FFwJ0iEgWCwGJVHTwsM/JCTqC3RvOBLuuhG2NyWkpXiiaGUVYMem1p0tc/Bn48sqWlINQNQMuAE+Q2y8UYk8sy+0rRUDe4PBwMunC7hLJ8b7orMsaYtMnsQA92gb+Ujr4IFYU+XC677N8Yk7syO9BD3eAvpd0uKjLGmGwI9DLaAmGqimyGizEmt2V4oCeGXKyHbowxmR7o3WhiyKXS5qAbY3Jcxgd61FdKKBK3OejGmJyX2YEe7KLfVQjYHHRjjMncQI+EIDZAQJxAr7STosaYHJe5gZ647L9LnUCvth66MSbHZXCgO5f9d8byARtyMcaYjA/0jqgT6BU2y8UYk+MyN9ATS+e2RPyU5nvxeTK3KcYYMxIyNwUTPfT9Az47IWqMMWR0oDs99Oag38bPjTGGLAj0vf0em+FijDFkdKB3gyefg31qQy7GGEOGB7rml9EdjNiQizHGkMmBHuwi6i0GbA66McZAJgd6qJtwItBtyMUYYzI60LsIuUsAu6jIGGMgxUAXkfkiskVEtonIfcfZ7xwRiYnIopEr8RhC3QTdRQCU+O3m0MYYM2ygi4gbeBRYAMwAbhSRGcfY71+AV0a6yCGFug8vnVvs93wmH2mMMWNZKj30ecA2Vd2hqmHgWWDhEPt9C3gBaB3B+oYWj0Oom4A4PXQLdGOMSS3Q64C9Sc+bE68dJiJ1wFeApcc7kIgsEZHVIrK6ra3tRGv9RDgAGqdXCxGBQp8FujHGpBLoMsRrOuj5I8C9qho73oFU9XFVbVLVpurq6lRrPFpiHZcuLaAoz4PLNVSJxhiTW1Lp2jYDE5Oe1wP7B+3TBDwrIgBVwJUiElXV34xIlYMlLvvvjBfYCVFjjElIJdBXAVNFZDKwD1gM3JS8g6pO/vhrEfkp8PtRC3P4ZC30WL6NnxtjTMKwaaiqURG5C2f2ihtYpqobROSOxPbjjpuPikSgt0ct0I0x5mMppaGqrgBWDHptyCBX1VtPvqxhJG5u0RrJo7jQhlyMMQYy9UrRRA/9YNhPUZ710I0xBjI60IWDIZ8NuRhjTEKGBnoXmldMz0CMYpvlYowxQMYGejf4S4nE1HroxhiTkJmBHuwi6isFoMQC3RhjgEwN9FA3UZ+zFroNuRhjjCNjA33A46yFbkMuxhjjyNBA7yLkth66McYky9BA7yZoa6EbY8wRMi/QY1EIBwhYoBtjzBEyL9ATV4n28vHNLWzIxRhjICMD3VnHpVudHrpd+m+MMY4MDHSnh94Zd25u4babWxhjDJCRge700A/ZWujGGHOEDAz0xM0ton4LdGOMSZJ5gT7xXLjhP9gdr7ITosYYkyTzAr1kAsz4Mu1hr/XQjTEmSeYFekJvKGozXIwxJkkGB3rEhlyMMSZJxgZ6TyhqS+caY0ySlAJdROaLyBYR2SYi9w2xfaGIrBORtSKyWkQuHPlSPzEQjRGOxm0M3RhjkgybiCLiBh4FvgA0A6tEZLmqbkza7XVguaqqiMwCngOmjUbB4Iyfg132b4wxyVLpoc8DtqnqDlUNA88CC5N3UNWAqmriaSGgjKJPAt166MYY87FUAr0O2Jv0vDnx2hFE5Csishn438BfD3UgEVmSGJJZ3dbW9mnqBZwTomA9dGOMSZZKoA+1WMpRPXBV/bWqTgOuBf5xqAOp6uOq2qSqTdXV1SdWaRLroRtjzNFSCfRmYGLS83pg/7F2VtWVwCkiUnWStR3TJz10C3RjjPlYKoG+CpgqIpNFxAcsBpYn7yAip4qIJL4+G/ABHSNd7Md6Ej30EhtyMcaYw4bt4qpqVETuAl4B3MAyVd0gInckti8FrgO+ISIRIAj8VdJJ0hFnQy7GGHO0lBJRVVcAKwa9tjTp638B/mVkSzu2j4dc7NJ/Y4z5REZeKdobilLgc+NxZ2T5xhgzKjIyEZ11XKx3bowxyTI00KM2B90YYwbJ4EC3HroxxiTL0EC3pXONMWawDA30KMU2w8UYY46QkYHeY0MuxhhzlIwM9MCAzXIxxpjBMi7QI7E4oUjcxtCNMWaQjAt0u+zfGGOGloGBbmuhG2PMUDIw0K2HbowxQ8m4QO+xtdCNMWZIGRfovbYWujHGDCnjAr2qyMeCM8ZTVZSX7lKMMWZMybhxi7mTKpg7qSLdZRhjzJiTcT10Y4wxQ7NAN8aYLGGBbowxWcIC3RhjskRKgS4i80Vki4hsE5H7htj+NRFZl3i8LSKzR75UY4wxxzNsoIuIG3gUWADMAG4UkRmDdtsJXKyqs4B/BB4f6UKNMcYcXyo99HnANlXdoaph4FlgYfIOqvq2qnYmnr4L1I9smcYYY4aTSqDXAXuTnjcnXjuWbwIvDbVBRJaIyGoRWd3W1pZ6lcYYY4aVyoVFMsRrOuSOIpfiBPqFQ21X1cdJDMeISJuI7E6xzsGqgPZP+d5MlovtzsU2Q262OxfbDCfe7knH2pBKoDcDE5Oe1wP7B+8kIrOAJ4EFqtox3EFVtTqFzx6SiKxW1aZP+/5MlYvtzsU2Q262OxfbDCPb7lSGXFYBU0Vksoj4gMXA8kEFNQAvAl9X1Y9GojBjjDEnZtgeuqpGReQu4BXADSxT1Q0ickdi+1Lgu0Al8JiIAERz8SetMcakU0qLc6nqCmDFoNeWJn19O3D7yJZ2XLk6LTIX252LbYbcbHcuthlGsN2iOuT5TWOMMRnGLv03xpgsYYFujDFZIuMCfbh1ZbKBiEwUkTdEZJOIbBCRbyderxCR/xSRrYk/y9Nd60gTEbeIfCAiv088z4U2l4nI8yKyOfF3fn6OtPuexL/v9SLyjIj4s63dIrJMRFpFZH3Sa8dso4jcn8i2LSLypRP9vIwK9BTXlckGUeD/UtXpwHnA3ybaeR/wuqpOBV5PPM823wY2JT3PhTb/EHhZVacBs3Han9XtFpE64G6gSVXPwJlBt5jsa/dPgfmDXhuyjYn/44uBmYn3PJbIvJRlVKCTwroy2UBVD6jq+4mve3H+g9fhtPWpxG5PAdemp8LRISL1wFU4F6h9LNvbXAJcBPw7gKqGVbWLLG93ggfIFxEPUIBzwWJWtVtVVwKHBr18rDYuBJ5V1QFV3Qlsw8m8lGVaoJ/oujIZT0QagbOA94AaVT0ATugD49JX2ah4BPgfQDzptWxv8xSgDfhJYqjpSREpJMvbrar7gIeAPcABoFtVXyXL251wrDaedL5lWqCnvK5MNhCRIuAF4Duq2pPuekaTiFwNtKrqmnTX8hnzAGcD/6aqZwF9ZP4ww7AS48YLgcnABKBQRG5Ob1Vpd9L5lmmBntK6MtlARLw4Yf60qr6YeLlFRGoT22uB1nTVNwouAL4sIrtwhtIuE5Gfk91tBuffdLOqvpd4/jxOwGd7u68Adqpqm6pGcJYO+RzZ3244dhtPOt8yLdCHXVcmG4izfsK/A5tU9eGkTcuBWxJf3wL89rOubbSo6v2qWq+qjTh/r/+lqjeTxW0GUNWDwF4ROT3x0uXARrK83ThDLeeJSEHi3/vlOOeKsr3dcOw2LgcWi0ieiEwGpgJ/PqEjq2pGPYArgY+A7cDfpbueUWrjhTi/aq0D1iYeV+Ksl/M6sDXxZ0W6ax2l9l8C/D7xdda3GZgDrE78ff8GKM+Rdj8AbAbWA/8B5GVbu4FncM4RRHB64N88XhuBv0tk2xaclWtP6PPs0n9jjMkSmTbkYowx5hgs0I0xJktYoBtjTJawQDfGmCxhgW6MMVnCAt0YY7KEBboxxmSJ/x9srpfCam2dYAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Training and validation accuracy improve consistently, but reach plateau after around 60 epochs" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 1s 2ms/step - loss: 0.3933 - accuracy: 0.9112\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.9111999869346619\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[9.73469388e-01 0.00000000e+00 3.06122449e-03 1.02040816e-03\n", + " 1.02040816e-03 8.16326531e-03 8.16326531e-03 1.02040816e-03\n", + " 3.06122449e-03 1.02040816e-03]\n", + " [0.00000000e+00 9.81497797e-01 2.64317181e-03 2.64317181e-03\n", + " 8.81057269e-04 1.76211454e-03 2.64317181e-03 1.76211454e-03\n", + " 6.16740088e-03 0.00000000e+00]\n", + " [1.06589147e-02 6.78294574e-03 8.86627907e-01 1.25968992e-02\n", + " 1.45348837e-02 9.68992248e-04 1.35658915e-02 1.64728682e-02\n", + " 3.68217054e-02 9.68992248e-04]\n", + " [1.98019802e-03 2.97029703e-03 2.27722772e-02 9.00000000e-01\n", + " 2.97029703e-03 2.07920792e-02 2.97029703e-03 1.78217822e-02\n", + " 2.27722772e-02 4.95049505e-03]\n", + " [0.00000000e+00 3.05498982e-03 4.07331976e-03 0.00000000e+00\n", + " 9.33808554e-01 1.01832994e-03 1.32382892e-02 2.03665988e-03\n", + " 5.09164969e-03 3.76782077e-02]\n", + " [1.68161435e-02 1.12107623e-03 6.72645740e-03 4.48430493e-02\n", + " 1.23318386e-02 8.37443946e-01 2.13004484e-02 1.34529148e-02\n", + " 3.69955157e-02 8.96860987e-03]\n", + " [9.39457203e-03 5.21920668e-03 8.35073069e-03 0.00000000e+00\n", + " 9.39457203e-03 2.08768267e-02 9.43632568e-01 2.08768267e-03\n", + " 1.04384134e-03 0.00000000e+00]\n", + " [2.91828794e-03 1.75097276e-02 2.14007782e-02 3.89105058e-03\n", + " 1.16731518e-02 9.72762646e-04 0.00000000e+00 8.98832685e-01\n", + " 1.94552529e-03 4.08560311e-02]\n", + " [6.16016427e-03 1.95071869e-02 1.02669405e-02 1.74537988e-02\n", + " 1.74537988e-02 3.28542094e-02 1.12936345e-02 1.54004107e-02\n", + " 8.63449692e-01 6.16016427e-03]\n", + " [1.28840436e-02 7.92864222e-03 9.91080278e-04 1.28840436e-02\n", + " 4.95540139e-02 5.94648167e-03 9.91080278e-04 1.98216056e-02\n", + " 9.91080278e-03 8.79088206e-01]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3xUVfqHnwMBQuhICUkoCUQSkkAaRcW2LlJEcUUUFSyogGtZdfm5blEU3V1diiBFEMXeQVGKFAsKSgsdlF4khR4ghfT398edDDOTyWQgc8wEzuPnfMzMOeedd9575+Xce849XyUiGAwGw4VMjap2wGAwGHRjEp3BYLjgMYnOYDBc8JhEZzAYLnhMojMYDBc8JtEZDIYLHpPo/ASl1DKl1AO2v+9SSi3xsf12SilRSgX40q6Xn11XKTVPKXVKKfVZJez4PC5VgVLqa6XUPVXtx8XERZPolFL7lVKHlVL1HN57QCm1rArdcouIfCAi1//en6uUulMplaKUylZKZdh+kD19YPpWoCVwiYgMOl8juuKilLrG9o/A5y7vd7G9v8xLO88ppd6vqJ2I9BWRd87TXcN5cNEkOhsBwF8qa0RZXFCxU0o9CUwE/oOVlNoA04ABPjDfFtgpIkU+sKWLo8DlSqlLHN67B9jpqw+4EM+baoOIXBQF2A88DZwAGtveewBY5tDmcmAtcMr2/8sd6pYB/wZ+As4AHQAB/gzsArKAF4D2wErgNPApUNvWvwkwH+sHlWn7O8zF/gO2v+8FVtj+fgrIdiiFwNu2ukbAm0AGkAa8CNS01dUExgHHgL3AwzZ/A9zEppHN9iAP8auDlQjTbWUiUMdWdw2QCvwVOGLz5z5b3fNAgc3vbOB+4DngfQfb7Rx9s33/vbaY7gPuco2Ll8frBdvxygKWAM3K+W6l/k8HHnaIXyrwLM7nyCTgoO34rgOutL3fx+V7bvJw3jge69eA2Q72Xwa+BVRV/2YupFLlDvxuX9RKdH8EPgdetL1nT3RAU6wENBRr5HeH7fUltvplwG9AjK2+lu3H+RXQ0PZ+vu0kjbAlj1+Ae2z9LwEGAkFAA+AzYK6Df44nv9MP2qFNa6wk08/2ei4wA6gHtADWACNsdSOB7bY+TYHvKT/R9QGK3NU5tBkDrLJ9TnPgZ+AFW901tv5jbHHpB+QCTWz1z+Gc2Fxftyv1zfZdTgMdbXWtgBjXuHh5vPYAlwJ1ba9fKue7XYOV1C4HVtve6wcspuw/hkNsxzIAK7EfAgLdfS8P543jsQ7CGjXeC1yJ9Q9TWHnHwZTzKxfjMPpZ4FGlVHOX928AdonIeyJSJCIfYSWKGx3avC0i22z1hbb3XhaR0yKyDdgKLBGRvSJyCvgaSAAQkeMiMkdEckUkC+tf+au9dVopVRcrsU0SkYVKqZZAX+BxEckRkSPAK8BgW5fbgIkiclBETgD/9WD+EuCYeL60vAsYIyJHROQo1khtqEN9oa2+UEQWYo1qOnr7/VwoAWKVUnVFJMMWW1e8OV5vichOETmDNbqO9/ShIvIz0FQp1RG4G3jXTZv3bceySETGY410K/qe7s6bUnu5WMlzAvA+8KiIpFZgz3COXHSJTkS2Yl02Pu1SFQIccHnvABDq8PqgG5OHHf4+4+Z1fQClVJBSaoZS6oBS6jTwI9BYKVXTS9ffBHaIyMu2122xRgcZSqmTSqmTWKO7Fg7fx9Ff1+/myHGgWQUzsq7xOWB7z27DJVHmYvvu54KI5AC3Y41IM5RSC5RSUV74U+qT4/E6dB7+vAc8AlwLfOFaqZT6q1LqV9sM8kmskXuzCmy6O2/siMgarEt1hZWQDT7mokt0NkYDD+L8o0jHSh6OtMG691VKZbZ6+SvWv/zdRaQhcJXtfVVRR6XU07a+9zu8fRDrUrmZiDS2lYYiEmOrz8C6bC2ljYePWAnkATd7aOManza2986HHKxLtlKCHStFZLGI9MK6bN0OzPTCn1Kf0ty0PRfew7rvutA22rKjlLoS+BvWaLmJiDTGuj9YegzLOz88njdKqYexRobpWPdkDT7mokx0IrIb+AR4zOHthcCltiUWAUqp24FOWKM/X9AAa4R3UinVFCvZVohSqq/Nz5ttl2Cl3yED6wb7eKVUQ6VUDaVUe6VU6eXwp8BjSqkwpVQTyo5gcbB1CuuSfqpS6mbb6LOWUqqvUup/tmYfAf9SSjVXSjWzta9wKUU5bASuUkq1UUo1Av7u8H1bKqVusi0Dyse6BC52Y0PL8RKRfVi3FP7pproB1r3Io0CAUupZrPuzpRwG2p3LzKpS6lKsSaQhWLcCnlJKebzENpw7F2WiszEG68Y3YN1DA/pjjbyOY/3L2l9Ejvno8yZi3RQ/hnVTf5GX/W7Huvn/q219W7ZSarqt7m6gNtakRyYwG2sUBNYoaDGwCViPNQlTLiIyAXgS+BfWD/kg1iXcXFuTF4EUYDOwxWbzRS+/g+tnLcX6h2Yz1sylY3KqgXUM0rFmyK/GGmG52tB2vERkhYi4G60uxrrvuhPrMjkP58vS0sXQx5VS6yv6HNutgvex7vNuEpFdwD+A95RSdSrzHQzOKBGz8abBYLiwuZhHdAaD4SLBJDqDwXDBYxKdwWC44DGJzmAwXPD87lv2eEIF1BVVp2HFDc+RhKjWFTcynBfVbSqrwkWLFzgHDuzn2LFjPg1DzYZtRYrOVNwQkDNHF4tIH19+vjf4V6Kr05A6UYMrbniO/LR6ks9tGixKSqpXqqtR4+JOdVd0T/a5TSk6Q52Ot3nVNm/j1IqeItGCXyU6g8FQHVHg57tPmURnMBgqhwJqePvIdtVgEp3BYKg8yr9vCZhEZzAYKom5dDUYDBcDfj6i87s03OuyKDbN+Qdb5/6LUff+sUx94wZ1+WTc/az5+G8sf+dJOrW3nmGPbNuCVR/+n70c/uFlHrnj7L6WSxYvonNMR2KiOjD2fy+VsSsiPPn4Y8REdaBrQmc2rF9fYV8dNqur3fjYKOKiIxk31r3dUU88Rlx0JN2SurBhw1m7I4cPo21YS5IT4sr002G3OsZWh12forBGdN6UqkLn9sVYW3TvAHYDT1fUvmb9YNlz8KhE3fi8NOj2hGzakSrxA/8tgYmP2cuEd76RMa8tlMDEx6TzLS/Kd6t3ONUHJj4mQcl/kYyjp+TSfqMlMPExyc4rkvCICPllxx45lZMvcXGdZf2mbXKmUOzli68WyPW9+0huQYksW75Skrt2kzOFUm5fHTYrqvNHu6dzCyU8PEK2/rpbMrPyJDaus6Rs3Co5+SX2MmfufOl1fR/JziuW73/8WZK7drPXLf5mmaxYlSLRnWKc+uiwezq3sFrFVofdxMQk8fXvXNULlsAef/OqACk6c055RVuKte2cOxVru+9OwB1KqU6e+nRLTmTPwaPsTztOYVExny1ZT/9rnP9FjooIZtlaS5hp5/4jtA1pSoumDZzaXNvtUvalHuO3Q5kArF2zhvbtOxAeEUHt2rUZdPtg5s/70qnP/K++5M4hd6OUonuPHpw6dZKMjIxy++qwqctXnXZT1q4hwqHu1ttuL2N3wbwvuXPIUJRSdOveg1MnLbsAPa+8iqZNmpY5F3TYTVlbvWKry64WatT0rlQROseS3YDdYuknFAAfU4F0XmhIMKmHT9pfpx0+SWjzRk5ttuxMZ8C1nQFIjmlDm+AmhLZwbjPo+kQ+XXx2CJ+enkZY2NmnI0JDw0hLc96I1l2b9LS0cvvqsKnLV+12W4c51WWUsZvu1D8kNIyMdM8bAeuwWy1jq8Gu71F+f+mq85NDcd6UMBXnrcsBUEoNt4kmp1BS6FqN63Z5495eSuOGQaz68P946Par2LQjjaLiEnt9rYCa3HB1LJ9/s9HBRtnV+8rl5ml5bc71/crY1OWrv9r1hA67/hiDqrDrcxTWZIQ3pYrQOevq7luVib6IvA68DnD5tTdIWMvG9rrQlo1JP3bKqX1WTj4jnv/Q/nr7vGfZn37c/rr3FdFs3J7KkRNZZ+2EhpGaejbnpqWlEhLiqOvivk2rkBAKCgrc9tVhU5ev2u0eTHWqCy5jN9Spf3paKsGtnNu4osNutYytBrta8PPlJTq9S8VZnCWMCsRU1q7bQIfWzWkb0pRaATUZdH0iC37Y6tSmUf261AqwrvXv+9NlrFi/h6ycfHv9bb2T+HSR8y7WyV27snv3Lvbv20dBQQGfffIxN/S/yanNDTfexIfvv4uIsHrVKho2bESrVq3K7avDpi5fddpNSu7KHoe62Z9+UtZu/5v48P33EBHWrF5Fw0aWXU/osJuUXL1iq8uu7/H/S1edM64BWBJu4Vi6BpuwCRGXO3sT1EIGPDpddu4/LHsOHpVnp8yTwMTH5JF/fyKP/PsTCUx8TK6+Z4LsOnBEtu87JHO/3SjBV//NPtva5PK/yrHMbGlx1VNOs7Cls1MdIiMlPCJCnhvzopwpFHl1ymvy6pTX5EyhSG5BiYwY+WcJj4iQmJhYWbFyrdPMlmtfXTarm93S2c8OHSIlPDxCRj//guTkl8ikydNk0uRpkpNfItl5xTJ8xEMSHh4hnWJiZfnPa+wzobfeNlhaBgdLQECAhISGyrTpM51mVX1ttzrFVoddLbOu9UMk8JoxXhWqaNZVq2aEUqoflihMTWCWiPzbU/sa9VqKjt1LMs3uJdowu5dUL67onsy6dSk+DUKNhqFSp+vDXrXN++6f60TE91uoVIDWJyPEUmxfqPMzDAZDVWMeATMYDBcDfv4ImEl0BoOh8pgRncFguKCp4jVy3mASncFgqDxm402DwXBhYyYjzomEqNZahGyadH3E5zYBMtdO0WK3OnGxL9cA949h+QJtj2zpwM999atEZzAYqiGl+9H5MSbRGQyGSmIuXQ0Gw8WAuXQ1GAwXPGbW1WAwXNAoc+lqMBguBvz80tXv0rAu1aNel0ez6Ytn2PrlaEbd16uM3cYN6vLJ+AdZ88nfWf7eKLu6GMCjd13Lutn/JOWzf/DOf++lTu0Arb4au/rs6vS1S0wUsdGRjCvH7l+feIzY6Ei6JTorlo14cBhtQ1uSHO9eCc3vVcCwlsJ4U6oMjfvRzQKOAFu97ZOQkKhFTSko8RHZ89sRibrhWWmQ/Jhs2nFQ4m95QQLjH7aXCW8vlTHT5ktg/MPS+eYx8t2q7RIY/7BE9PqH7Es9Ko27Py6B8Q/L7MXr5IFn3pU6XR6qNspPxq5e5basM5a62Lbtu+Vkdp7ExXWWdRu3Sm5Bib18/uV86dW7j+TkF8uy5ZZiWWndkm+XyU+rU6RTpxinPtVFBaxG47YSNHCWV4ULTQUMeBtL7tBrcnJytKgedY1tx56Dx86qiy1eT/9rOjvZjYoIZtmaHQDs3H/YSV0soGZN6tapRc2aNagbWJuMo6eQ3CPVSvnJ2NWn3OaqLuZOsWz+vC+5665zU0KrNipg6hxKFaEt0YnIj8CJc+lTWFioRfUopEUjUg9n2uvSDme6URdLY8B18QAkx7SlTaumlmbF0VNMfPdbdn79AvuW/pvT2Wf4dtV2pDC7Wik/GbsaldvS0ggNc1YsS093o1jW2qF/WNk2rlQnFbAaNWp4VaqKKr9H56gCdjrrtLt6p9fuHrepSPVIufmnxLX1uLeW0rhBEKs+fpqHBl/Nph2pFBWX0LhBXfpfE0d0/9FEXP9P6tWtzeB+Xcv7LpX21VOdsXvhKbd5Qpe/OvD3e3RVPusqDipgHTtGiQ7Vo7QjJwlr2eSsjZZNSD/qqi6Wx4jn3re/3r7gefanHafXZdHsTz/OscxsAOZ+t4keXcL58LP61Ur5ydjVqNwWFkZaqrNiWatWbhTLDjr0Ty3bxpXqpALm78/lVvmIzpF69eppUT1K2XaADm2a0zbkEktdrHciC5ZtdrLrrC52OSvW7yYrJ4+Dh07QLS6cuoG1ALi2W0d27DuMCmpRrZSfjF19ym2u6mLlKZZ98MG5KaFVGxWwanCPrspHdI4opXhl0hRuvKE3xcXF3HPvMDrFxDBzxnQAHhwxkj59+7H464XERHUgqG4QM954C4CAgAC3fQGKi0t44uVPmTftYWrWULzz5Sp+3XuIB27tCcAbs1cQFRHMGy8Mpbi4hO17DzHy+Q8AWLv1AF98s4GVH/6NouISNm1P5c05P6FUDS2+lldn7PrGri5fJ0yczE039KG4pJi777nPsvu6ze5wm91FC4mNjiSobhDT35hlP+/vGXInP/64jOPHjtEhvDX/evY57r3vfm0x8DWKKl464gXaVMCUUh8B1wDNgMPAaBF501OfpKRk+Wl1is99Mds0GXSi8Tfkc5s6VMACLomQhv1e9Kpt5vt3eVQBU0r1ASZhKQe+ISIvudQ3At4H2mAN1MaJyFsV+uiVd+eBiNyhy7bBYPAvfJGUlVI1galALyAVWKuU+kpEfnFo9jDwi4jcqJRqDuxQSn0gIgWebPvVPTqDwVAN8d09um7AbhHZa0tcHwMDXNoI0EBZmbU+1hK2oooM+9U9OoPBUD3x0WV2KHDQ4XUq0N2lzRTgKyAdaADcLiIlFRk2IzqDwVApSicjvFxH16x03aytDHcyVRbXG6C9gY1ACBAPTFFKNazIRzOiMxgMleYcRnTHPExGpAKtHV6HYY3cHLkPeEmsGaDdSql9QBSwxtOHmhGdwWCoHApUDeVVqYC1QKRSKlwpVRsYjHWZ6shvwHUASqmWQEdgb0WG/WpEJ0BJie+n6k+smexzmwBNbpzoc5vHvvyLz23qpKYmFbBiDecB6FkKUqTJ18Ba/r1rryO+uEcnIkVKqUeAxVjLS2aJyDal1Ehb/XTgBeBtpdQWrEvdv4nIsYps+1WiMxgM1RNfrfkTkYXAQpf3pjv8nQ5cf652TaIzGAyVojo8GWESncFgqDz+nedMojMYDJVE+f/uJSbRGQyGSlOVm2p6g0l0BoOh8vj3gM7/1tEtWbyI+Ngo4qIjGTfWverRqCceIy46km5JzmpKI4cPo21YS5IT3Ksp+VqlqVdSWzbNvJutb97LqEFl10A2DKrN7OduYvXUu1g3fShDe3Wy1z08IJ6U14awbvpQHrk5wanf0sWLSIiNonN0JOM9xKBzdCTdk7qw0cHXh4YPo11YS7q6iYEuu7qUqnT4u3TJIhLiounS6VLGj33Zrc3/e/IvdOl0KT2S4+02Uw8epN/115HUJYauCXFMm/KqU79vliyia5dOJMZ25JVx7u3+7a+PkxjbkSu6JbDJwVeA4uJiruqRzO23OO8ZZ1TAfIQu1R2sFc7fA78C24C/VNQnPiFRwsMjZOuvuyUzK09i4zpLysatkpNfYi9z5s6XXtf3key8Yvn+R0tNqbRu8TfLZMWqFInuFOPUR5dK0570TIm6901p0H+SbNpzROKHvyOBfV6xl2feWiHjPl0rgX1ekbDbp8vx02ekQf9JkjjiXdm676g0GTBZ6vWbKN+uPyAxw96SwD6vyKncQgkPj5Atv+6WE7YYrN24VbLzS+ylNAZZecXynS0GpXWLHGLg2EeXXV3KWjr8LbW5+Zddcvz0Gcvmhi2SlVdsL7PnzpNe1/eW02eK5NsffpLkrt0kK69Ydu1LleUr10pWXrGkHz0p7TtE2vsey8qXduERsmHbTjl8Mldi4jrLynWbJTO3yF4++fwrua5XbzmRUyhLlq2QpOSuTvUvvjRWBt42WK7v08/+XnVRAavdooO0efQrrwoXoApYEfBXEYkGegAPK6U6eeqQm5NDRAVqSgvmfcmdQ85NTUmHSlMNBXvST7H/0GkKi0r47Ied9O/R3qmNCNSva+1MXC+wFplZeRQVlxDVuilrth/iTH4RxSXC8i2pDLi8vd1X1xgscOPrHS4xOOTga5NyYqDDrk5lLV/7a9lsb7c5cNDtzJ/nvPB+wbyvuMPhPDhpsxncqhXxCYkANGjQgI5RUaTbxGbWpVh224Vbdm+59TYWzne2u3D+PAbb7Hbt1oNTp07ZfU1LTWXJooXcfe+w3yW2OvD3EZ1OFbAMEVlv+zsLa2QX6qlPQWEhYa2d1ZQyyqgepTupG4WEhpFRkZqSJpWm1KNZ9r/TjmURekk9p/rp8zYS1bopez94kJTXhjBq+jJEYNuBY/SMDaVpg0Dq1gmgT9dwwpo3sPmRViYG6S4xyHATA68UpXTZ1aUC5mN/09PTCHX6vNAy507ZNmVtHti/n80bN5Lcrbvdj9BQ13PS+RHNjHTnczDE4bP/8dSTPP/iS2Vu6FcfFTD/T3S/y2SEUqodkACsdlM3HBgOcEmzZu76Or129wiPTjWlc8HVQq+ktmzee5Q+T88holUjFvznFn56+AN2HMxk/GcpzP/PLeScKWDz3qMUFZdo9dUf7Xrqq8NfX9jMzs5myB2DeGncBBo2bFhpu4sWzqdZ8xbEJyax4sdlPvPXF+fzueDFc6xVivbJCKVUfWAO8LiIlNEzFJHXRSRZRJIvaXoJqQed1ZSCy6gehTqpG6WnpRJckZqSJpWm0lEYQGizBqQfz3GqH9orhi9/2g3A3gzrMrdjmKVG9s6SbVz+6If0emo2mVl57E47afMjrEwMWrnEIMRNDLxSlNJl9zyVqjz11eFvaGgYaU6fl1bm3Cnb5qzNwsJChgy+ldsG38mAm29x8iMtzfWcdBa+CQl1PgfTbZ+9etXPLFowj85R7bn/7rtY/sP3DB92d7lx80VsfY7y/xGd1kSnlKqFleQ+EJHPK2ofVK8ee7xQU/rw/XNTU9Kh0lQi0CGkMW1bNqRWQA0GXX0pC1btcWpz8GgW18S3AaBF4yAuDWvCvkOWzGLzRnUBaN28AQOu6MCnP+yw++oag35ufP3IJQauPyx3MdBhV6eylq/9tWzuttuc89kn3ND/Rqc2/frfyEcO50Ejm00R4eERD9AxKppH//KEU5/EJMvugf2W3c9nf0rfG5zt9r2hPx/b7K5ds4qGDRsS3KoVo8f8h227D7B5+x7efPcDrrz6Wl6f9a7W2PoaBSjlXakyNM66KuBdYKK3fRISk2TO3PnSoUOkhIdHyOjnX5Cc/BKZNHmaTJo8TXLySyQ7r1iGj3hIwsMjpFNMrCz/eY19dvXW2wZLy+BgCQgIkJDQUJk2fabk5J+dVe3QIVLCIyy7uQUlMmnKNJk0ZZrkFpRITn6xDB/5kIRHREhMTKwsX7nGPrs6yNXujJmSW1AiA575QnYePCF70jPl2bdXSGCfV+SRV7+RR179RgL7vCLhd74uS9ftly17j8rWfUfl3pe/ts/IrtiSKr8cOCab9hyRPk/Ptr9fOptYGoNnn39BsvNLZOLkaTJx8jTJzi+RrLxiedAhBj/+vMY+s+gag6nTZzrNUvrabunMX4dIK7bPjXlRzhSKvDrlNXl1ymtyplAkt6BERoz8sz22K1audZo1dO17plC0+Tt77jxpX2rzuRckK69YJk6eKhMnT5WsvGI5fabIyeYPP62WrLxiWfztDwJITGycxHXuInGdu8jsufMkK6/YPqvavkOktAuPkH+OHiOZuUUyftJUGT9pqmTmFsmJnEK5f/hD0i48QqJjYuW75aucZl0zc4tk3qJvnGZddcRWx6xrnZaR0mHU114VqmjWVacKWE9gObAFKN3q+B9i7U7glsSkZFmxcq0GX3xuEoCmN03yuU2zTZOF2aZJzzZNOlTAAoMvlTZ3v1pxQ2DX2L4eVcB0oVMFbAV+v17aYDBUGgU1/HwywjwCZjAYKoXCJDqDwXAR4Oebl5hEZzAYKo/ZpslgMFzYVPXSES/wq0RXHa71HTk69zGf22zWf7zPbQJkLhylxW7pEx2+JqCmniWeRcW+nyEN0HTO6pgh1jE/bK2j8+/frV8lOoPBUB1Rfj9AMYnOYDBUGjOiMxgMFzbmHp3BYLjQMffoDAbDRYGf5zmT6AwGQ+Xx9xGdX4rj6BAD0WFXl9BKr+R2bHpzGFvfup9Rt3crY7dx/Tp8MnoAa6bfw/JX76JTu2Ze9dUmYqMpDtXpmOmMwfmKOlXU12fYnnX1plQZGrdpCgTWAJuwxHGer3CbpoRELUIrOkRGsvOKtAitBPUeJ3vSMiVq6OvSoO942bT7sMTfP0sCe421lwmfrpEx76yQwF5jpfOwN+W79fslsNdYj311idiczCnQEofqdMx0xaAyok7l9U3QsE1TvdBLpft/l3lVuADFcfKBP4hIFyAe6KOU6uGpQ05OjhYxEB0iI2vX6BFa6doxmD3pmew/dMomurOd/pc7i+5EtbmEZRt+A2DnwRO0bdmIFo2DPPbVK2Lj+zhUp2OmKwaVEXXypq/v8G534Qtyh2GxyLa9rGUrHhdmFxYW6hNa8bFdXUIrIc0aOIvuHM0m9JIGTn227D3CgJ6RACR3DKZNy4aENm/gsa8uoZUMTXGoTsdMWwwqIerkTV9f4u87DOveSr2mUmojcARYKiJlxHG8sOH02t1jMTqFVs7n8yqyWYo7oRV354KrnXGfrKFx/UBWvXY3Dw1IYNPuIxQVl3jsqyMGlbVbiq8FZ37vY+aPdr3p60v8fUSnddZVRIqBeKVUY+ALpVSsiGx1bOOoAtaiZcvzFgMpKCjwLLTiY7u6hFbSjmU5i+40r0/6iWwcycotYMT4RfbX2999kP2HThFUJ6DcvjpiAKWiL76PQ3U6ZtpiUAlRp8KCggr7+gpVDTbe/F1mXUXkJLAM6OOmzq4CFhoSqkUMRIfISHJXPUIrKTsO0SG0CW2DG9lEd6JYsNJZdKdRvTrUCrAO3X1941ixJZWs3AKPffWK2Pg+DtXpmOmKQWVEnbzp60su2hGdUqo5UCgiJ5VSdYE/AmXn3Z378MqkKdx4Q2+Ki4u5595hdIqJYeaM6QA8OGIkffr2Y/HXC4mJ6kBQ3SBmvPGW9UUCAtz29VRXWbvjJr7KzTf2paS4mKH33Ed0pxjenGnZvP/BkfTu048li76mS6dLqRsUxGuvvwnAyp9/4qMP3ycmNo7Lu1k3okePeZHeffpRXCI8MeVb5v1nIDVr1OCdxVv49cBxHrihCwBvLNhEVJumvPFUP4pLSth+4DgjJywGKLevzhgEBARoiUN1OmY6YzBh4mRuuqEPxSXF3H3PfVYMXuqtaDQAACAASURBVLfFYLgtBosWEhsdSVDdIKa/McseA3d9deHny+i0iuN0Bt4BamKNHD8VkTGe+iQlJctPq1O0+KMDHVsUNb9xgs9tgtmmqRRd/upAh/DQFT26st7H4jgNWkdJ0l9nedX2hyeuuODEcTYDCbrsGwwGP6EaPNTvd09GGAyG6oXy4To6pVQfpdQOpdRupdTT5bS5Rim1USm1TSn1gzc+mmddDQZDpfHFZbZSqiYwFegFpAJrlVJficgvDm0aA9OAPiLym1KqhTe2zYjOYDBUGh8tGO4G7BaRvSJSAHwMDHBpcyfwuYj8BiAiR7zxzyQ6g8FQKawk5vWlazOlVIpDGe5gKhQ46PA61faeI5cCTZRSy5RS65RSd3vjY7mXrkqpRE8dRWS9p3qDwXDxcA5Xrsc8zLq6fbjH5XUAkARcB9QFViqlVonITk8f6ukenSc5KgH+4MnwxYCO6X9dy0CaXPusFruZ33tcMXTeFJfoWfakY9mKriVa+UW+XwqjyVVfLQZOBVo7vA4D0t20OSYiOUCOUupHoAtwfolORK49P18NBsPFho+Wl6wFIpVS4UAaMBjrnpwjXwJTlFIBQG2gO/BKRYYrnHVVSgUBTwJtRGS4UioS6Cgi88/tOxgMhgsRBdT0QaYTkSKl1CPAYqwHDWaJyDal1Ehb/XQR+VUptQjYDJQAb7g+P+8Ob5aXvAWsAy63vU4FPgNMojMYDODD51hFZCGw0OW96S6vxwJjz8WuNzcs2ovI/4BC24ecwf1NQ4PBcJHi7/vReTOiK7A9lC8ASqn2WLsHGwwGAwqo4efPgHmT6EYDi4DWSqkPgCuAe3U6ZTAYqhd+nucqvnQVkaXALVjJ7SMgWUSW6XKoOqmA6VJo0hWDXt06sOmDx9j60V8YddeVZew2rh/IJ/8ezJq3/8zyGcPpFG49XVOndgDLZwxn9Vt/Zt27j/CvYc4T8trUxRYvIiE2is7RkYwf697uqCceo3N0JN2TutiVtQAeGj6MdmEt6ZoQ97v4WplzYcSDw2gb2pLk+Lgy/b5ZsoiuXTqRGNuRV8a5Vxf7218fJzG2I1d0S2DTBuflrcXFxVzVI5nbb9G5F90FogKGlegmYK2t+9O5qO9gzZ5sAOZX1LbaqYD5WKEpt6BEm1pX0FXPyp7U4xI1aII0uOY52bQrQ+KHvCqBPZ+xlwkfLpcxb3wrgT2fkc53TpLvUvbY6y7p9YIE9nxG6l89WtZsOyhXDZ8hgT2f0ebvqdxCCQ+PkC2/7pYTWXmWstbGrZKdX2Ivc+bOl17X95GsvGL57kcrvqV1i75ZJitWpUh0pxj7e6dyC7X4Whm1rtyCElny7TL5aXWKdOoU49TnWFa+tAuPkA3bdsrhk7kSE9dZVq7bLJm5RfbyyedfyXW9esuJnEJZsmyFJCV3dap/8aWxMvC2wXJ9n36SmVsk8Qm+VwFr0i5abnt7vVcFf1UBU0pNA0YCW4CtwAil1NRzyKV/AX71pmF1UwHTodCkS62ra3QYe9JOsD8jk8KiYj77dgv9e0Y52Y1q14Jl6/YCsPO3Y7QNbkyLJvWsY3OmAIBaATUJCKhhX66uV13MOUYL3MT3jiHO8T2UkQFAzyuvokmTpk7tXePuS1/P91wo9bWpi68A61IsdbF24ZbdW269jYXzndXFFs6fx2Cb3a7denDq1Cl7DNJSU1myaCF33zusjG1fo7wsVYU3s65XA71F5C0ReQvoB1zjjXGlVBhwA/CGN+2rnwqY7xWadKl1hTRvQOqRU/a6tKOnCW3W0Mnult2HGHB1JwCSo0Np07IRoc2tNjVqKFbNeojfvnqK79buYe0vqVr9TU9PI6x1WJk+jmSkpzv1D6lA6Uqbr5VQ6/JERno6oaHO3y8jPd2ljfNnhzgokP3jqSd5/sWXqFFD/yPt/r6VujcR2AG0cXjdGmuxnjdMBJ7CWtjnFqXU8NIHfE9nnXZX7/Ta3eM2OpWqzufz/M1XsPYMc0VcHiMc9/5yGjcIZNWsh3hoYHc27Tpk35G3pEToMew1OgwcT3J0mP3+nT/GoTyqk6+Vtbto4XyaNW9BfGKSx8/wBdasq3elqvD0UP88rCUljYBflVJrbK+7Az9XZFgp1R84IiLrlFLXlNdORF4HXgfo2DFKqpcKmO8VmnSpdaUdPU1Yi0ZnbTRvSPqxsxqwAFm5+Yz471z76+2fPsH+jJNObU5l5/Hjhn1c3z2SX/Yd0eZvaGgYqQdTy/RxJCQ01Kl/egVKV9p8rYRalydCQkNJS3P+fsGtWrm0cf7sdJsC2Zdz57BowTyWLv6a/Lw8srJOM3yYVxt9nDtVPFrzBk8junFYkw/PAn2xlpk8Z/v7BS9sXwHcpJTaj7Wv1B+UUu976lCvXr1qpQKmQ6FJl1pXyvY0OoQ1pW2rxtQKqMmg6+JYsGK7k91G9QOpFVATgPtuTGLFpgNk5ebTrHEQjeoHAhBYO4A/JLdnx29HtfprKWs5x6ifm/h+9L5zfF0TgSOucfelr+d7LngiMclSFzuw37L7+exP6XuDs7pY3xv687HN7to1q2jYsCHBrVoxesx/2Lb7AJu37+HNdz/gyquv5fVZ73r8vMrg77Ounh7q92qLYg/9/w78Haytj4FRIjLEU5/qpgKmQ6FJl6/FxSU88coC5o2/21IIW7CeX/cf5YEB1o45b3yZQlTb5rzxz1ssdbH9Rxn5kjW6C76kATP/cQs1aypqKMWc77fx9c87tfobEBDA+ImTubl/H4qLixl673106hTDG7b4PjB8JL1t8e0cHUndoCCmzzwr0HLv0DtZ/uMyjh87xqURrfnnM89xz333a/P1fM8FgHuG3MmPNl87hLfmX88+x7333U9AQAD/mzCJgTf1o7i4mLvuvpfoTjHMmjkDgGEPjuD6Pv1YungRibEdqRsUxNTpXt0O9ymll67+TIUqYEqpHsBkIBprt4CaQI6INPTY0dnGNViJrr+ndtVNBayi2J0Pui4BzDZNFjq21tJxHoCebZquvaI7G9b7VgWsWUSM3Pifj71q+/Ydnf1WBWwK1nYpnwHJwN1A5Ll8iFgLjJedo28Gg6Ga4OcDOu/EcURkt1KqpogUA28ppSqcjDAYDBcHSl0Yz7rmKqVqAxuVUv8DMoB6et0yGAzVCT/Pc16toxtqa/cIkIO1ju4WnU4ZDIbqRbWddS1FRA7Y/swDngdQSn0C3K7RL4PBUE1QqAvi0tUdl/nUC4PBUH2p4k01veF8E50WBOyPHPkSHcpPujhTUKzF7rFvn9dit/ld72ixm/HuUC12NZxeFOowCtTWcN7qSkj+/mTE+ei6KqCWHncMBkN1xN+HEuer67rdQ53BYLiIUFTjEZ0YXVeDweAlAX4+pPOre3QGg6H6YSl8VdMRncFgMHiLvz/UbxKdwWCoNH4+oPNKM0IppYYopZ61vW6jlOqmy6GlSxaREBdNl06XMn6se9Wj/3vyL3TpdCk9kuPtyk+pBw/S7/rrSOoSQ9eEOKZNedWpn7+pgFWk/NQtvhNJcR2ZWI7y09OjHicpriM9y1F+uvqyZAYPdN4TTYeqFsAfu4Sw/pWb2TjpTzw5ILZMfcO6tfj0qT/w8/9uZM24AQy5poNTfQ2lWPFSfz576g/O/mo4F3TFQJda15LFi4iPjSIuOpJxHvyNi46kW5LzOTZy+DDahrUk2Y2/vqRU19WbUmV4oeL1GjAV+NX2ugmw1hvlHWA/lqjORrxQ/4lPSJTw8AjZ/MsuOX76jKX8tGGLZOUV28vsufOk1/W95fSZIvn2h58kuWs3ycorll37UmX5yrWSlVcs6UdPSvsOkfa+/qYC5kn56ehpS/lp/dadcigzV2JiO8vPKZvlRE6RvXwyx1J+Op5dKIu/XyGJyV2d6l/471gZOMhSfip9T4eqVnZ+iTS8/R3Zk3FaYh+ZLU3ueFc27z8uSU98IfVve9tenvtwnUyYu1nq3/a2tLv/IzmelSdN7njXXv/0O2vkk+V75OuU3+zvncwp8Pm5UGrT1zHQodaVmVskp23HbOuvuyXT5m/Kxq2Sk19iL6X+ZucVy/c2f0vrFjv4W/peQqLvVcCCO8TIPxbu8Kp4kwd0FG/mSrqLyMNYj4AhIplY+9J5y7UiEu/NHlS5OTlEtG9vV1MaOOh25s9zVj1aMO8r7nBQUzppU34KbtWK+ARr6V+DBg3oGBVlF1PxNxUw8Kz8FB7hrPz0tavy04J5DL7zrPLTaUflp7RUli5ayFAX5ScdqloAyR2asffwafYfyaawuIQ5P++jf9fWTm0EoX5da+llvcBaZGbnU1RiLbINaRpE74Qw3vlulxt/fXsu6IqBLrUud/66nmML5n3JnUPO7RzzNcrL0VxVjui8SXSFSqmaWA8uoJRqjgexm8pQUFhIqJPS0llFo1Is9S0XlSaXNgf272fzxo0kd+tu7+NPKmCeyEhPd/p+IaFhZGRUoPwUEkpGxlnlp+f+XVb5SYeqFkCrpkGkHc+xv047nkurJs6b28xYtJ2OoY3YNX0Qq8bdxN/eXkPpXpUv39OVZz5IocRl88qMMse58udChqYY6FLrcnfMMsqct2X9dY3T74FS3pWqwptE9yrwBdBCKfVvYAXwHy/tC7BEKbVOKTXcXQNHFbCs0+evAlZKdnY2Q+4YxEvjJtCwYUOv+nhqcz6qUN766o7K2F389XyaN29BfEJZ5Sdd/rqrdlUXu65LKJv3ZxI58jOueGoe44Z1p0HdWvRJDOPo6Tw27juhxV/Xc8Efj5kntS5d/uqg2qqAlSIiHyil1gHXYd13vFlEvBKkBq4QkXSlVAtgqVJqu4j86GLfSQUszUlpyVI0csRS33JRabK1KSwsZMjgW7lt8J0MuPkWpz7+pALmiZDQUKfvl56WSnBwBcpP6WkEB4fw1Rdz+NpF+WnEsLuZMetdLapaAOnHcwm95OwILvSSIA5l5jq1GXpNByZ8uQWAvYezOHAkm0tDGtGjYwv6JbXm+vgwAmvXpEHdWsx8pCcPTllh+46+PRdCNMVAh1rX6+Ucs+Ay521Zf13jpJvSyQh/xptZ1zZALjAP+ArIsb1XISKSbvv/EaxRocfZ2qB69dize7ddTWnOZ59wQ39n1aN+/W/kIwc1pUY25ScR4eERD9AxKppH//KEUx9/UwHzRGJSV/bucVZ+6uNO+enDsspPz475D9t2HWDTr3t44x1L+WmGTflJh6oWwLo9x2gf3JC2zetTq2YNBl4ezoKUVKc2B4/lcHWsZad5o0AiQxqx/0gWz320nqg/zyb20TncO+kHftyawYNTVjj469tzQVcMdKl1ufPX3Tn24fvndo7pwN8vXb1ZR7cA6xJUAYFAOJaodYynTkqpekANEcmy/X094FFJRSnFuImvcvONfSkpLmboPfcR3SmGN2daakr3PziS3n36sWTR13TpdCl1g4J47fU3AVj580989OH7xMTGcXk360b06DEv0rtPP79TAYMKlJ/GT+LWAc7KT2+9YSk/3ffACHr1tpSfkuI6UrduEFNmVKz8pEtVq7hEGDVrNXP/8Udq1KjBe8t2sT31JMP+eCkAs77Zycufb2L6Qz1ZNfYmlIJnP1jH8az8Cv3VcS7oiIEuta7SYzbA5u/dHvyNs/k7w8Hfexz8jYxozb+eea7CzzwvFNT08xFdhSpgZTpYu5qMEJERFbSLwBrFgZVQPxSRf3vqk5iULD/+vOac/PEGXds0nWvsvCGvUNOWP5oeRgweqkcrVNc2TTruX1WnbZp6XtaV9et8qwIW1jFOHnltbsUNgb9f18FvVcCcEJH1SqmuXrTbC3Q5L68MBkO1oto/AqaUetLhZQ0gETiqzSODwVDt8NVIWSnVB5iEpR/9hoiUfRzEatcVWAXcLiKzK7LrzYiugcPfRVj37OZ40c9gMFwEWLOuPrBjrdedCvQCUoG1SqmvROQXN+1eBhZ7a9tjorMZrC8i/3fOXhsMhosD382odgN22257oZT6GBgA/OLS7lGswVaFt9BK8bSVeoCIFHnYUt1gMBhQQID3Q7pmSqkUh9ev29bSAoQCBx3qUoHuTp+lVCjwJ+AP+CLRAWuw7sdtVEp9BXyGpesKgIh87u2HGAyGC5tzGNEd8zDr6s6K69KGicDfRKT4XO4LenOPrilwHCuDlq6nE0BLotOxwlrHMhDLru9t1q1d0/dGgZISPTHQtQyk+bX/1GI388f/+txmzRp6jpkO9EyOKmr4xnIq4LgjRBiQ7tImGfjYluSaAf2UUkUi4nF9i6dE18I247qVswmuFD2/GoPBUO2wxHF8YmotEKmUCgfSgMHAnY4NRCTc/rlKvQ3MryjJgedEVxOoj3fDSYPBcLHiowf2bXMCj2DNptYEZonINqXUSFv99PO17SnRZYiIx0e2DAaDQQE1fbRiWEQWAgtd3nOb4ETkXm/tekp0fr7W2WAw+Av+vnuJp0R33e/mhcFgqNb4eZ7zKGBddjdEg8FgcEHh3Q6+VYnf+adL9UiHYpdOX32tWKbTX13Kbb26X8qmj55k66ejGDX06jJ2GzcI5JP/DmHNu4+x/I0/0ymipVN9jRqKlW8/ypyx93gVn1Jfzze21cmuT7EJWHtTqgydyjtAY2A2sB34FbjMU/tSFTBfqh7l5JdI1plCnyt2ZZ3xvUJTTn6JFsWyM4WiRVEqJ79Ei1pXVl6xBF3xd9mTekyiBr4sDa78p2zamS7xd0yQwMuetpcJ7/8gY2YulcDLnpbOg8fLd2t3OdU/NWm+fLx4gyxY8asEXva01OnxlJbY6jpmOuwmalABaxcdJ++s/c2rgh+rgFWGScAiEYnC2rLJ4xbslgqY71WPUtb6XrFLl0KTDsUynf7qUOsC6NqpNXtSj7M/PZPComI++2YT/a+MdrIbFd6CZSm7Adh54ChtWzWhRZP6AIQ2b0ifyzvy1ry19vaSnaEltrqOmS67vkZhbbzpTakqtCU6pVRD4CrgTQARKRCRk576FBQWalE9Sk/zvWJXepoehSYdimX2Phr81aHWBRDSvCGph0/Z69OOnia0eSOnPlt2ZTDgGkswOzk6jDYtGxPawhJEGvt4f/459WunJ0KkIEtfbKuRXR34+1bqOkd0EVj71r2llNqglHrDtqW6E04qYFmVVwFzhzd9ztWuDpuVteuprz/6W4o75Ta3q9Rd7Ix77wcaNwhk1duP8tCgy9m0K4Oi4hL6Xh7FkcwcNuxwfXqoLFUd26qw63u8uz9XlffoznmH4XO0nQg8KiKrlVKTgKeBZxwbiYsKmA7Vo9Aw3yt2hYbpUWjSoVhm76PBXx1qXWCN4MJanh3BhTZvSPox538Is3LzGfHvs1sjbp/zFPvTMxn0xy707xlNn8s6Uqd2AA3r1WHW6Nu4d9Qr+mJbjez6mot91jUVSBWR1bbXs7ESX7lYKmC+Vz1KSva9YpcuhSYdimU6/dWh1gWQ8msqHcKa0bZVE2oF1GTQH7uwYIXzLd5G9QOpFWA9UH/fTV1ZsXEfWbn5PDt9MR1ufomogf/j7mc/Ytm6vQx7/lNU/VZaYqvrmOmyqwN/H9HpnnVdDnS0/f0cMNZT+4TEJJkzd7506BAp4eERMvr5FyQnv0QmTZ4mkyZPs81KFsvwEQ9JeHiEdIqJleU/r7HPAN5622BpGRwsAQEBEhIaKtOmz5Sc/LOzqh06REp4hGU3t6BEJk2ZJpOmTJPcghLJyS+W4SMfkvCICImJiZXlK9fYZ1gHudqdMVNyC0q0+Fo6k9Yh0vL1uTEvyplCkVenvCavTnlNzhSK5BaUyIiRf7b7umLlWqdZONe+ZwrFPqvqa39LZ1Xb2+w++9wLkpVXLBMnT5WJk6dKVl6xnD5TJA862P3hp9WSlVcsi7/9QQCJiY2TuM5dJK5zF5k9d55k5RVL4GVPy4An35KdB47KntRj8uz0RRJ42dPyyMufyyMvfy6Blz0tVz84TXb9dlS27z8sc7/fIsHXP+c06xp42dPS688z7LOugZc9rSW2uo6ZDrs6Zl0jojvLpxvSvCpU0azrOauAnQtKqXjgDaA2sBe4T0Qyy2ufmJQsK1auLa+6En743CSgZ5umGppURnRt01Si6fypTts0VSeu6J7MOh+rgHWI6SL/+3CRV20HxodUDxWwc0FENmLtH2UwGC5gqvSy1Au0JjqDwXBx4N9pziQ6g8HgA/x8QGcSncFgqBzW8hL/znQm0RkMhkpjRnQGg+ECR1XrjTd/dxR6llcUFZf43KYulKbVProWEQXU1LPmXNcykCb9xvncZubCUT63CZBXUOxzmzpWGZlLV4PBcOFTxQ/se4NJdAaDodKYRGcwGC54lLl0NRgMFzKlG2/6MybRGQyGSuPnec4kOoPBUHn8/dLV7/bL06V6pEOpSpf6VWUUyzz1Xbp4EQmxUXSOjmS8BxWwztGRdE/qYvcX4KHhw2gX1pKuv7Nqma/t9kpux6Y3h7H1rfsZdXu3MjYb16/DJ6MHsGb6PSx/9S46tWvmVV9dMfhmySK6xnciMa4jr4xzf479bdTjJMZ15IpuCWxyOGYAxcXFXHVZMrcP1LgXHVBDeVeqDI170XUENjqU08DjHvejS0jUoqakQ6lKl/pVZRTLPPU9ZVMB2/LrbjlhUwFbu3GrZOeX2EupClhWXrF8Z1MBK61b5KAC5tinOilgnSkU2ZOWKVFDX5cGfcfLpt2HJf7+WRLYa6y9TPh0jYx5Z4UE9hornYe9Kd+t3y+BvcZKUO9x5fbV5eux0/nSLjxCNmzdKYczcyUmtrOsTNksmTlF9vLJnK/kul695UR2oSz5foUkJXd1qn/xv2Nl4KDBcn2ffpKZUyTxCb7fj65jTLz8uOOEV4ULTQVMRHaISLyIxANJQC7whac+OTk5GhWwfKtUpUv9qjKKZZ76ulMBW+DG7h0uKmCHHFTAmvyOqmU67CpgT3om+w+dorCohM9+2E7/y9s72YxqcwnLNvwGwM6DJ2jbshEtGgfRtWNwuX11xWBdyhoiItrTLtyqu+XW21g43/kcW7hgHoPvtI5Z1249OHXqlP2YpaWlsmTRQu6+d1iZ4+ZTvBTGuVDFcRy5DtgjIgc8NSosLNSieqRDqUqX+lVlFMs89XWnApbuEtsMNypgnpTQ7HariQKWUpB6NMv+ftrRbEIvaeBkc8veIwzoGQlAcsdg2rRsSGjzBoQ0a1BuX10xyEhPdzp/QkLDyMhwFvyxzsOzxzUkJJSMDKv/P556kuf//RI1auj9mV/UcocuDAY+clfhqAJ2uhIqYOW976mPN3ZLcVWq0mGzsr7qjoE7/NHfc/kerm3HfbKGxvUDWfXa3Tw0IIFNu49QVFziUZXMH2Ow6Ov5NGvegviEJDee+x7lZakqtM+6KqVqAzcBf3dXL64qYBpUj3QoVelSv6qMYllhQUG5fd2pgLVyiW2IGxUwT0podrvVRAFLBMKanx3BhTavT/qJbCebWbkFjBh/dlvw7e8+yP5DpwiqE1BuX10xCAkNdTp/0tNSCQ52FiuyzsOzxzU9PY3g4BC+/GIOixbMY+nir8nPyyMr6zTDh92NNvx70vV3GdH1BdaLyOGKGtarV0+jApZvlap0qV9VRrHMU193KmD93Nj9yEUFLLiKVMt02BWgQ2gT2gY3olZADQZdHcWClXucbDaqV4daAdbP4r6+cazYkkpWbgEpOw6V21dXDBKTurJnz24O7LfqPp/9KX1vcD7H+t7Qn48/tI7Z2jWraNiwIcGtWjF6zH/YtusAm3/dw5vvfMCVV1/L67Pe9XgsK4Py8r8qQ/dsB/AxlihOhW0TE5O0qCnpUqrSYbOyimXu+uYWnJ1VLVUBe/b5FyQ7v0QmTp4mEydPk2ybopejvz/+vMY+u+qqAjZ1+kzJ1qhapsvugH/Mlp0Hj8uetEx5dtaPEthrrDwycYk8MnGJBPYaK1c/9r7sSj0h2387JnOX75DgP71qn5F11zew11htvpbOqrbvECntwiPkn6PHSGZOkYyfNFXGT5oqmTlFciK7UO4f/pC0C4+Q6E6x8t3yVU6zrpk5RTLv62+0zrpGxcbL6j0nvSpcoCpgQcBBIEJETlXUPikpWX5aneJzP6rTNk01damAaTrMuvzVxcW+TdO1PbuzYb1vVcCi4xLk3S+XedW2W/vGF6QKWC5wic7PMBgMVYvCqIAZDIYLnWqwH53fPQJmMBiqH75aXqKU6qOU2qGU2q2UetpN/V1Kqc228rNSqos3/pkRncFgqDw+GNEppWoCU4FeQCqwVin1lYj84tBsH3C1iGQqpfpiLU3rXpFtk+gMBkMl8dnSkW7AbhHZC6CU+hgYANgTnYj87NB+FRCGF/hVohPcr/T2V3QoHxXrmh7VRH6hnhntWppEd47Oe9LnNpvc+rrPbQKc+OxBn9vUcS+tdPcSL2mmlHJcWvG67aEBgFCsVRqlpOJ5tHY/8LU3H+pXic5gMFRTvE90xzwsL3H7pJ3bhkpdi5XoenrzoSbRGQyGSuOjS9dUoLXD6zAg3bWRUqoz8AbQV0SOe2PYzLoaDIZK46NtmtYCkUqpcNsz8oMBp32plFJtgM+BoSKy01v/zIjOYDBUGl+M50SkSCn1CLAYqAnMEpFtSqmRtvrpwLNYDyFMsy1SLvLmSQuT6AwGQ+Xw4R5MIrIQWOjy3nSHvx8AHjhXuybRGQyGSmHNuvr3oxF+d4+uMsIwIx4cRtvQliTHlxVw0SFks2TxIuJjo4iLjmScB7GZuOhIuiU5+zpy+DDahrUk2Y3YjC7RHV12v1myiOQunUiILV/A5am/Pk5CbEcu75Zgt5uXl8cfruzBFd0T6ZHUmf+88JxTPx3x1RWDXglhbJp6G1tfu51Rt5RdrN8wqBaz/9mb1a8MZN2rtzL0D5fa6xrVq82HT/2RjVNuY8PkQXTv2MIpBjp+D77G4wjYYQAAFqFJREFU3zfe1L1F0xPANmAr1g7DgZ7ax9vEcc5HGCa3oESWfLtMflqdIp06xTj10SmOs/XX3ZJpE5tJ2bhVcvJL7KVUbCY7r1i+t4nNlNYtdhCbceyjS3RHl93jWZaAy8ZtO+XIyVyJiessq9ZtlpO5Rfby6edfyR979ZbMnEJZuswScDmZWySZOYWSeuSknMwtkqOnzkhScldZumyFnMwtktM2MR9fxrfUpq9jEPSn12VPximJGv6hNBg4UzbtPSbxD38igQNm2Msz762WcXM2SOCAGRI29B05fvqMNBg4UwIHzJD3vt0hIycvk8ABM6TBwJnS8s63JHDAjEoJJZX3e0hI9P02TTGdE+SX9GyvCheaOI5SKhR4DEgWkVism4uDPfXJdRHHORdhGLAEXJq6EXDRJ47j2dcF877kziFV76tOu+tSLLulAi4D3Qm4zJ/H4LvKCrgopahfvz5g7bhcWFhkX6agI766YtA1sjl7Mk6x/3CWJZyzYg/9u7dzsisC9evWAqBeYC0ys/MpKi6hQd1a9IwJ5u1vdlhxKCrhVE6B3V8dvwcd+PvGm7ovXQOAukqpACAIN2tiHCkoLDxvYRhP6BLHcRWbySgjiFJWbMb1c38PX/XaTSc01PU7ViDg4vDZxcXF9OyeRGTbVlx73XVnRYI0xLfs9/NNDEKa1iP1WI69Pu14DqFN6zn1mb5gG1FhTdg7awgpk25l1Bs/IwLhwQ05diqP1x+7mpUTbmHaw1cRVMe6dV4ZoaTfm4tWBUxE0oBxwG9ABnBKRJacq52qFnApRYc4zu/l6+9t1/WM9mS3Zs2arFi9jm27DrAuZS2/bNvqM39d0RUDdx8pLgv6eyWEsXnfcSKGvU/3J+bwyvAraFC3FgE1FPHtmzHz61+47MnPyc0rZNTAeJ/5+3vh7/fodF66NsF6IDccCAHqKaWGuGlnVwHLzc05b2EYT+gSx3EVmwkuI4hSVmzG9XN/D1/12g0lLc1VUKcCARc3n924cWN6Xnk13y5dbPfF1/Et+/18E4O04zmENTs7ggu9pB7pJ3Kd7A69riNfrtoHwN5Dp9l/OIuOYY1JO55D2vEc1u46CsAXK/cRH9HMslMJoaTfk9KNN70pVYXOS9c/AvtE5KiIFGKtZr7ctZGIvC4iySKSHBISet7CMJ7QJ45Tsa8fvl/1vuq0m5hks2sTcJlTnoDLB2UFXI4dPcrJkycBOHPmDD98/y2Rl3bUFl9dMUjZdZQOrRrRtkUDSzinZ3sWrDng1Obg0Wyu6RwKQItGdbk0tDH7Dp3m8MkzpB7LJjKkEQDXdA5l+8FMu786fg8+x8vL1ipdgaJxxrU71oxrkBUK3gEe9dQnITGpUsIwg1wEXKbNmCm5BSXahGwcxWZGP/+C5OSXyKTJ02TS5GmSk18i2XnFMtzB5vKf19hnAF3FZqZNnyk5+fp81WW3dFa1VMDlX6PHyMncIpkwaapMmDTVPrv6gE3ApVNMrHy/fJWczC2SFavXS1zneOkUGyfRnWLk7/8abZ+pzXER8/FVfHXEIHDADBkwZqHsTM2UPRmn5Nn31kjggBnyyLQf5ZFpP0rggBkSfu97snTDQdmy/7hs3X9c7p3wrX1GttvjsyVl1xHZvO+YfLVqnwTbZl0rK5Tk7vegY9Y1tkuC7D6c61XhAhXHeR64HSgCNgAPiEh+ee0Tk5Llp1Vrfe6Hrq2PdCySLNF4PHSgK7a6tmnSEd/mt7/hc5ugZ5umK3p0Zf0634rjxMUnytylP3nVtkOLoAtSHGc0MFrnZxgMhqqmijVbvcA8AmYwGCrFOW68WSWYRGcwGCqPSXQGg+FCx1y6GgyGCx4/37zEJDqDwVB5/DzP+V+i07FaQddeWTU03IEVPaJa5BcWa7Fbt3ZNLXZ1raIvKfb9CXb8U98vAwFoevMUn9vM333E5zap6sXAXuB3ic5gMFQvSh8B82dMojMYDJXGv9OcSXQGg8EH+PmAziQ6g8FQeczyEoPBcOHj33nOJDqDwVB5/DzP+Z8K2NLFi0iIjaJzdCTjPSg/dY6OpHtSF7tKE8BDw4fRLqwlXd0oa+lQlFqyeBGdYzoSE9WBseUoND35+GPERHWga0JnNqxf71VfXTH4duliuiXEkNw5ionj/+fW7tOjHie5cxRXdk9g08azduM7daBnt3iuviyJP1zZvUwcdChV6YivLhUwXYpwvZLasGnGELbOHMqoQUll6hsG1Wb2s/1ZPfkO1k27k6F/jLbXPXpzPOum3UnK1Dt556ne1KmlaymQtYTLm1Jl6NwDCvgLlgLYNuDxitrHJyRKeHiEbPl1t5ywKT+t3bhVsvNL7KVU+Skrr1i+syk/ldYtclB+cuyjTVEqIkJ+2bFHTuXkS1xcZ1m/aZucKRR7+eKrBXJ97z6SW1Aiy5avlOSu3eRMoUh2XlG5fU/ZfPV1DI6cypN24RGybssOyTiRIzGxcfLT2k1yPLvQXj6e85Vc16u3HMsqkEXfLZfE5K72utZt2srO/RlO7Y9nF2pRqsotKPEYo/ONb3ZekRYVMB3nV05+iQT1nyx70k9K1LC3pcFNU2TTnqMSP+I9Cez3qr088/bPMu6zFAns96qEDX7dUhe7aYpEDH1T9mWclMY3T5XAfq/K7B93ygMTlohq2Nrn+9F1SUiUI1mFXhUuQBWwWOBBoBvQBeivlIr01Cc3J6eM8tMCN6pHd7goPx1yUD1qUq6ylu8VpRwVmgbdPrisQtNXX3LnkLtRStG9Rw9OnbJsrl1Tfl93vvoiButT1hAecVat60+33s7XC+Y5tfl6/lfcfscQZ7WuQxnuD1Y5cfCVUpWnGJ1vfNeu0amw5ntFuK6XtmRP+kn2HzptqYv9uJP+PSKc2ojIWXWxurXJzMqjqNhadR5QswZ1awdQs4aibp0AMo7nlPkMX3HRakYA0cAqEckVkSLgB+BPnjoUFBaWUX5Kd1F+ynCj/FSR6pEuRakwF7WotDI2y7ZJT0vz2Nedr76IQUZ6erlKXPY2GS5tQs62UUpx64C+/KFnN96ZNfPsd9SkVKUjvrpUwHScXwAhl9Qj9Vi2/XXasWxCL6nv1Gb6/M1EtW7K3veGkTL1Dka9vhwRSD+ew8TPN7Dz7XvZ9/79nM4p4NsNB10/wmf4+1bqOhPdVuAqpdQlSqkgoB/Q2rWRozhOVtbpMkb8RVnLlzY99dXhqy/sLvzmB77/aS3/396ZR0lRXXH4+0lQFmUHYXDDiMhikEWCG4pHFHCPJDEqHCRRicEkqCdHE7coxgWjiLjgQsQgSERxIwoEUEBUEBBEBBVQIURkUWQAZYCbP95raHqaoaer+jDdvO+cOlPLq1+9eV116y317h394ms89fijzJg+rcLmN5tyz/S6uYqwlo50xy01uljbw5i/dDVH9hzGT695jgf6duKgqpWpdeABnNOxCc37DOfInsOoXqUyF3duVub1sifTqK4FGBzHzD4G7gEmAm8A83Au1VPT7QiOU7dO3VKRnxqlRH4qShP5aU9Rj3IVUWpFSrSoolKapdM0Kioq89x0eY2jDIoaN95jJK6iopQ0K3emSejXb9CAs8+9gDmzncv7XEWqykX55ioKWC7uL3A1uEPq7azBNa53ICtTmp89u7Tg5RlLAVj6v/V8vuo7mh1ah9OPO5TPV33Hmu9cU/alGUvo2LxhmdfLFjcFbN+t0WFmT5lZWzPrBKwDPi0rfbXq1UtFfuqeJurRqJTITw0ziqwVf0Sp5AhNz49+rrTmuecxcsQzmBnvvfsuNWo4zfbH7/7cdHmNowzatDuepUs+4wsfrWvsmNF0637OLmm6nn0uo0eNwCwpWlfDRmzcuJENGzYAsHHjRqZMnkjzFi3TlkNckarKKqNsy7f98bmMsBZ/RLj3P1nFUY1rcfjBNVx0sU5HM+69ZbukWf71Bk5r7ZrNDWpV5ejGtVn21XqWr95Ah2YNqeqDYXdufQiLfXSxXFDRDV2uR10b+L+HAYuA2mWlb9O23S6Rn2756x1W/MN2G/TQIzbooUes2EfJSo7SNHXGzB0ji6mRnx5+7AkrThr1ijui1NhXxtlRTV2EpttuH2CbS8wGD3nUBg951DaXmG3ast2u6nv1jghN09+ZtcuIYeq5m0tsx6hq3GWQGFVNROv68y2329riErtv0BC7b9AQW1tcYms2bLE+V/S1I5ocac1btLT/TH3H1haX2OwPF1vLVsday1bHWrNjWuw4d21xSU4iVW3asn23ZRS1fHMRBSxX91eV7oPt/Ftetk9WrLMlK7+1W4bPsCrdB1u/hyZbv4cmW5Xug63JZU/ZxNlf2IfLVtuCZWus98DxO0ZkBzz7ni36cp0tWLbGnp30sdU4b0hORl2Pa9POvt20LaOFAo0CNg2oC5QA15rZpLLSt23X3qa9E38UsFy9SHLhpilXUbWCmyZHYkQyTnL1fVjdC3Pgpmn6QLav/zLWDLdp197eentmRmlrVq1UkFHATsmlfiAQ2Pvs7U9HMiFMAQsEAtGp4JYuGLpAIBCZvTq9KwMq3FzXQCCQf8Q1M0JSV0mLJX0m6YY0xyVpsD8+X1LbTPIXDF0gEIhODJZOUiXgYaAb0AL4laQWKcm6AU39ciXwaCbZC4YuEAhEJqaZER2Az8xsqZltAZ4Dzk9Jcz7wjDneBWpJKvuDRCpYH93cObPXHHjAfl9kkLQesCYHWQi6udPNp7wWsu7hcV947pzZ46vtr3oZJq8i6f2k7cfN7HG/3hhInpC7AtjVJ1j6NI2BMr1PVChDZ2b1M0kn6f1cfIsTdHOnm095Dbrlw8y6xiSVrsqX+mFpJmlKEZqugUCgorCCXR1/HAKszCJNKYKhCwQCFYVZQFNJTSTtD1wMvJKS5hWglx997QisN7OynSZSwZqu5eDxPScJuhVMN5/yGnT3Ama2VVI/YDxQCRhmZh9J6uuPPwb8G+fy7TNgE3B5Jto5nesaCAQCFYHQdA0EAgVPMHSBQKDgCYYuUArlykdSzEiqniPdhvlSBoHMyCtDJ6mZpBMkVfbTReLWj1VT0lGS2ks6IGbdlpJOlVQ3Rs2TJfUEMDOL60GXdK6kP8ShlaJ7PnCPpAYx654FjCVNfJMImh0l9fR/949Rt6m/vyrl4nkoKPaGt89sFuBnOC/Fk4BngN8DNWLSPjppvVJMmucA84EpwKjka0TU7eZ1XwLGAQ0j6u0HHIiLvbsQ6Jt8LKL2mcAHQJeY74VT/b0Qt24iv58DD8akeZ7/vYYDY4CmMelegIvD8gLwIHA1UD3O8iikZa9nIMMftTIwGjjJb18EDAQGRDV23iBtAkYm7Ytk7IAT/YPYxm8/ghsqj1oOpwGfAB389ljgjJjK+E/Adf4l0j8GvROBVUl5rYmbflQtBu1rgev9ehHQBTdVqGYEzTNwnyy09PfbBKBTxHzWxX0q0cpvDwN+DjQAqkTUfR1o4bf74L5Buwk4KI77odCWfGq61sB5LAD3gL8G7A9ckm0zy/fx9AP+CGyRNALAzLbF0BS428zm+vVbgToxNGFXAVeZ2UxJDXEPdz9JQyX1iNjc3Iprrg0HOki6X9Jd/sPMbO6TtTgX+o18E/slnKeJp2PKa4IxuAe9H/CwpNpZalYCepnZR0B1YDHO6EXps9wKVAWOkVQD96LqBQwCborQx7gVVwtvCGBmw4AvgPq4F3cglb1tacvxFuuC+yr6FL9dCbgEGIH/HjBL3SLcTVMP99CMiCGvlfA1Tb9+CDAXqO/31Y3hGn8BbvLrl+NqvPUj6P0YuMGvX4er5T4cMY+tgaW4aTtX4JrJfXBN+ToRdFvhDNFzwOV+35HAY8BZEfO8n//bFfgKODaiXg9gNvAucLPfdzrwNNA6gm5f4J9AT+BO/xxcRQwth0Jc8qlGNw3XnOgpqZOZbTOzkThD1TpbUTNbaWbFZrYGd6NUTdTsJLWVdEwWmtvMLBGNW8C3wDozWy3pUmCApKrZ5tlf404zG+DX/wEcRLQO9M1AM0lX4B6iu4HDJF0VIY/zcDWMu8zsCTPbbq72URsXGS5b3QXA9bgabRO/bynupZKRY4gytLf7v2/gZhucE6FWi5mNwTWLp+FedpjZZNzvFcWTyChcvOTTcd0Bl5nZUKCBrz0GksibKWBm9r2kZ3GeCm70BugH4GD24KKlHNdY6x/sgZIW4R6czhE1twLFkpZLugvX4d3bzDZnqylJ5l/rfvsiXDnscXJzGflcKWk5cDPwOzN7VVJnXL9V1pjZQtwgR3Je6xP9N3sd1yVwm6SEa682OAMdF/OA/sC9ZpZ1GDUz+0bSZOAXkrYAVXAGen4EzfXAs5JGJYyzpF5AHSA3Id/ymb1dpSzvguuX64xrtjyN7/CP+Rr9iaHZ4rXk87wE+JKYRt289gHAr3Ejpq1i0DsUaJe0HWnUNU059MEZvZYx6rYF/gb8PY7fK43+v4AjYtCphftS4C3cAEXWzdbd6CfKNvYyKIQlb+e6+sECM/82i1G3Nu7mvs7Msn7jptHtDcwy19kdl2ZlXN/lEjNbHKPuLjXGuDRxn4V8ZWaL4tTOBbkoA697EK5P+bs9Ji6f7uFAZTOLVAMvVPLW0OUSSVXM7PuYNXPy4AQCgT0TDF0gECh48mnUNRAIBLIiGLpAIFDwBEMXCAQKnmDoAoFAwRMMXZ4gaZukDyQtkPS8pGoRtJ6W1MOvP6nS0dCT054m6cQsrvG5VDrW5+7270ajt6QhcVw3sG8TDF3+sNnMjjOzVsAW3DStHWTrhMDMfmNu9sLuOA3niSQQyFuCoctPpgFH+drWFEkjgQ+9A8aBkmZJmp+Yp+rnag6RtFDSOJybIPyxNyW19+tdJc2RNE/SJElH4Axqf1+bPEVSfUkv+GvMknSSP7eupAmS5koaSvpAw2mR1EHSDH/uDEnNkg4fKukNSYsl3Zp0zmWSZvp8Dc3W0Af2DfJmrmvAIelHOOebb/hdHXDTv5ZJuhIX5/J4OZdQb0uagJsD2gw4FjcndiHON1qybn3gCZwPtmWS6pjZOkmPAcVmdp9PNxJ4wMymSzoMN52pOW7e6XQzu13S2cCV5fi3FvnrbpV0Bm5K10XJ/x/Om8osb6g3Ar/E+ScskfQIcCnOl14gUIpg6PKHqpI+8OvTgKdwTcqZZrbM7z8T+Emi/w3n7LIp0AkYZW5i+ko/wTyVjsDUhJaZrdtNPs4AWmini7YaflpTJ5wXaMxsnKRvyvG/1QSGS2qKc9pQOenYRDNbCyDpReBknD+2djjDB87n29fluF5gHyMYuvxhs5kdl7zDP+Qbk3cB15jZ+JR03XEGpCyUQRpw3R0nWIr3FZ+XbKfZ3AFMMbMLfXP5zaRjqZrm8zrczG7M8nqBfYzQR1dYjAd+6yf7I+loOS+2U4GLfR9eI9K7nnoHOFVSE39uHb9/A853WoIJOG+++HQJ4zsV13xEUjecz7lMqQn816/3TjnWRVIdOf99FwBv4+KG9JAPjOOPR/HtFihwgqErLJ7E9b/NkbQAGIqrtY8FPgU+xLkzfyv1RDNbjetXe1HSPJzHYoBXgQsTgxE4V0Pt/WDHQnaO/v4V6CRpDq4J/WUZ+ZwvaYVf7gfuBe6S9DbOB2Ay03GedD8AXjCz9/0o8U3ABEnzgYlAowzLKLAPEib1BwKBgifU6AKBQMETDF0gECh4gqELBAIFTzB0gUCg4AmGLhAIFDzB0AUCgYInGLpAIFDw/B8MKwxhcxjA3AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Dropout (Regularization)\n", + "- Dropout is one of powerful ways to prevent overfitting\n", + "- The idea is simple. It is disconnecting some (randomly selected) neurons in each layer\n", + "- The probability of each neuron to be disconnected, namely 'Dropout rate', has to be designated\n", + "- Doc: https://keras.io/layers/core/#dropout" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from tensorflow.keras.layers import Dropout" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, )))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dropout(0.2)) # Dropout layer after Activation\n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid'))\n", + " model.add(Dropout(0.2)) # Dropout layer after Activation\n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dropout(0.2)) # Dropout layer after Activation\n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dropout(0.2)) # Dropout layer after Activation\n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " sgd = optimizers.SGD(lr = 0.001)\n", + " model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.5138 - accuracy: 0.1040 - val_loss: 2.4026 - val_accuracy: 0.0929\n", + "Epoch 2/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.4075 - accuracy: 0.1023 - val_loss: 2.3374 - val_accuracy: 0.1237\n", + "Epoch 3/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3678 - accuracy: 0.1062 - val_loss: 2.3129 - val_accuracy: 0.1118\n", + "Epoch 4/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3579 - accuracy: 0.1001 - val_loss: 2.3046 - val_accuracy: 0.1118\n", + "Epoch 5/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3507 - accuracy: 0.1046 - val_loss: 2.3019 - val_accuracy: 0.1118\n", + "Epoch 6/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3501 - accuracy: 0.1018 - val_loss: 2.3008 - val_accuracy: 0.1118\n", + "Epoch 7/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3472 - accuracy: 0.1046 - val_loss: 2.3002 - val_accuracy: 0.1118\n", + "Epoch 8/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3497 - accuracy: 0.0999 - val_loss: 2.2999 - val_accuracy: 0.1118\n", + "Epoch 9/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3481 - accuracy: 0.1021 - val_loss: 2.2997 - val_accuracy: 0.1118\n", + "Epoch 10/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3483 - accuracy: 0.1035 - val_loss: 2.2995 - val_accuracy: 0.1118\n", + "Epoch 11/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3480 - accuracy: 0.1022 - val_loss: 2.2993 - val_accuracy: 0.1118\n", + "Epoch 12/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3425 - accuracy: 0.1058 - val_loss: 2.2991 - val_accuracy: 0.1118\n", + "Epoch 13/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3447 - accuracy: 0.1043 - val_loss: 2.2990 - val_accuracy: 0.1118\n", + "Epoch 14/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3436 - accuracy: 0.1082 - val_loss: 2.2989 - val_accuracy: 0.1118\n", + "Epoch 15/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3417 - accuracy: 0.1071 - val_loss: 2.2987 - val_accuracy: 0.1118\n", + "Epoch 16/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3426 - accuracy: 0.1064 - val_loss: 2.2985 - val_accuracy: 0.1118\n", + "Epoch 17/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3393 - accuracy: 0.1105 - val_loss: 2.2984 - val_accuracy: 0.1118\n", + "Epoch 18/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3386 - accuracy: 0.1083 - val_loss: 2.2983 - val_accuracy: 0.1118\n", + "Epoch 19/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 2.3360 - accuracy: 0.1069 - val_loss: 2.2982 - val_accuracy: 0.1118\n", + "Epoch 20/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3376 - accuracy: 0.1035 - val_loss: 2.2980 - val_accuracy: 0.1118\n", + "Epoch 21/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3388 - accuracy: 0.1045 - val_loss: 2.2979 - val_accuracy: 0.1118\n", + "Epoch 22/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3360 - accuracy: 0.1048 - val_loss: 2.2977 - val_accuracy: 0.1118\n", + "Epoch 23/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3345 - accuracy: 0.1135 - val_loss: 2.2976 - val_accuracy: 0.1118\n", + "Epoch 24/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3348 - accuracy: 0.1073 - val_loss: 2.2975 - val_accuracy: 0.1118\n", + "Epoch 25/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3364 - accuracy: 0.1043 - val_loss: 2.2974 - val_accuracy: 0.1118\n", + "Epoch 26/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3348 - accuracy: 0.1015 - val_loss: 2.2972 - val_accuracy: 0.1118\n", + "Epoch 27/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3374 - accuracy: 0.1037 - val_loss: 2.2971 - val_accuracy: 0.1118\n", + "Epoch 28/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3356 - accuracy: 0.1063 - val_loss: 2.2970 - val_accuracy: 0.1118\n", + "Epoch 29/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3364 - accuracy: 0.1064 - val_loss: 2.2968 - val_accuracy: 0.1118\n", + "Epoch 30/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3333 - accuracy: 0.1101 - val_loss: 2.2967 - val_accuracy: 0.1118\n", + "Epoch 31/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3320 - accuracy: 0.1108 - val_loss: 2.2965 - val_accuracy: 0.1118\n", + "Epoch 32/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3307 - accuracy: 0.1090 - val_loss: 2.2965 - val_accuracy: 0.1118\n", + "Epoch 33/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3320 - accuracy: 0.1084 - val_loss: 2.2963 - val_accuracy: 0.1118\n", + "Epoch 34/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3312 - accuracy: 0.1063 - val_loss: 2.2961 - val_accuracy: 0.1118\n", + "Epoch 35/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3288 - accuracy: 0.1079 - val_loss: 2.2960 - val_accuracy: 0.1118\n", + "Epoch 36/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3343 - accuracy: 0.1010 - val_loss: 2.2959 - val_accuracy: 0.1118\n", + "Epoch 37/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3314 - accuracy: 0.1067 - val_loss: 2.2958 - val_accuracy: 0.1118\n", + "Epoch 38/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3294 - accuracy: 0.1118 - val_loss: 2.2957 - val_accuracy: 0.1118\n", + "Epoch 39/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3322 - accuracy: 0.1041 - val_loss: 2.2955 - val_accuracy: 0.1118\n", + "Epoch 40/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3310 - accuracy: 0.1035 - val_loss: 2.2955 - val_accuracy: 0.1118\n", + "Epoch 41/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3264 - accuracy: 0.1066 - val_loss: 2.2953 - val_accuracy: 0.1118\n", + "Epoch 42/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3231 - accuracy: 0.1086 - val_loss: 2.2952 - val_accuracy: 0.1118\n", + "Epoch 43/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3281 - accuracy: 0.1060 - val_loss: 2.2951 - val_accuracy: 0.1118\n", + "Epoch 44/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3297 - accuracy: 0.1073 - val_loss: 2.2950 - val_accuracy: 0.1118\n", + "Epoch 45/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3277 - accuracy: 0.1078 - val_loss: 2.2948 - val_accuracy: 0.1118\n", + "Epoch 46/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3253 - accuracy: 0.1108 - val_loss: 2.2947 - val_accuracy: 0.1118\n", + "Epoch 47/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3263 - accuracy: 0.1077 - val_loss: 2.2946 - val_accuracy: 0.1118\n", + "Epoch 48/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3257 - accuracy: 0.1081 - val_loss: 2.2945 - val_accuracy: 0.1118\n", + "Epoch 49/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3296 - accuracy: 0.1043 - val_loss: 2.2943 - val_accuracy: 0.1118\n", + "Epoch 50/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3257 - accuracy: 0.1068 - val_loss: 2.2942 - val_accuracy: 0.1118\n", + "Epoch 51/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3244 - accuracy: 0.1096 - val_loss: 2.2940 - val_accuracy: 0.1118\n", + "Epoch 52/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3255 - accuracy: 0.1118 - val_loss: 2.2939 - val_accuracy: 0.1118\n", + "Epoch 53/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3224 - accuracy: 0.1100 - val_loss: 2.2938 - val_accuracy: 0.1118\n", + "Epoch 54/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3230 - accuracy: 0.1076 - val_loss: 2.2936 - val_accuracy: 0.1118\n", + "Epoch 55/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3233 - accuracy: 0.1122 - val_loss: 2.2935 - val_accuracy: 0.1118\n", + "Epoch 56/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3214 - accuracy: 0.1074 - val_loss: 2.2933 - val_accuracy: 0.1118\n", + "Epoch 57/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3227 - accuracy: 0.1106 - val_loss: 2.2932 - val_accuracy: 0.1118\n", + "Epoch 58/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3177 - accuracy: 0.1133 - val_loss: 2.2930 - val_accuracy: 0.1118\n", + "Epoch 59/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3226 - accuracy: 0.1071 - val_loss: 2.2929 - val_accuracy: 0.1118\n", + "Epoch 60/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3207 - accuracy: 0.1096 - val_loss: 2.2928 - val_accuracy: 0.1118\n", + "Epoch 61/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3232 - accuracy: 0.1108 - val_loss: 2.2927 - val_accuracy: 0.1118\n", + "Epoch 62/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3179 - accuracy: 0.1120 - val_loss: 2.2925 - val_accuracy: 0.1118\n", + "Epoch 63/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3186 - accuracy: 0.1108 - val_loss: 2.2923 - val_accuracy: 0.1118\n", + "Epoch 64/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3171 - accuracy: 0.1143 - val_loss: 2.2921 - val_accuracy: 0.1118\n", + "Epoch 65/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3199 - accuracy: 0.1078 - val_loss: 2.2921 - val_accuracy: 0.1118\n", + "Epoch 66/100\n", + "434/434 [==============================] - 2s 3ms/step - loss: 2.3200 - accuracy: 0.1106 - val_loss: 2.2919 - val_accuracy: 0.1118\n", + "Epoch 67/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3196 - accuracy: 0.1084 - val_loss: 2.2918 - val_accuracy: 0.1118\n", + "Epoch 68/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3186 - accuracy: 0.1100 - val_loss: 2.2916 - val_accuracy: 0.1118\n", + "Epoch 69/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3176 - accuracy: 0.1119 - val_loss: 2.2915 - val_accuracy: 0.1118\n", + "Epoch 70/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3152 - accuracy: 0.1152 - val_loss: 2.2913 - val_accuracy: 0.1118\n", + "Epoch 71/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3168 - accuracy: 0.1159 - val_loss: 2.2911 - val_accuracy: 0.1118\n", + "Epoch 72/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3209 - accuracy: 0.1108 - val_loss: 2.2910 - val_accuracy: 0.1118\n", + "Epoch 73/100\n", + "434/434 [==============================] - 2s 4ms/step - loss: 2.3158 - accuracy: 0.1127 - val_loss: 2.2909 - val_accuracy: 0.1118\n", + "Epoch 74/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3131 - accuracy: 0.1127 - val_loss: 2.2907 - val_accuracy: 0.1118\n", + "Epoch 75/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3166 - accuracy: 0.1167 - val_loss: 2.2905 - val_accuracy: 0.1118\n", + "Epoch 76/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3162 - accuracy: 0.1133 - val_loss: 2.2903 - val_accuracy: 0.1118\n", + "Epoch 77/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3132 - accuracy: 0.1150 - val_loss: 2.2901 - val_accuracy: 0.1118\n", + "Epoch 78/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3127 - accuracy: 0.1167 - val_loss: 2.2900 - val_accuracy: 0.1118\n", + "Epoch 79/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3149 - accuracy: 0.1136 - val_loss: 2.2898 - val_accuracy: 0.1118\n", + "Epoch 80/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3140 - accuracy: 0.1131 - val_loss: 2.2896 - val_accuracy: 0.1118\n", + "Epoch 81/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3133 - accuracy: 0.1113 - val_loss: 2.2894 - val_accuracy: 0.1118\n", + "Epoch 82/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3131 - accuracy: 0.1133 - val_loss: 2.2893 - val_accuracy: 0.1118\n", + "Epoch 83/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3142 - accuracy: 0.1148 - val_loss: 2.2891 - val_accuracy: 0.1118\n", + "Epoch 84/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3103 - accuracy: 0.1179 - val_loss: 2.2889 - val_accuracy: 0.1118\n", + "Epoch 85/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3140 - accuracy: 0.1128 - val_loss: 2.2887 - val_accuracy: 0.1118\n", + "Epoch 86/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3108 - accuracy: 0.1171 - val_loss: 2.2885 - val_accuracy: 0.1118\n", + "Epoch 87/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3082 - accuracy: 0.1190 - val_loss: 2.2883 - val_accuracy: 0.1118\n", + "Epoch 88/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3106 - accuracy: 0.1136 - val_loss: 2.2880 - val_accuracy: 0.1118\n", + "Epoch 89/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3122 - accuracy: 0.1166 - val_loss: 2.2878 - val_accuracy: 0.1118\n", + "Epoch 90/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3113 - accuracy: 0.1135 - val_loss: 2.2876 - val_accuracy: 0.1118\n", + "Epoch 91/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3136 - accuracy: 0.1135 - val_loss: 2.2875 - val_accuracy: 0.1118\n", + "Epoch 92/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3100 - accuracy: 0.1115 - val_loss: 2.2873 - val_accuracy: 0.1118\n", + "Epoch 93/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3104 - accuracy: 0.1133 - val_loss: 2.2871 - val_accuracy: 0.1118\n", + "Epoch 94/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3104 - accuracy: 0.1159 - val_loss: 2.2868 - val_accuracy: 0.1118\n", + "Epoch 95/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3074 - accuracy: 0.1177 - val_loss: 2.2866 - val_accuracy: 0.1118\n", + "Epoch 96/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3071 - accuracy: 0.1183 - val_loss: 2.2864 - val_accuracy: 0.1118\n", + "Epoch 97/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3096 - accuracy: 0.1189 - val_loss: 2.2862 - val_accuracy: 0.1118\n", + "Epoch 98/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3080 - accuracy: 0.1170 - val_loss: 2.2859 - val_accuracy: 0.1118\n", + "Epoch 99/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3064 - accuracy: 0.1169 - val_loss: 2.2857 - val_accuracy: 0.1118\n", + "Epoch 100/100\n", + "434/434 [==============================] - 1s 3ms/step - loss: 2.3071 - accuracy: 0.1137 - val_loss: 2.2854 - val_accuracy: 0.1118\n" + ] + } + ], + "source": [ + "model = mlp_model()\n", + "history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100, verbose = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD7CAYAAABjVUMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXicV333/TmzSzOjfbW8SJbl3Y4Xxc6+QAIJbSEBAgktEFqWpFAK3Uj70rK8bR9KA6W0lLzhgT6UpkBKoKQPoYSE7CSO5SVOvMqWbVn7aB9ppFnP+8e9aGY0I82MRrLlOZ/r8iXNPfc2knW+928XUkoUCoVCUXhYLvYNKBQKheLioARAoVAoChQlAAqFQlGgKAFQKBSKAkUJgEKhUBQoSgAUCoWiQMlIAIQQtwkhTgohTgshHkjx/kYhxMtCiKAQ4k/itq8SQjwjhDguhDgqhPjDuPc+L4ToFkIc1v+9LT8fSaFQKBSZIOarAxBCWIFTwK1AF7AfuEdKeSxunxpgDXAHMCKlfFDfXg/USykPCiG8wAHgDinlMSHE54EJY1+FQqFQLC22DPbZA5yWUnYACCF+ALwDMAVASjkADAghfiP+QCllL9Crf+8XQhwHGuKPzYaqqirZ2NiYy6EKhUJRsBw4cGBQSlmdvD0TAWgALsS97gL2ZnsDQohGYCewL27zJ4QQHwDagD+WUo7MdY7Gxkba2tqyvbRCoVAUNEKI86m2ZxIDECm2ZdU/QgjhAR4DPiWlHNc3fxNoBnagWQlfSXPsR4UQbUKINp/Pl81lFQqFQjEHmQhAF7Aq7vVKoCfTCwgh7GiL/yNSyh8b26WU/VLKqJQyBnwLzdU0Cynlw1LKVilla3X1LAtGoVAoFDmSiQDsB1qEEE1CCAdwN/B4JicXQgjg28BxKeVXk96rj3t5J/BGZresUCgUinwwbwxAShkRQnwC+AVgBb4jpTwqhLhPf/8hIUQdmh+/BIgJIT4FbAa2A+8HXhdCHNZP+RdSyieALwshdqC5k84BH8vlA4TDYbq6upiens7lcEUSLpeLlStXYrfbL/atKBSKRWbeNNBLidbWVpkcBD579ixer5fKyko0g0ORK1JKhoaG8Pv9NDU1XezbUSgUeUIIcUBK2Zq8fdlXAk9PT6vFP08IIaisrFTWlEJRICx7AQDU4p9H1M9SoSgcLgsByIpoCKbH8na60dFR/uVf/iXr4972trcxOjo65z5/9Vd/xVNPPZXrrSkUCsWcFJ4ATA7BcAfkKfaRTgCi0eicxz3xxBOUlZXNuc8Xv/hFbrnllgXdn0KhUKSj8ASAmPZFxvJytgceeIAzZ86wY8cOrrzySm6++Wbe9773sW3bNgDuuOMOdu/ezZYtW3j44YfN4xobGxkcHOTcuXNs2rSJj3zkI2zZsoW3vOUtTE1NAXDvvffyox/9yNz/c5/7HLt27WLbtm2cOHECAJ/Px6233squXbv42Mc+xpo1axgcHMzLZ1MoFJc3hScAxoN/ngTgS1/6Es3NzRw+fJi///u/59VXX+Vv/uZvOHZMa3f0ne98hwMHDtDW1sbXv/51hoaGZp2jvb2dj3/84xw9epSysjIee+yxlNeqqqri4MGD3H///Tz4oNZD7wtf+AJvetObOHjwIHfeeSednZ15+VwKheLyJ5NeQMuGL/z3UY71jM+9UzQI0TDYXwUxv/5tXlHC535rS8b3sGfPnoQUyq9//ev85Cc/AeDChQu0t7dTWVmZcExTUxM7duwAYPfu3Zw7dy7lud/5znea+/z4x1pR9Ysvvmie/7bbbqO8vDzje1UoFIXNZSUAGbHIZQ9ut9v8/tlnn+Wpp57i5Zdfpri4mJtuuilliqXT6TS/t1qtpgso3X5Wq5VIJAJoufsKhUKRC5eVAGT0pD56AQKDULUeHO75958Hr9eL3+9P+d7Y2Bjl5eUUFxdz4sQJXnnllQVfL5nrrruORx99lM985jM8+eSTjIzM2VBVoVAoTC4rAcgM/Yk5T0/OlZWVXHvttWzdupWioiJqa2vN92677TYeeughtm/fzoYNG7jqqqvycs14Pve5z3HPPffwwx/+kBtvvJH6+nq8Xm/er6NQKC4/ln0riOPHj7Np06bMTzJyHqaGoaIZXCV5vsOlJxgMYrVasdlsvPzyy9x///0cPnx4/gPnIOufqUKhuKRJ1wqigC2A/GQBXWw6Ozt5z3veQywWw+Fw8K1vfeti35JCoVgmFJ4A5DkN9GLT0tLCoUOHLvZtKBSKZUjh1QFcZhaAQqFQ5IoSAIVCoShQCk8ApBIAhUKhgEIUAGUBKBQKBVCIAnCRg8AejweAnp4e3v3ud6fc56abbiI53TWZr33tawQCAfN1Ju2lFQqFIp7CE4BLxAJYsWKF2ekzF5IFIJP20gqFQhGPEoAF8pnPfCZhHsDnP/95vvCFL/DmN7/ZbN3805/+dNZx586dY+vWrQBMTU1x9913s337dt773vcm9AK6//77aW1tZcuWLXzuc58DtAZzPT093Hzzzdx8883ATHtpgK9+9ats3bqVrVu38rWvfc28Xrq20wqFokCRUi6bf7t375bJHDt2bNa2ORk4IWX3QSmHzmR3XBoOHjwob7jhBvP1pk2b5Pnz5+XY2JiUUkqfzyebm5tlLBaTUkrpdrullFKePXtWbtmyRUop5Ve+8hX5oQ99SEop5WuvvSatVqvcv3+/lFLKoaEhKaWUkUhE3njjjfK1116TUkq5Zs0a6fP5zOsar9va2uTWrVvlxMSE9Pv9cvPmzfLgwYPy7Nmz0mq1ykOHDkkppbzrrrvk9773vZSfKeufqUKhuKQB2mSKNfXyKgT7+QPQ9/rc+4QDIKNgsYGtaP5z1m2D27+U9u2dO3cyMDBAT08PPp+P8vJy6uvr+fSnP83zzz+PxWKhu7ub/v5+6urqUp7j+eef55Of/CQA27dvZ/v27eZ7jz76KA8//DCRSITe3l6OHTuW8H4yL774InfeeafZlfSd73wnL7zwAm9/+9szbjutUCgKg8tLALIhjz2Q3v3ud/OjH/2Ivr4+7r77bh555BF8Ph8HDhzAbrfT2NiYsg10PKmGsZ89e5YHH3yQ/fv3U15ezr333jvveeQcnyvTttMKhaIwyEgAhBC3Af8IWIH/LaX8UtL7G4F/BXYB/4+U8kF9+yrg34A6tFmMD0sp/1F/rwL4IdAInAPeI6VcWC/jOZ7UTQaOQ2Rae/qv2bigyxncfffdfOQjH2FwcJDnnnuORx99lJqaGux2O8888wznz5+f8/gbbriBRx55hJtvvpk33niDI0eOADA+Po7b7aa0tJT+/n5+/vOfc9NNNwEzbairqqpmnevee+/lgQceQErJT37yE773ve/l5XMqFIrLi3mDwEIIK/AN4HZgM3CPEGJz0m7DwCeBB5O2R4A/llJuAq4CPh537APA01LKFuBp/fUSkP8soC1btuD3+2loaKC+vp7f/u3fpq2tjdbWVh555BE2bpxbaO6//34mJibYvn07X/7yl9mzZw8AV1xxBTt37mTLli387u/+Ltdee615zEc/+lFuv/12MwhssGvXLu6991727NnD3r17+fCHP8zOnTvz9lkVCsXlw7ztoIUQVwOfl1K+VX/95wBSyv+VYt/PAxOGBZDi/Z8C/yyl/KUQ4iRwk5SyVwhRDzwrpdww173kpR10/zFtLKTFDnVbMz+ugFDtoBWKy4t07aAzSQNtAC7Eve7St2V7A43ATmCfvqlWStkLoH+tyfacuXFp1AEoFArFxSYTAZgdncxysq4QwgM8BnxKSjnP1PZZx35UCNEmhGjz+XzZHJoa1QtIoVAogMwEoAtYFfd6JdCT6QWEEHa0xf8RKeWP497q110/6F8HUh0vpXxYStkqpWytrq7O9LJzIGe+LqNpaAqFQpFvMhGA/UCLEKJJCOEA7gYez+TkQstt/DZwXEr51aS3Hwc+qH//QWB2uWyGzBfHSH+gsgKSyflnqVAolh3zpoFKKSNCiE8Av0BLA/2OlPKoEOI+/f2HhBB1QBtQAsSEEJ9CyxjaDrwfeF0IYQyq/Qsp5RPAl4BHhRC/B3QCd+XyAVwuF0NDQ1RWVqbMpU/xgeK+j+kfSQHa4j80NITL5brYt6JQKJaAZT8UPhwO09XVNW+BlMlYl/ZVxqBkhVYRrDBxuVysXLkSu91+sW9FoVDkict2KLzdbqepqSnzA/76JvDUwGgn/P6+vBWDKRQKxXKj8LqBxiLgLNG+D09e3HtRKBQXnYHxaW796nOc6vcv+bX7x6f5r0PdS35dg2VvAWSFlLoAeLXXYdULR6EodH51YoD2gQkOd46yvta7ZNedCEb4wLdf5WS/n52ry1hT6V6yaxsUlgVgZP2YFoASAIWi0Hm5YwgA30Rwya4ZjUk+9YNDnNStjn0dw0t27XgKSwBiEe2raQEE0u+rUCgue6SU/PqMJgCDSygAf/+Lkzx1fIDP/dZmqjwOXjk7tGTXjqewXEDJAhBSAqBQFDJnfJP4/NrCPzgRWpJr/vhgFw89d4b37V3Nvdc0sv/csLIAlgRlASgUijgM90+N18nQElgAB86P8MBjr3PV2gq+8PYtCCHY21RJ9+gUXSNLvx4VmABEta8qBqBQKICXzwzSUFbEjlVli+4C6h6d4mPfa6O+zMU3f3s3dqu2/O5dWwFcnDhAgQmAYQF4tK9KABSKy5oX2n3c+PfPEAhFZr0Xi0le6RjmqrWVVHmdi+oCCoQifOS7bQTDMb79wVbK3Q7zvfU1XsqK7ey7CHGAwhQAm0ubB6DqABSKy5oXTw9yfihA18jsh72T/X6GJ0Nc3VxJlcfJSCBEJLo4/cG+9lQ7J/rG+fr7drKuJjHV1GIR7GmsYN9ZZQEsLoYAWGxgL1YWgEJxmXNmQHvIMwK98bysZ/9c3VxJtceBlDA8uThWwNPH+7mupZqbN6Qee7J3bSXnhwL0ji3tmlS4AuAoVkFgheIyp2NwAkgjAB1DrKkspqGsiCqPU9tvEeIAvWNTnPFNcv26qrT77G26OHGAAhMAPQhssYG9SKWBKhSXMeFojM4h7W98wJ/YLDIak7zSMcTVaysBqPJqArAYcYCXTmuWxrVzCMCm+hK8LtuSxwEKTAAMC8CqXEAKxWXO+aEAkZjW7TjZAjjeO45/OsLVzboA6BbAYApLYaG8dHqQSreDjXXp20xYjTjAElsAhVkIZlgAygWkUFy2dPgmzO+TBaBjUIsNbKzTUsKrPFpWTr5TQaWUvHh6kGvXVWGxzD2vZO/aCp4+McCtX32Opio3m+pL+PjN63DYFu85vYAFQFkACsXFYCoUxWW3zDnA6b9f62FFWRG715TnfJ0zPm2Rb6nxzPLt9+nB1voybfiRx2nDabPkXQDaBybw+YNcN4f7x+Cu3asYDYRpH5jgZL+fJ4/1s7epgmsyODZXCswFFB8DKFZpoArFEuOfDnPl3zzFfx/pTbtPMBLlz350hH/6VfuCrtXhm6Da62RttZuB8cSFvWd0Go/TRolLG3wkhKDKk1gLIKXkH355itMDubeJfrF9EIBrW+ZfxMvdDv7sto186wOtfP8jVwFwZnBx16gCE4D4GECRsgAUiiXm/FCAiWCEw52jafdpOzfCVDhKh29hi98Z3wTN1W5qvK5ZFkDv2BT1pYmjT7VisJn9esam+cen2/nPA10538NLpwdpqnLTUFaU1XF1JS6K7FbOLvBnMB8FKgDKBaRQXAyMgqxzQ+kXtudP+fR9A0yHozldR0rJGd8ka6s9VHudjAbCBCMz5+odm6Y+aVGu9jgSYgXteqtmo5YgW8LRGK90DHHtusqsj7VYBI1VbjONdbEoXAFQdQAKxZLTPaoLwByujedO+bBaBDGpWQy5MDwZYmwqTLMuAJCY4tkzOs2KZAsgyQV0ekBbfHNdhF+7MMpkKJqR/z8Va6vdC7aC5qNwBUDVASgUC2ZkMsQP93cipcxo/27dAugcDqRsuzAwPs2JPj+3ba0DEjN5ssHI8llb7aZGFwDj6T4UiTE4EaQuhQAMTwaJ6qmjhgB0DgUI59Ai4sXTgwgBV6/NTQCaq9x0jQQSLJd8U2ACkBQEjgZntikUiqz57E/f4DOPvc65DJ/Uu0e1/SIxaVoD8bygB00/eHUjoPnxc+GMvnivi7MADAHoH9eKwlaUJrqAqjwOYhJGApoVYAhAJCbpHM7+YfHA+RE21ZVQWmzP6TM0VbuJScxitsWgwAQgKQgMKg6gUOTIi+2D/EzP5hkYn55nb43u0Sm8Ti37/GwKN9Dz7T4q3Q5a15RTX+rK2QXSMTiJ02ZhRVnRLAHoGU1MATWYqQYOIqWkfWCCLSu0OgFDULLheK/fPD4X1lZpXYs7FjETKCMBEELcJoQ4KYQ4LYR4IMX7G4UQLwshgkKIP0l67ztCiAEhxBtJ2z8vhOgWQhzW/71tYR8lA5KDwKAEQKHIgWAkyl89/oa5mGfaQ6d7ZIqr9Orb5DhALCZ5oX2Q61u0oqnmas+CLICmKjdWi6DSrS3sRjuI3jHta/0sC8CoBg4xOKHFEN66RXdFZbkI+/xBBieCbKzPXQCaqrUh8YsZB5hXAIQQVuAbwO3AZuAeIcTmpN2GgU8CD6Y4xf8Bbktz+n+QUu7Q/z2R8V3nSkoBULUACkW2fPvFs3T4JvnCO7YAmbVQCIQijATC7FhVhtthneU2OtozzvBkiBvWVwPQrAdBM40vxNMxOElztfYE7bBZqHDPZPj06EVgK5ItAM+MBdCu5/7vXF1GtdeZtQVwsk87ftMc7R/mo8Rlp8rjzDkOkgmZWAB7gNNSyg4pZQj4AfCO+B2klANSyv1AOPlgKeXzaAJx8UluBgfKAlAosqR7dIp/evo0t22p444dDVgtIiMLwHC9NJQV0VjlnuUCer5dS/+8vkUTgLXVHvzBSMpOnnMRjETpHA6wVn+CBqj2OM3z9I5OU1pkp9iR2AihOk4AjAW/pcarCVGWFsCJvnEANixAAEALYqdyleWLTASgAbgQ97pL35YPPiGEOKK7iXKv+c6U5GZwoFJBFYos+cnBLqbCUT77m5uwWASVbgeD/vm7aBo1AA3lmgAk1wI8d8rH5voS02dvPMGfzvIJuHMoQDQmzeMBqr1OBgwBGJueVQQGUFJkw2G14JsI0j4wgcdpo7bEydocXFHHe/3UeJ1U6qKSK7mITzZkIgCpGnZkb5PN5ptAM7AD6AW+kvLiQnxUCNEmhGjz+XwLu2JyHQCoVFCFIks6fJOsKHWxslz7G6r2OjOyALrjLYDKYrpGpsz0Sv90mIPnR0z3D2A+wWfrAzd6ACVYAN44CyBFFTBo7SAqPZqYnR6YoLnGgxBaLGI0EM5qWMyJvvEF+f8NmqrcDE+GGA0szqCaTASgC1gV93ol0LPQC0sp+6WUUSllDPgWmqsp1X4PSylbpZSt1dXVqXbJHBUEVigWTMfgpBmghMTFdS66R6awWQS1JS4aK91EY5ILenrlS6cHicQkN2+Y+RuvK3FR7LBm/fRt+N/XxlkANbpISSlTVgEbaMVgmgXQUuPRz6N91kzvIxKN0T4wsSD/v8FiZwJlIgD7gRYhRJMQwgHcDTy+0AsLIerjXt4JvJFu37yRMgagLACFIhvODU3SWDkjAMaiOR/do1PUlbqwWgRNVdrxRqXvMyd8eF02dsV1/7To+2VrATx9op8rVpXhcc74+Ku9TkKRGD5/kOHJ0Kwq4JnP4qBjUOvguU4XgHW6kGQaCD43NEkoEmNjfR4EYJEzgeYVACllBPgE8AvgOPColPKoEOI+IcR9AEKIOiFEF/BHwGeFEF1CiBL9ve8DLwMb9O2/p5/6y0KI14UQR4CbgU/n/dMlYwqAqgNQKHJhZDLEaCBsLuCgLa6DE0Fisbk9w90jU2ZTtEb9+LODWpbPMycHuKGlGrs1cUnKNhW0Z3SKI11jvHVLbcJ2I65wpGsMmJ0CalDlcXJhWFsTDAtgRVkRDpsl46fw472aBbKhduEuoFUVxdgsYtEygTKaB6CnaD6RtO2huO/70FxDqY69J83292d+m3kiwQWk/wdWaaCKAuEv/+sNWhvLeceO3HM44lssGFR5nISjkrGpMOVuR9pju0enzAlclW4HXqeNc0OTHOsdZ8Af5KYNs128zdUe/vtID9PhKC67dd77e/JoH4CZv29gZPgc6dK6kCYXgZmfxTsTtDUsAKtFsLbKnbEFcKJvHJtF0Fzjnn/nebBbLayuKF60TKACrQRWaaCKwiIak3z/1U6eOj6woPMYC1FTVWKGDcw9TSscjdE/Ps1K3QIQQpipoM+e1JI7bkwhAGur3UiZumo4Fb842s+6Gk9CBhBATYl2j69lYAEAOG0WM8gNmhBlagGc6PXTXO3BaZtfsDJhMZvCKQFQAqAoAHpGp4jE5IKzSc4OTmC1CFaWzyygxtP1XIHgvrFpYlJzpxgYqaDPnhxgW0MpNd7ZT+XGQp7JAjgyGeLVc8Oz3D/aPWrnNi2AOWIAoAWQrXEjHNdWu+kcDhCKzN8U7kSfPy/+f4OmKjdnhybNJnX5pMAEIC4IbLWDxa6CwIqCwGhmNhqYVauZFecGA6yuKE7w1Vd7tUVzrlRQMwU0TjiaKovpHpniwPmRlO4fwIw1ZBIHeOp4P9GYnOX+AT3H32ZhJBCmwu1I604yxMzw/xs0V3uIxiSdw3ML0dhUmO7RKXPWcD5YW+0hFImZhXT5pMAEIAIIsOgf21Gs6gAUBYGRbTOyQAugY3AyIQAMM0/Xc1kARhvohiQLICYhJuGmDTUpjytyWGkoKzIra+fiF0f7WVHqYltD6az3hBDm4p7u6R9mYgDrkgTAiHmcnmc4jJGCmk8LYK3+816MVNDCEwBLXNzbXphDYb78Pyf49enBi30biiUkHxZALCY5l0IA4ito02FYAMkuIICyYjs7VpWlPfbNm2p44vU+/ueN9HOEA6EIL7T7eMuWurTD5o1YRTr/P0BjpZvf2F5vziMwMGoK/uaJY7zrm7/mXd/8tdkJNR5DqDbl0QLYtKKEr713B5vyKCoGBS4AhTcXWErJt17o4P++nv6PSXHpEInG+PWZhYu14bqYCEYy8mOnot8/zVQ4ai7cBtpA9bnbQXSPTFHlcSa4Xpr0WoIb11cn+NuT+Yu3bWLn6jI+/cPXeKN7LOU+z530EYzEeEsK/7+BIQDJTeDicdgsfON9u1hfm7jYepw2PnxdE2sq3BTZrXT4Jvjur8/NOv54r5+yYju1JQtrARFPicvOHTsbUsZIFkqBCUA0hQVQWAIQjMQIRyUjWZS1Ky4ej7/Ww/u+tW/BaYDxoxVHp3L73RsDytdWzU5vnK8dRPfoVIL/H6Dc7eDPbtvAfTc2z3ldl93K//f+3ZQV2/nIv7WZbZ3jeebkAKVFdvY0VqQ9jyEAyZPAMuWzv7mZf//wXv79w3t5166VHO4anTWt60jXKJvrS9JaIZcaBSYAEa0IzMBeXHB1ABNBLRMqm74miovHG92aS6E/w4ErqZBS0jkUoFLP0c/VDXR2yEgBTS0Ac7WE7h6dMlNA4/n9m9axKYOeOTVeF9/6QCujgTAPPPb6rPdf6Rhmb1MFNmv6Jc0YDZk8CSwXrmyqIBSJ8XrXjEUyPBniWO84V6/Nfgj8xaIABaCwXUD+aU0AFpoNolgaDJ/yQiy20UAYfzDC9pWlCzrXWd8kLruFupLZT9BVnvQWgJQypQWQLVsbSvnANWt4/pTPfJABrblb53CAPU3pn/4hPgawcFdKq96y4tVzM53uXz4zhJRwbUtuM4AvBgUuAIUXBJ7QBWB4kboLKvKHlJLjvZoALOT3dV4PAG9fqQVaR3K1AAa1HkCWFP76aq+ToYmZgerj02H+6NHD3Pe9A3zk3w4QisQSMoBy5caWaiIxyStnhsxt+zq0RfiqeZ689zZV0LqmnE0LGNNoUOlx0lztpu3ciLntxdODeJ02tqfIQrpUKTABSI4BFBVcGqg/qP3xj0yGcpq0pFg6fP6guVgvxGIzMoCMTJuxXGMAKTKADKo8zoSB6r86PsCPD3ZzasDPheEA21eWck3zwl0juxvLKbJbzeExAPvODuF12eZ1Ja2r8fKj+6+hxJXbkPZk9jRV0HZu2OyB9NLpQa5qrpzTDXWpkVEvoMuG5BiAo/CCwIYFEIlJ/MFI3v4YFPnnuJ5TDguL2XTqvvtthgsoBzGJRGN0DgdmpUcaxA9er/I4zUX5l5++cc4Mn2xx2qxc3VzJ86fiBKBjmCsbK/J6nUxoXVPB91+9wMl+P26Hjc7hAL93XdOS3sNCWT5SlQ+UCyjBd6oygS4u/ePTtJ1LPy31hO7+KXHZFvS7Oj8UoNrrpNLtwGG15FQM1jWitZJIZwEk9wPa1zHMnkValG9oqeLcUIDOoQAD49N0DE6ydx7//2JgxBzazg3zol5Xc+265eP/h4IXgMILAicIgAoEX1S+8cxpPvSv+9O64k70+akvdbGm0r2gGEDncIA1FcUIISgrtjM6mf3vfaYJXHoXEGgWgLkor12cRdmYGvZcu499ZzUB3XsRMm9WlhdRV+Li1XMjvHR6kLoSF83VC+8AupQUuAAUQzQ40yOoADCygEBZAItJOBozxx2mo2d0Cn8wkiDK8RzvHWdjnZdytyNjsR4LhGn966d4tG1mjHfncIDVlVpny/JiR04WQMc8AhDvAjIX5abFWZSbqtysLC/i+VM+9p0dwu2wsjUPgd1sEUJwZVMFr54d4tdnBrl2XdWyyf83EMspENja2irb2tpyP8F/3A3j3XDfC9rrl74Ov/xLqNkCojC0sN8/zdCEtgCsKHNRVpS+f/ulxuhUCJvVgsdx6Yeuzg9Pal0zy4rT7tMxOMF0OEZztXtW6+AYkpN9fircDsLRGFOhKC0187cCGJoM0j8exGmzmK2UT/T5qfY6qPa4zEHs8RO9MqF7dIqJYIT1tR5EijHhEsmJPj8VxQ5iUpsNsKHOm3LffNAzNsX4VBib1YLdKlhTcXGevIcDIfrGtBqNRf97+o0HYfVVOR0qhDggpWxN3n7p/yXlk2QLYP1bobsNoqmfwC5HhqfG6WYKKSXFDiN7D3UAACAASURBVC9lZcvHZD3i8+F12thZUz7/zheRqJS09w4gBKworcGS5qmwc2CAkIxRW1SO053YOmAyGOZCbIiyklImpsL0TE/RUpa+zQFoi/DxwSGmiRILS6qclVitgi45SJm3FEqLGPWPMhmK0FiWna/6jM9HqduOKEvds0cAg4M+IlY749MRXMVWRNni/Z6s1mk6L4xCDNaVe6DMM/9Bi4C9KEzXqJaS2lxdDXmaAZASW/5bQRS2AFRvgPf828W7n4vAwz88zP7wML1j09zXspY/fevGi31LGSGl5MOf/R921JTx6D1XX+zbmZPXL4zy4SMvAfCf11zNlSnaE4SjMT702Z8jJXxt9w7u2Jk4pevpQ9186sRhnrzzBp58o4+v/vIUp+66HYctvaX6wikfH3jtVf7fO7bytz87zh1lK7h1cy0fPd7GY7dfw4o15fzwx0f45bEB2u65JePPc2E4wAdee4Yv3LKFK65pTLvfP/zLSwRCUU5M+Pmz2zaw+6Z1GV8jW4qmw9z/xV8SjUkee/vVsGbpg8AA7pjkj7/4JPWlLt7y/hsvyj0shMIWgALEP62lfk6HYwznEAy8WIxPRQhFY4xPX/r3fLgzrjiofTClAPj8QQzva6o2D8f7xrFbtaHo5WYLhxA1KapwDb73ynkq3Q7e07qSIxdGefxwjznVao0eAygtcjAa0GpAMvVXzwRa515kqzxOnjzWr+27SP5/gxKXnZ2rynijZ4xtDek7iS42FovgL962ifLi5eNKjacwHN8GsWhiHUABMhEM43HZKC+2L6sgsG9CWyTHp5aBAFwYpcbrZPvKUl5K03Y7ftHvH5/dQuFEr591NV7sVgvlxVqtxlyB4O7RKZ4+3s97r1yF02bl7j2rmAxF+deXzlHssJp9gMqL7URikslQ5okP+zqGKCu2s36eGIQRCC6yW822E4vJZ27fyN/euW1Oq2gpuGfP6rT1EZc6BSYAygKYCEbwOm2Uux3Lqh3EgN5obHz60o/XvNY1xo5VZVy3ropDF0bxp7BaDAEQQgvMJ3Oib5xNddqCW6E/Xc5VDPb9fZ1I4H17VwOwa3U562o8DE4EWa2ngALmk2o24r/vrFZolaoFRDyGAOxeU54wMWyxuLKxgnfuWrno17mcUQJQYExMR/C4bFQUOxbNAugaCfCln5/Iue98KoxpUxPBCJF50itzZSoU5e/+50TatMxMGA2EODs4yY7VmgBEY5JXz84u9jKe+purPfiSLICRyRD940FzqpThAkqXvhmKxPjB/k7evLHGdPkIIbj7ylXAjPsHtOEr2n1mZkkZjdYyKbQyagEuRlGWIjeUABQYE8EIHt0CWIxCsFhM8kc/fI2HnjvDyx1D8x+QIfHjBheyQM/FC+0+vvnsGZ49OZDzOQ5f0IaO71hZxq415ThtFrNKNJ6+8WnsVsHGOu8sC+CEMVZQnypV4Z7bAvjlsX4GJ0L89t41Cdvv3NmAw2ZJGG+YSkxGJkNpHwYybbQGsKpCE5rl1A2z0MlIAIQQtwkhTgohTgshHkjx/kYhxMtCiKAQ4k+S3vuOEGJACPFG0vYKIcQvhRDt+tfFz+1bxjGA9n4/f/iDQ7MGUGSL37AA3HZGAvlvCPdvL58zW+Sm83/nQrwAjE8tjgCc1gePd/hynxFx+MIoQmh9d1x2K3uaKlL+HPrHp6nxuqgvddE/Pp3wezipt4DeqLuAZp7aUy/SP9jfyYpSl1kha1DpcfLEJ69LGLgyE0+YOdcnf3CIj//HwZTnzrTRGsD166p4/BPXsmv1pZ2mq5hhXgEQQliBbwC3A5uBe4QQm5N2GwY+CTyY4hT/B7gtxfYHgKellC3A0/rrxWUZWwBPnxjgp4d7eO1C6pF4mRCKxAhGYloMoNhBNCbz6lM/PzTJ3/3PSW7eUM1Vayt4sT1/AjAQLwCLlAl0Rh/4fUYXglw4fGGUlhoPXr3J3rXrqjjVP8FAUqZP//g0NSVOaktcTIdjCb+HjsFJvE6b6VN32qy4HdaUWVtdIwFePD3IXa2rUvbdWVfjNe8FoKw4cSiMlJLXLozSdn4kpcsum0ZrFoswW04rlgeZWAB7gNNSyg4pZQj4AfCO+B2klANSyv3ArP+hUsrn0QQimXcA39W//y5wRzY3nhPLWAB69KHahy+MzLNneiZ114lHFwDIXzuIWEzyZz86gs0i+Nt3buP6lmqO9Y4zNMeYwGzw+YMYWYuLlQm0UAvAWEzjB5xfpzcH+/WZRHdY/3iQuhJXXAuFGYHo8E2yttqdkKapuexm/67+s60LgLtaMwuGlhUlWgAD/iDj09qc4KM9iQ8XF7PRmmJpyEQAGoALca+79G0LpVZK2Qugf63Jwznn5rIQgNGcz2H4zj0uu+lXzqUvTCqeeKOXfWeH+cvf3Ex9aZHZFTF54csVnz/ISn2i1GJYAFJKOgYMAZjIyTXWORxgJBBmx6oZF8jm+hLKiu2z4gD9Y9PUlrio1fP641NBO3wTs3ruVLgds2IA0ZjkP9sucH1LtRn8nQ+b1YLXZTMtgJNxLacPdSb+3zJceRej0ZpiachEAFLZfkvWQEgI8VEhRJsQos3n881/wFwkD4RZRnSPak+IhztzFwCjEZwRBIb8CcAb3eM4rBbetVt7Et3WUIrXZctbHMA3EaS5WgtmLkYMwOcP4g9GWFfjYTIUTZmbPx+GOF+xaiYH3mIR7G2qYH9c2+fJYAR/MJIkANrvdyoUpWdsmrXVia0NUjVxe6HdR8/YtJntkynx5zrVrwlAicvGwc5E6/LXZy5eozXF0pCJAHQB8f/DVgI9ebh2vxCiHkD/mjL1Qkr5sJSyVUrZWl1dnWqXzEkeCLOM6BmdwmGz0DM2PcufnCmGBeDVC8GAvFUDXxgO0FBeZPqKrRbBNc2VvNA+uOBAcygSY3gyxDpDABbBAjitP/2/ZbPWbyeXOMChzlGK7FY21CYWTG1fWcb5oYB538ZiX1fqNAeVG4JjtF1em9RWuLzYPksAfrj/AhVuB7dsmrtHUDJlxXbTAjjV76fK4+D6luoECyAWkzx1rJ/rW6qX1YQrRXZk8pvdD7QIIZqEEA7gbuDxPFz7ceCD+vcfBH6ah3POzTJ1AU0GI4xNhbmhRRPAXN1AE/o4yAQLIE8xgAsjAdNFY3Dduiq6R6fMkYS5MjSpLY6NVW6EWJwYgLHgv2WLVtHZkYMAvNY1yraG0lkL5hb9CfpYj5bd06cLQK3Xhdtpw+O0MaDHADoGtesmu4DK3Q5G4sR6aCLIL4/1865dDVlXwpYVO8yMopP9E6yv9bJzdRndo1OmOB3uGmXAH+StW7MTF8XyYt7/OVLKCPAJ4BfAceBRKeVRIcR9Qoj7AIQQdUKILuCPgM8KIbqEECX6e98HXgY26Nt/Tz/1l4BbhRDtwK3668VlmQpA75jm/791cw02i8hZAEwXkMuG12nDZhF5qwa+MBxgdUWiH9qIA6TKg88GIwW0tsSF12lblGrg0wMTePSB3m6HlTNZBoJjMcmJXj9bGma7S7as0FxCb3RrQdYB/Wm/tlRz/9SUOM1tZ32p++5XFDuYCEbMNOAD50eIxGROLQg0ayJMLCY53e9nfa2XXWu0uMUh3Q30i6N92CyCN21QAnA5k9FqKKV8AngiadtDcd/3obmGUh17T5rtQ8CbM77TfLBMYwCG/39ttYdN9SULsAB0F5DThhCCcrcjbW55Nvinw4wEwmYhkEFTlZsVpS5ebB+cVaSUDcbiWO11UlJkXyQLYJLmajcWi2BttSdrF1DXyBRT4egs9w9o911X4uJosgWg+/9rvS7zybtjcJIVpS6Kk2YezDSEC1NbYuVY7zhCkFF+fjJGDKB7dIrJUJT1tV62rCjBYbVwsHOUt26p48mj/VzdXElpsZoZfTlTWM69ZRoDMDKAVpQVsWNVGUe6xojGsverT8RZAKA9VS5k2LjBhWHt/lYlZaIIIbh2XRW/PjOU0/0a+PRU0hqvk9Ii+6LFAIwgc3O1O+tU0JN6MHV9XeqGaVsbSkwLoH98Go/u+gGoLXGa1cAdvgmaUowVTM7aOtozztoq9yyhyISyYjv+6QjH9ZnD62s9OG1WtjSUcPD8CO0DE5wdnDTdYYrLlwIUgOVnAfSMTmERUOt1smNVGRPBSE5ByolgBIvQujWCthCM5CEIfGFE8/Gvqiia9d51LVWMTYX51Ync2ysYLqBKj4MSlz3vWUATwQh949M06y0T1lZ76B6dIhDK/DpGNk1LTerBJFtWlHLGN0EgFDGLwAxqSlwMjAe1VNTBSdZWzT5HmRm01wTgWM84m1fk1nHTqAExMpNadKtl1+pyjnSP8X9f03I8jIC44vKlAAVg+VkA3aNT1JW4sFkt7FitFRnlkg7qn9b6ABkFRhV56gh6QQ/yJscAAN66pY4NtV4eeOxIyr73meDzBykrtuO0WSkpsuXdAjijZwDNWADaVyMjJxNO9ftpKCtKqLqNZ2tDKTEJx3v9ZhGYQY3XSTAS44xvEv90ZFYGEMRZAJNhRnX3zZYc0zMNMdl3dpi6EhelenHYztVlhCIx/vXX59i5usx0USkuXwpHAGIxQC5LC6B3dJoVZdrTdVOlG6/LxqEc4gD+6UjCAqVlluRHALxOm7mQxOOyW/nn9+1kMhThUz84nJMraMA/TbXeabLEZWcswxhAIBTh/ND8i7hhTa0zLQC3vj1zATjZ52d9bfqxhFv14PDRnjH6xqYTBMBYaI3meakGr5stoQMhM5tocw7+f5ixAN7oHktwWRk9fPzTEd6q3D8FQQEJgG7OL0MLoGdsinpdACwWwY5VZbyWgwBMBMOm3xm0RWV0SssGWQgXRqZYGddzPpmWWi9ffPtWXu4Y4hvPnM76/D5/0HSZZBME/odfnuI3vv4i4XnaR58emMBmEWbb5CY93TTTVNBINEaHb5L1KQLABnUlLirdDo50jTHgn06Y7GUIwCsdxmzZVC4gPQg8GeKY7rvP1QIwBCAmYUOcaK0oKzKFSQlAYVCAArC8LIBYTOoWwMyCsWNVGSf7/UxlMdUJ9FbQrpnPX1ZsJxqTZnpornQOB1idwv8fz12tK3nHjhV87alTZvAxU3wTwQQLYDIUzWgmwAvtg0wEI/MGdM/4JlhTWWwOMXHZrTSUFWVsAZwbChCKxuYUACEEWxpKebF9kHBUUhcfA9CLwfZ1DOGwWUxrLx6HzYLXaWM4EOJoz7gmKB7nrP0yoSwus6cl6Z5vWF/FFavKUlohissPJQCXAO39fp5JEyQdnAwSisZoiFsUdq8pJxqTvHI2uz47E3oMwMDsM7+AOICUkq6RwKwMoGSEEPzlb24mJuGZLPrtSykZGA+aTdNKirT7n0+0RgMhMzPnWO/cHVS1FNDEp+7mak/GFoARAN6QJgPIYOuKklkpoIBp3QxOhGisLE7bebPMrY3x1ALAubdniBeA5LTVv7lzGz/86FU5n1uxvFACcAnwT786zUe/15ayxUOPXgOwonRGAK5ursTrtPHEkd6sruNPsgDK5xk0kgm+iSDT4disGoBUVHmcrK1yc/D87I6m0+FoypYR/mCEYCRGjVdbMEv0GMZ8geBXzw6bQ9eP9/rT7heOxjg3OJkwNAW0OECHb5JYTPLYgS52fvHJtINiTvX7ESK16yaerQ0zWTtGERhAscOGV/+9pMoAMqgodtAzNs1p30TO7h/QKsFtusgkf2671YLLvvzcpIrcKCAB0N0ll6AAXBgJEI5KvvfK+VnvxdcAGDhtVm7dXMuTx/rn9W/HMzGtzQM2qDB7w+cuAHNlAKVi95pyDpwfSVjsxwJh9v7t0/z08OwWU0YK6IwFoAvAPKmg+84O47BZaKnxzOly6hwOEInJlBbAVDjK/Y8c4I//8zVGAuGEhm7xnOr3s6aimCLH3Avn1ri0zeQMG+N1qgwgg3K3g8MXRonGZM4BYNCssbJiB6sqinA7L72/B8XSUUACcOkGgbtGtEX+3185z3Q40a9vCEBDkl/4bdvqGZsKZ9Vt0xgHaVCewbDx+TCLwOaJARjsXlPOSCCc4F9/vt3H2FQ4pctllgDoT8rzWQD7zg6xc1UZO1aVpRUAKSX/rotusvvGWIifPNbPH7xpHQ1lReZnTUbLAJrb/QPaz8h40jf8/gbG67l87xXFDnNoy5YcawAMGspcbGtY2DkUy58CFIBL64lnOhzF5w9y7bpKRgJhfnywO+H9ntFp3A6r6fs2uH59leYGej0zN1A0JgmEokkuoNnjAbPFsAAy7Uff2qilGsa7gZ49qbX5Hk2R3TOQ1gJILwDj02GO9Yyzd20lm+pLGJwImc3W4vnHp9v515fO8cGr18xyqexcVc67d6/kux/awx+/ZQNrKovNgrd4gpEo54YCGQmAEIKtK0qp8jjMgLPBjAWQ3gVkZAJ5nbaMBTcdD71/N399x7YFnUOx/FECcJExnvDfuXMlWxtK+PaLHQlpmT2jWgpocoql02bllizcQBNx08AMPE4bdqtYUEvozuEANV5nxn7jtVUeyorttJ3X3CmxmOS5U5pvPVV+v2EB1CQLwBwWwIFzI8QkXNVUYfbKMXLnDf73Cx187al23r17JZ/7rS2zfr5FDisP3nWFOWd3VXmxaanF0+GbJBqTaVtAJHPfTc186pb1s7YbgeC1c1kAumBvWlGSNuU2U+pLi8wkAEXhUkACcGnGALp1AVhZXsTvXdfEGd8kz7XPDL7pGZtKmRYImhtoNBDOaOpW/CwAAyEE5cUOhidzH9t4YSSQUQDYwGIR7FqtxQEA3ugZY3BCs0CMHvXx+PxB7FZhFpmZLqA5YgCvnB3CbhXsXF1u+srjA8HPnhzgr392nN/YVs/fvWs7lgzm3a4sL8LnD85y0RkZQHMVgcVz4/pqfueq2Y3x3tu6ii+8fYsZmE+F8d5CAsAKRTwFJACXZgzAeKpcWVHMb2xbQW2Jk28932EGSXtGp2goS12Sf31LFZ4Ms4HMRnDOxGrdVRXFnBvKvV//heEpVpVn547YvaacM75JRiZDPHPChxBapWxqF5BWBWw88bodNixibgtgX8cwV6wso8hhpbTYTkNZUUIc4N9fOU9tiZN/eO+OjIadA6bIdSW5gU71+7FZxJzZO5mwttrDB69pnHMfI2i/kACwQhFPAQrAJWYBjExhtQhqvU4cNgsfuX4tvz4zxI8OdDEdjjI4EUpIAY3HZbdyy6YafnGsb143kDkMxpX4+ddVe8xeONkSjsboHZvKOAPIoFXvPX+wc4RnTg5wxcoy1lZ5GEsRi/D5Z2oAQLMgvK701cCTwQivd4+xd+3MIPNN9V5TAAYngjx70scdO7MbpGL43JMDwSf7tPm92Q5lyYWtDaVsqi/hupaqRb+WojBQAnCR6RoJUF/qMqdIfejaJq5eW8lf/fQoL7ZrGT7pXEAAt23V3ECpcuvjMQqnvEkC0FLrYWgylFMmUM/oFDGpWS/ZsH1lGTaL4Mmj/bzWNcrNG2ooLUrd40cTgEQLSGsIl9oFdOD8CNGYZG/TzCDzTfUldAxOMh2O8vjhHiIxybt2pRxfkRYjyJ1sAbQPZJYBlA9WVRTz8z+8nvo0DwQKRbYUkABcujGA+BRPq0Xwtbt3UOyw8ukfHgbmFgCjydh8bQvih8HEY7RAPp2DFZBuDsB8FDmsbGko5bGDXUgJN2+spqxYE4DkvkSDE0GqvYl+8ZI5LIB9Z4ewWgS7dSsDNAGIxiSn+v38+FAX2xpKs160qz2ahXYhLhDsnw5zfigwbwWwQnGpUkACcOnGAJJTKGtLXHzlPVfg1xft5BqAeFaUFuGwWTg3T9fL5GEwBkb/+vaB9NWyyYSjMTp8EzyvB6tXV2YnAAC7V5cTiUmqPA62riiltMhOTGJ+ZtAyhIYnQ1S6E3PmS1zph8Ic7/XTUuNJKHAyMoH+61APb3SP865dDVnfr8UiWFleZKa9wkxmkcqnVyxXLq3H4cXkEnQBhSIx+senaUgRRL1pQw0fv7mZ/9jXSV1p+r7sFotgTUXxvL3rU6WBgiYgRXZrxhbAv79yns8/fpSI/qRe5XEktDbOlNbGcr7z0lluXF+DxTKT5TM+FTa/H50KE5PaIJh4SopsnBtMHbju8E3MKpJaU1FMscPK9145h80i+K0rVmR9vzA7FfQNXQBSzQFWKJYDhWMByNkuoF+d6OdNDz47K7Vvqegbm9Z86Gme8P/0rRvZ9xe3zBtgbKxyc24eATBiAO6kEYIWi2BdjSdjAXjqeD+1JS4evOsKfvz71/Dsn96ccSZNPHubKqgtcXLnTu1p3Gx3HJcKOqSPgkzOV09nAQQjUTqHAzQntVOwWAQb67yEo5KbNtTk3EVzZXlRQjHY0Z4xarxOs0+RQrHcKBwBSGEB7Ds7TMfgpFlstNR0jRpVtOldPJlklzRVuTk/HJizr7/RBiJVzns2AnCi18/epgrevXslu1aXz7IoMqXS42TfX9xiZrQYHSpHp2aC0UN6YLoqacEuTTMToHMoQEzOxDXiMdxA796dvfvHYFVFMaOBMH5dfI52jyc0eFMolhsFJACzLYBu3ZwfysNUrEz4yaEufnp4ptWD4U5I5QLKhsZKN6FIjJ6x1L1qYHYr6HjW1XjoHZs2F7Z0jEyG6BufZmN9/oOeZYbbJ8EC0H4vs11AqWcCGJO9UuXkv21bPTesr+bmjTU536MR7L4wPMVUKEr7gJ+tqihLsYy5dBzii02KILCxAOdjLGIm/MszZxibCvNb21dgsQi6R6YQggWn9TVWaQvTucFA2p48ycNg4jFaAp/xTbJjVVna65zo0wLFG+vyv+gZfv/4VFCjQnm2C2hmJkB85ayRCZWqo+a166q4dt3C8ueNWoCukQDBSJSYhC3KAlAsYwrIApjtAjLaMCykG2amSCnpHA4w4A/yerc2oKRrZIpar2vBRURGB8mzc2QC+YPpLYCWDFNBT/RpQc/FsABKUgiA0SLCqIBN3jc5DnDGN0FdiWvRWhwb4nphZMoMACsXkGI5k9HKI4S4TQhxUghxWgjxQIr3NwohXhZCBIUQf5LJsUKIzwshuoUQh/V/b1v4x5mDJAEwunDCwrphZorPHySot/J9+ng/AN2jgTn9/5lS63XhslvmDARPTIdnFYEZrK4oxmG1zJsKeqLXT6XbYY5nzCcuu5UiuzVhNsHwZIiyYrtZJGdgDoVJ6gd0xjdJc83ijTIsL7bjdli5MBzgaPcY5cV2VsyRoaVQXOrMKwBCCCvwDeB2YDNwjxBic9Juw8AngQezPPYfpJQ79H9P5P4xMiApBmB04YSlsQA69fxxp83CU8e17pddI1ML9v+DluXSWDl3JlDyLIB4bFYLTVXueVtCnOgbZ2O9d8GdKNORXA08NBmkMkVztFQWgJSSDt/EgnvyzIUQglUVxXSNBHijZ4ytDaWL9rNQKJaCTCyAPcBpKWWHlDIE/AB4R/wOUsoBKeV+IDmKOO+xS0ZSDCA+n3spBeCOHQ0c6x3nwnCAvrHpvFgAoAWC53IBzRUEhvkzgaIxycl+/6L4/w3Kiu2zgsDJRWAwMxc4PhPINxHEPx2ZlQKab1aWF9ExOMnJPv+Ch7IoFBebTASgAbgQ97pL35YJ8x37CSHEESHEd4QQ5aRACPFRIUSbEKLN5/Ol2iUzklxAhv/f67ItmQAIgdnx8T9e7SQSkzSUZV9Fm4rGKjcXhgOzMmMMkucBJ7OuxkPncCBtTcT5oUmmwzE2LmLbg9Iie0JH0KHJ0KwMIEg9F7jDDAAvngUAWhygwzdJOCrNNhwKxXIlEwFIZeOmTzjP/NhvAs3ADqAX+EqqE0gpH5ZStkopW6urqzO8bAqSBKBrJIDVIthUV7IkMYDO4QB1JS421XtpqnLzg1c7gblrALKhqaqYcFSaQ+QNpJQ8f8rHRDAyqw9QPOtqPMQkaSuKjQygTYvYijg5v394MpRyaEmqucBGCmiqGoB8Ej/7YKuyABTLnEwEoAtYFfd6JTB7eneWx0op+6WUUSllDPgWmrto8Ui2AEamqC91Ue11zrIAesemuPdfX52VHhoIRfjwd9s4nUXfHIMLw9rgFCEEb95Yw4ju6shHDAA0FxAkZgL992s93P6PL/CB77xKtcfJjRvSC2hLrdETKLUb6ETvOBYxkzK6GMS7gKIxyUgglLJq1+2wzpoJ0OGbxGW3UJ9DW4psMGYfeF021uTQA0mhuJTIRAD2Ay1CiCYhhAO4G3g8w/OnPVYIUR+3353AG5nfdg4kBYG7RrQunOVu+ywB2NcxzLMnfew7mzhp60jXGE8d7zfbNGdD53DA7Jv/5k215va5Gr1lg5EKagSC958b5g++fwgp4cG7ruCFz9zM7jUVcx5vEelTQU/0+Vlb7cl49GMulBU7zErgkUAIKUkZBBZCUJJkLZzRA8CZTPdaCEYq6JY8jGVUKC428yZMSykjQohPAL8ArMB3pJRHhRD36e8/JISoA9qAEiAmhPgUsFlKOZ7qWP3UXxZC7EBzCZ0DPpbnz5ZIUhC4e3SKa5qrqCh2MDoVJhqTZk+bvnHNjXKyb4Lbts6cwhj/159l64jpcJT+8aApAK2N5ZS4bDhs1rwtqNVeJ26H1XTh/Mszp6lwO/ivj19LkWP+azhtVtZUutNaNyf6/Gxfubguj9IiO9PhGNPhaNoqYIMSV2LGUIdvkivmKGLLF0YxmHL/KC4HMqqY0VM0n0ja9lDc931o7p2MjtW3vz+rO10AoUiM8fEAVQAWG6FIjD69C2dFsR0ptQIkw9/cN6YJgLHgG5zU/eD944l+9vkwhogYAmC3Wrhnz2qz0CkfCCFYU+nm3NAkR3vGeOakjz95y/qMFn+DlhoPp/pnWwATwQidwwHee+WqFEflj/iOoENpqoANSopsZsB4OhzlwkjAbCy3mHhddv7pnp1c2ZjemlIolgsFX1KkqQAAETBJREFU0Qriz3/8Ok0nzvIJAIuN3rEppNQCsE69Cjc+4JhOANr1xXFgPDsLwEgBjQ8g/vnbNuXyUeakqcrN0Z4xvvnsGTxOG++/ujGr49fXevnViQGCkShO24xwnDRbQCzu4JOZhnBh0wJIbgRnsHVFKf95oIsX2wep9jqRaZrALQa5tpNWKC41CqIVxNXNlQSD+qJtsZlN4FaWFZmLfnwmkOECOjs4SUiv3pVSy4OH7C2AzqFEC2CxaKwqpnM4wBOv9/I7V60xn6gzZX2dl0hMzsoEmmkBsbhpj2VFMy2hjbhMOgvgs7+5mXXVHn7/kQM8pVdWr61a3BoAheJyoyAE4IaWKmxCz48XFrMIbGV5MeV6n5mhOHdM39g0boc1YTH0+YOMTYVx2iymQGRK5/AURXYrVWn82fmisdJNTGqVvb97XWPWx6/XM4GMJ36DE71+vC7borc9iG8INzQRRAjM308yHqeN//3BVmxWC3//i5NA6iZwCoUiPQUhADUlLmrcViJYQQi6RrUunHWlLjPIaFgAkWgM30SQq5u1zpHGU7/xdU9TBf7pCIFQ6qHkAH/w/UNmnj/MZAAtdtaIkQn03tZVOQ0pWVvlwWYRpqvL4LWu0SXJejFdQIEQg5Mhyosdcw6bWVVRzEO/sxu7VbCi1EWxoyA8mgpF3igIAQBorHASkRYCoQhdI1pRlsNmMZ8wDZfD4ESIaExyTXMlVovglP40bDwVX68PMEkXBzjV7+e/X+vhn585bQ5oMWoAFpsrVpXxyTe38Ie3tOR0vMOm9QQ6GRf7mA5HOdYzzq7VKQu180pp8YwFMDwRSpkCmsyepgoe+p3dPLAIMRWF4nKnYARgdamTCFZe6RiiW68BAK0LZbHDahZ9Ge6d1RXFNFW5zUBwe/8ElW4Hm+u19L90cYCfHekFtDqDtvMjZhvoxfb/g5Zd9Ee3rk8bOM2E9bXehOD3691jRGJySQTA47BhEVoMYGgymNb/n8ybN9XydhWYVSiypmAEoNZrJYqV508NzurCWV7sMC2APn2qVl2piw1xi+HJfj8ttR5qS7TFNV0twBOv93LFylKKHVYeO9DF4ESIqXCU1RX5KfhabNbXeukcDjAV0grnDp4fAWDH6sXPsTeGw49NhRmaDC1IyBQKxfwUjADYiCGsNp45OUDfeGIXzgq3g+GAIQDak31dqYuWWg/nhwMEQhHa+/1sqPVSqwdCB1JYAO39ftoHJnjnrpXcvrWen73eS7suIKuXSduA9bUepJypCD7YOcKayuIlW4zL9MK8oYnUfYAUCkX+KBgBIBbBZrNzfihANKkLZ4XbEecCCmK3CiqKHWyo9SIlPH9qkMlQlPV1XrxOG0V2a0oX0M9e70UIuH1rHe/a3cBEMMK3XzwLLH4KaL5Yr+f6n+z3I6XkYOfokrh/DEqL7AxNaBlX6aqAFQpFfiictIlYBLt9Ji8+2QLoGNSeePvGpqgtcWGxCFpqtcXw/x7Ret+tr9WGodSWOOlLEQR+4vVerlxTQU2JiyqPk4ayIp4+MaBfb3kIwBpjOli/n+7RKXz+IDuXwP1jUFpkN91uqRrBKRSK/FFAFkAUm91uBn+TYwAjk1pbgb7xaer0jpKNldpi+LQ+wWt9jSYINSWuWRbA6QE/p/oneNu2OkDzZxutCWpLnIvaRC2f2KwWmms8nOz3c7BzFGBJLYCyYju9uhsukywghUKROwUkABGExcYN66uwiMQunBVuOxPBCMFIlL6xadPPb7NaWFvtZiocpbbEaaYp1pa4ZsUAfnakT3P/bJtpcnrnLk0Alov7x2BDrYdTfX4OdY7gslsWvQVEPGVx1ctKABSKxaWgBACLjU/dsp6H39+a8EReoY8dHJ4M0Tc+ndBTfoO++K2vnVkEa71O+seDSDkzF+eJ13tpXVNObdyxzdUe3n7FCt60cab983KgpdZLz9g0z5/ysX1l2ayh7ItJfPsKFQNQKBaXgooBYLFRW+KidnNilWyFW1t0zg0GmA7HqItreWAs/AkCUOJiKhzFH4xQ4rIz4J/mZL+fP79946zLfv2enYvxaRaVDfpnPeOb5NbNdUt67dK41g+p5gErFIr8UUAWQNScBZCMUQ18rFdrepZKADbECUCNXgtguIEO6b7y1sal85UvJvFit5QBYJhxAVn1mgCFQrF4FJAARMxpYMkY+ebHenQBiHPjXN1cyXtbV/GmTTXmNuP9vjEtE+hg5wh2q2DLZTIkZGV5EUW6i2wpA8Aw0w+ovNix6NO9FIpCp+BcQKkwBSCFBeBx2vi7d29P2N/w8xuZQIfOj7J5RemyyfSZD4tFsL7Ww9BkiGrv0rphjKd+FQBWKBYfJQBoi44QmOMQ5+ukWWO2g5gmHI1xpHuUe/aszu/9XmQeuH0ToWhsya9rWAAqAKxQLD4FJADRtAJgs1ooLbIzGghT5XHisM3tGSt22PC6bAyMBznR62c6HGPnErtKFpurmysvynVL9aEwqg2EQrH4FFgMIL2LpkIPBNeVZubyqNWLwQ52as3Sdi1xsPRyxXABqUZwCsXiU2ACkN7gMZ444wPAc1Fb4qR/fJpDnSPUeJ0JhWWK3HHYLLxv72pu3by8aicUiuVIAbmA5haAckMAMhx7WOt1se/sMIMTIXatLl/0aVmFxN/eue1i34JCURAUkAWQPgYAcS6gTC2AUhe9Y1N0DgeWPFdeoVAo8kFGAiCEuE0IcVIIcVoI8UCK9zcKIV4WQgSFEH+SybFCiAohxC+FEO3618WNos4TA5ixADJz5dR6negTH9m15vIKACsUisJgXgEQQliBbwC3A5uBe4QQm5N2GwY+CTyYxbEPAE9LKVuAp/XXi8e8MQAt+Jh5DEBvGGcRbGu4PArAFApFYZGJBbAHOC2l7JBShoAfAO+I30FKOSCl3A+Eszj2HcB39e+/C9yR42fIjHkEwHjyX5Xh6MYaXQA2ryi5bArAFApFYZGJADQAF+Jed+nbMmGuY2ullL0A+tcaFpN5YgC3b63j0Y9dzZpKd0anM2YDL3WrBIVCocgXmQhAqvQWmWJbvo/VTiDER4UQbUKINp/Pl82hicwTA7BbLexpqsj4dPWlRdyzZxV3ta7M/Z4UCoXiIpKJAHQBq+JerwR6Mjz/XMf2CyHqAfSvA6lOIKV8WErZKqVsra6uzvCyKZjHBZQtVovgf71z+2XTAE6hUBQemQjAfqBFCNEkhHAAdwOPZ3j+uY59HPig/v0HgZ9mfts5EIuAUL56hUKhMJj3kVhKGRFCfAL4BWAFviOlPCqEuE9//yEhRB3QBpQAMSHEp4DNUsrxVMfqp/4S8KgQ4veATuCufH+4BOaJASgUCkWhkdGKKKV8AngiadtDcd/3obl3MjpW3z4EvDmbm10Q88QAFAqFotAooErg/MYAFAqFYrmjBEChUCgKlMIQgFgMZEwJgEKhUMRRGAIgo9pXJQAKhUJhUhgCEItoX1UQWKFQKEwKTACUBaBQKBQGSgAUCoWiQCkQAVAxAIVCoUimwARAxQAUCoXCoEAEQLmAFAqFIhklAAqFQlGgKAFQKBSKAqVABEDFABQKhSKZAhEAZQEoFApFMkoAFAqFokBRAqBQKBQFSoEIgCoEUygUimQKRABUMziFQqFIpsAEQFkACoVCYaAEQKFQKAqUAhEAFQNQKBSKZP7/9u4uRq6yAOP4/8kiaDGGUovWtko1G6ViKLVp6ldjxMS2Ele8KgnaGCOalFiMiSnhRi81fidYglDFj7QXQHRDGpQA0SuQqki2ltoVkC5UugZFI8Z24fHivJrpzK5M3Z0OPe/zSyY7550zO++T3Z5n5j0z3UoKIOcAIiK6VVYAeQUQEfEffRWApE2SDkmalLRzltsl6Vvl9oclre24bYekCUkHJF3bMf4FSU9KeqhctixMpFmkACIierxoAUgaAW4ANgOrgSslre7abTMwWi5XA7vKfS8GPgmsBy4BLpc02nG/r9teUy775htmTimAiIge/bwCWA9M2n7U9nFgLzDWtc8Y8H037gfOk7QMuAi43/ZztmeAnwNXLOD8+5P/DC4iokc/BbAcONKxPVXG+tlnAtgoaYmkRcAWYGXHfteUJaPdkhaf8uz7lVcAERE9+ikAzTLmfvaxfRD4EnA3cBfwW6AcjdkFvAlYAxwFvjrrg0tXS9ovaf/09HQf051FCiAiokc/BTDFyc/aVwBP9buP7Vtsr7W9EXgGOFzGn7b9vO0XgO/QLDX1sH2T7XW21y1durSfTL1SABERPfopgAeBUUmrJJ0NbAXGu/YZBz5W3g20AXjW9lEASReUr68HPgLsKdvLOu5/Bc1y0WDkg2ARET1e9Ihoe0bSNcBPgRFgt+0Dkj5dbr8R2Eezvj8JPAd8vONb3C5pCXAC2G77L2X8y5LW0CwnPQ58amEizSIfBIuI6NHXU+LyFs19XWM3dlw3sH2O+75njvGP9j/NecoSUEREj3wSOCKiUpUUQM4BRER0q6QAcg4gIqJbPQWgEdBsH1eIiKhTPQWQ5Z+IiJOkACIiKlVJATyfAoiI6FJJAczkBHBERJc6nha/9m0w889hzyIi4iWljgJ4+7bmEhER/1XHElBERPRIAUREVCoFEBFRqRRARESlUgAREZVKAUREVCoFEBFRqRRARESl1Pw1xzODpGngj//n3V8N/HkBp3OmqDF3jZmhztw1ZoZTz/0G20u7B8+oApgPSfttrxv2PE63GnPXmBnqzF1jZli43FkCioioVAogIqJSNRXATcOewJDUmLvGzFBn7hozwwLlruYcQEREnKymVwAREdGhigKQtEnSIUmTknYOez6DIGmlpPskHZR0QNKOMn6+pLslHS5fFw97rgtN0oik30i6s2zXkPk8SbdJeqT8zN/R9tySPlt+tyck7ZH08jZmlrRb0jFJEx1jc+aUdF05th2S9IFTeazWF4CkEeAGYDOwGrhS0urhzmogZoDP2b4I2ABsLzl3AvfYHgXuKdttswM42LFdQ+ZvAnfZfgtwCU3+1uaWtBz4DLDO9sXACLCVdmb+HrCpa2zWnOXf+FbgreU+3y7HvL60vgCA9cCk7UdtHwf2AmNDntOCs33U9q/L9b/THBCW02S9tex2K/Dh4cxwMCStAD4I3Nwx3PbMrwI2ArcA2D5u+6+0PDfNXzB8haSzgEXAU7Qws+1fAM90Dc+VcwzYa/tfth8DJmmOeX2poQCWA0c6tqfKWGtJuhC4FHgAeI3to9CUBHDB8GY2EN8APg+80DHW9sxvBKaB75alr5slnUuLc9t+EvgK8ARwFHjW9s9oceYuc+Wc1/GthgLQLGOtfeuTpFcCtwPX2v7bsOczSJIuB47Z/tWw53KanQWsBXbZvhT4B+1Y+phTWfMeA1YBrwPOlXTVcGf1kjCv41sNBTAFrOzYXkHz0rF1JL2M5uD/I9t3lOGnJS0rty8Djg1rfgPwLuBDkh6nWdp7n6Qf0u7M0PxOT9l+oGzfRlMIbc79fuAx29O2TwB3AO+k3Zk7zZVzXse3GgrgQWBU0ipJZ9OcMBkf8pwWnCTRrAkftP21jpvGgW3l+jbgJ6d7boNi+zrbK2xfSPNzvdf2VbQ4M4DtPwFHJL25DF0G/I52534C2CBpUfldv4zmPFebM3eaK+c4sFXSOZJWAaPAL/v+rrZbfwG2AL8H/gBcP+z5DCjju2le+j0MPFQuW4AlNO8aOFy+nj/suQ4o/3uBO8v11mcG1gD7y8/7x8DitucGvgg8AkwAPwDOaWNmYA/NeY4TNM/wP/G/cgLXl2PbIWDzqTxWPgkcEVGpGpaAIiJiFimAiIhKpQAiIiqVAoiIqFQKICKiUimAiIhKpQAiIiqVAoiIqNS/ARVlOwPsNZeCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(history.history['accuracy'])\n", + "plt.plot(history.history['val_accuracy'])\n", + "plt.legend(['training', 'validation'], loc = 'upper left')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Validation results does not improve since it did not show signs of overfitting, yet.\n", + "
Hence, the key takeaway message is that apply dropout when you see a signal of overfitting." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 1s 2ms/step - loss: 2.2844 - accuracy: 0.1135\n" + ] + } + ], + "source": [ + "results = model.evaluate(X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.11349999904632568\n" + ] + } + ], + "source": [ + "print('Test accuracy: ', results[1])" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2debhd49n/P9+cJDIQIRFDIiREQgxJRCg1dFCJauloVlrFW9FJfy19WxStqtZLXzRUDa2ipYYgFa6+jaklIYIEIWLIRARJkGgG9++PZx322dln73XOXsvezz73J9e6svdaz/que0/3edYzfWVmOI7jNDKdah2A4zhO3niicxyn4fFE5zhOw+OJznGchscTneM4DY8nOsdxGh5PdHWCpCmSjk8eHynpnoz1t5ZkkjpnqZvy2t0l3SFpmaSbqtDJ/H2pBZL+LulrtY6jI9FhEp2klyS9Jqlnwb7jJU2pYVglMbM/m9lnPurrSjpC0qOS3pG0KPlBfjwD6S8DmwJ9zOwr7RXJ632RtF/yR+CWov27JPunpNQ5S9J1lcqZ2Tgzu7ad4TrtoMMkuoTOwHeqFVGgod47Sd8HLgJ+QUhKA4HLgIMzkN8KeM7M1mSglRevA3tK6lOw72vAc1ldoBG/N9FgZh1iA14CTgPeBHon+44HphSU2ROYBixL/t+z4NgU4OfAQ8BKYFvAgG8BzwNvA+cA2wD/BpYDfwW6JudvBNxJ+EG9lTweUKR/fPL4WODB5PEPgXcKttXANcmxDYE/AIuABcC5QFNyrAn4NbAEmAucnMTbucR7s2Gi/ZUy7996hES4MNkuAtZLju0HzAdOBRYn8RyXHPsZsCqJ+x3gG8BZwHUF2lsXxpa8/rnJe/oicGTx+5Ly8zon+bzeBu4B+rby2prjnwCcXPD+zQfOoOV35GJgXvL5PgbsnewfW/Q6nyjzvSn8rH8H3Fygfz7wD0C1/s000lbzAD6yFxoS3aeBW4Bzk30fJDpgY0ICOppQ8zs8ed4nOT4FeAUYnhzvkvw4JwK9kv3/Sb6kg5Pk8TTwteT8PsCXgB7ABsBNwG0F8RV++Vv8oAvKbElIMgcmz28DLgd6Av2AqcCJybGTgGeTczYG/knriW4ssKbUsYIyZwMPJ9fZBPgXcE5ybL/k/LOT9+VAYAWwUXL8LFomtuLnWzfHlryW5cDQ5NjmwPDi9yXl5/UCsB3QPXn+y1Ze236EpLYn8Eiy70BgMuv+MTwq+Sw7ExL7q0C3Uq+rzPem8LPuQag1HgvsTfjDNKC1z8G39m0dsRp9BnCKpE2K9n8WeN7M/mRma8zsBkKi+FxBmWvMbFZyfHWy73wzW25ms4CZwD1mNtfMlgF/B0YCmNkbZvY3M1thZm8T/srvmzZoSd0Jie1iM5skaVNgHPBdM3vXzBYD/wMclpzyVeAiM5tnZm8C55WR7wMssfK3lkcCZ5vZYjN7nVBTO7rg+Ork+Gozm0So1QxN+/qKeB/YUVJ3M1uUvLfFpPm8rjaz58xsJaF2PaLcRc3sX8DGkoYCxwB/LFHmuuSzXGNmvyHUdCu9zlLfm2a9FYTkeSFwHXCKmc2voOe0kQ6X6MxsJuG28bSiQ1sALxftexnoX/B8XgnJ1woeryzxfH0AST0kXS7pZUnLgfuB3pKaUob+B2C2mZ2fPN+KUDtYJGmppKWE2l2/gtdTGG/xayvkDaBvhR7Z4vfn5WTfBxpFiXIFyWtvC2b2LnAooUa6SNJdkoaliKc5psLP69V2xPMnYDzwCeDW4oOSTpX0TNKDvJRQc+9bQbPU9+YDzGwq4VZdhITsZEyHS3QJZwLfpOWPYiEheRQykND21Uw1S72cSvjLv7uZ9QL2Sfar0omSTkvO/UbB7nmEW+W+ZtY72XqZ2fDk+CLCbWszA8tc4t/Ae8AhZcoUvz8Dk33t4V3CLVszmxUeNLPJZrY/4bb1WeD3KeJpjmlBibJt4U+EdtdJSW3rAyTtDfyIUFveyMx6E9oHmz/D1r4fZb83kk4m1AwXEtpknYzpkInOzOYAfwG+XbB7ErBdMsSis6RDgR0Itb8s2IBQw1sqaWNCsq2IpHFJnIckt2DNr2ERoYH9N5J6SeokaRtJzbfDfwW+LWmApI1YtwZLgdYywi39pZIOSWqfXSSNk/SrpNgNwE8kbSKpb1K+4lCKVpgB7CNpoKQNgdMLXu+mkj6fDAP6D+EWeG0JjVw+LzN7kdCk8N8lDm9AaIt8Hegs6QxC+2wzrwFbt6VnVdJ2hE6kowhNAT+UVPYW22k7HTLRJZxNaPgGQhsacBCh5vUG4S/rQWa2JKPrXURoFF9CaNS/O+V5hxIa/59Jxre9I2lCcuwYoCuh0+Mt4GZCLQhCLWgy8AQwndAJ0ypmdiHwfeAnhB/yPMIt3G1JkXOBR4EngacSzXNTvobia91L+EPzJKHnsjA5dSJ8BgsJPeT7EmpYxRq5fV5m9qCZlaqtTia0uz5HuE1+j5a3pc2Dod+QNL3SdZKmgusI7bxPmNnzwI+BP0lar5rX4LREZr7wpuM4jU1HrtE5jtNB8ETnOE7dIOkqSYslzWzluCT9VtIcSU9KGpVG1xOd4zj1xDWEAeytMQ4YkmwnEGaWVMQTneM4dYOZ3U/ohGqNg4E/WuBhwljUzcuUB8KUlLqhb9++ttVWW2eu+/gzr2SuCTBy+3JD0xyn/nj55ZdYsmRJxbGbbaGp11Zma1ZWLgjYytdnEXqrm7nCzK5ow+X607Kne36yb1G5k+oq0W211dY89MijmetutNv4zDUBHnrkklx0HScv9tp9dOaatmYl6w39aqqy78249D0zqyaIUkm64tCRukp0juPEiOCjW31qPi1n/AwgxQwdb6NzHKc6BHRqSrdVz0TgmKT3dQ9gWTJLqCxeo3Mcp3qUTbOfpBsIy2b1lTSfMFWyC4CZTSBM/TsQmENYqOG4NLqe6BzHqZLsbl3N7PAKx42wiGyb8ETnOE71ZFSjy4u6a6O7Z/Ld7Dx8KMOHbcsFv/rlOsfNjO9/99sMH7Ytu43cmcenT6947oQzj+Tlf5zHozf9uNXr/uaHX2bm7Wcy9S+nM2LYgA/277/n9jxx60+ZefuZ/OC4/XOP1XXz1Y0p1jx1M0WEGl2arVbkuXwxYYTzbML99GmVyo8cOcoGDR5sT89+wZa9+x/baaedbfoTs2zlavtgu3XiXfaZA8bailXv25QH/m2jdxtjK1ebvfPemlbP/dTXL7Q9DjvPZj6/wLqNOHmd7eDxl9rdD860biNOtn2OvsCmPvmidRtxsvUYNd5eeGWxDfvsGbbB6G/bE7Pn2YgvnmPdRpxs6+3yX7nEWu6Y61anG1OseemOGrWrZf07V8/NrNseP0q1AY/mmXNa23JLscnKuZcSpmzsABwuaYdy57z77rtss822DBo8mK5du/KVQw/jzjtub1Hmzom3c8RRxyCJ3ffYg2XLlrJo0SKmTZ3a6rkPTX+BN5etKHVJAA7ad2euv3MqAFOfeokNN+jOZn17sduOW/PCvCW8tOANVq9Zy02Tp3PQfjsDYCsW5xJruWOuW51uTLHmqZsLH12va/vCy1F7DDDHgn/CKuBGKljnrV69mgEDPhwi07//ABYsaLlg7MKFC9Yps3DBgpL7i89tjS369Wb+q2998HzBa0vZol9vtui3IfNfK9z/Fv032RAAW/1OLrGmeR2u2z7dmGLNUzd7VPe3rnleubWpGi2QdEJimvzo8reXryOiokbOUuvnSWp1fxpKFTMzVGIQdrkh2FnEmuZ1uG77dGOKNU/dzBHhR5RmqxF59rqmmqqRzHO7AmDo0GE2f/6HuXHBgvlsscUWLcr37z+A4jKbb7EFq1atWmd/8bmtseC1pQzYbKMPr7Fpbxa9voyuXTozYNPC/Rux8PVl4cV1Wb/i9doTa6lzXDcb3ZhizVM3F+rclzvP6No8VaNnz57MmfM8L734IqtWreKmv9zIZw/6fIsyn/3c57n+uj9iZjzy8MP06rUhm2++OaN3263iua1x131PccRBYwAYs9PWLH9nJa8uWc6js15m24GbsNUWfejSuYmvHDCKu6Y8CYB69Msl1jSvw3XbpxtTrHnqZk/937rmWaObBgyRNIjgzHQYcES5EyTxPxdfwuc+ewBr167la8d+nR2GD+f3lweLhG+eeBJjxx3I5L9PYviwbenRvQeXX3l1eCGdO5c8F+Da845l712H0Lf3+sy5+xzOmTCJLp1Dw+iVNz/I3Q/O4oCPD2fWxDNZ8d5qTjwreL6sXfs+3zv/r9xx2ck0dRLX3v4wz8x9NYm1Uy6xtnbMdbPRjSnWvHRzoVN9j6PL1TNC0oEEU5gm4Coz+3m58rvuOtpiWr3krWm+eokTF3vtPprHHns006zUqVd/W2+3dJMV3vu//37Mqlu9pF3kOjPCgmP7pDyv4ThOrflIVy9pFz4FzHGc6qnzKWCe6BzHqR6v0TmO09DUeIxcGjzROY5TPTWc3pUGT3SO41SJd0Y4jtMR8FtXx3Eamub16OoYT3SO41SJ37o6jtMR8FtXx3EaHu91dRynoZHfujqO0xGo81vXukvD7gLmunnqxhRrnrpZIynVVjPyct0BrgIWAzPTnuMuYHE5SsWmG1OsMbmAdeq9lfX40lWpNhrNBQy4hmB3mBp3AYvPUSom3ZhizVM3c9SGrUbklujM7H7gzbac4y5g8TlKxaQbU6x56maP6NSpU6qtVtS8M0LSCcAJAH369i11vMXzPFyP3AWsY+jGFGueunlQ0/a3FNQ80Zm7gEXtKBWTbkyx5qmbB/We6Oqq19VdwOJzlIpJN6ZY89TNnAja6GpeoyvEXcDic5SKTTemWGNxARM1HjqSgtxcwCTdAOwH9AVeA840sz+UO8ddwBwnX/JwAevcZ7D1OvDcVGXfuu7IxnIBM7PD89J2HKe+qPcaXV3dujqOEyE1bn9Lgyc6x3Gqpt5rdHXV6+o4Tnw0d0ZkMddV0lhJsyXNkXRaieMbSrpD0hOSZkk6Lk2Mnugcx6maLBKdpCbgUmAcsANwuKQdioqdDDxtZrsQOjt/I6lrpfg80TmOUx0CdVKqrQJjgDlmNtfMVgE3AgcXlTFgA4WsuT5hmumaSsLeRuc4TtW0oY2ur6TCMWRXJLOjAPoD8wqOzQd2Lzr/EmAisBDYADjUzN6vdFFPdI7jVE0bEt2SMuPoSokUD/Q9AJgBfBLYBrhX0gNmtrzcRf3W1XGcqsiwM2I+sGXB8wGEmlshxwG3WGAO8CIwrJKwJzrHcaonm7mu04AhkgYlHQyHEW5TC3kF+BSApE2BocDcSsJ+6+o4TnUom3F0ZrZG0nhgMtAEXGVmsySdlByfAJwDXCPpqXBlfmRmSyppe6JzHKdqslpU08wmAZOK9k0oeLwQ+ExbdT3ROY5TPfU9MaL+2ujcBcx189SNKdY8dbOmI7uAbQn8E3gGmAV8p9I57gIWl6NUbLoxxRqTC1jXftvawFMmptpoQBewNcCpZrY9sAdwconpHC1wF7D4HKVi0o0p1jx186Dea3R5uoAtMrPpyeO3CTW7/uXOcRew+BylYtKNKdY8dfOg3hPdR9IZIWlrYCTwSIlj7gJWcG6a1+G67dONKdY8dfMgxTzWmpJ7opO0PvA34LtWYpqGuQtY1I5SMenGFGueupmT0Ti6PMm111VSF0KS+7OZ3VKpvLuAxecoFZNuTLHmqZs1ItwVpdlqRW41umQZlT8Az5jZhSnPcRewyBylYtONKdZYXMDo4C5gHwceAJ4CmpdR+bGFkc8lcRcwx8mXPFzAum22nQ085repyj5/wbiGcwF7kLofL+04TtUIOnX0zgjHcRob4YnOcZwOQJ030Xmicxyneuq9M8ITneM41VHjoSNp8ETnOE5VhHF09Z3pPNE5jlMl8s4Ix3EaH6/ROY7T2HgbneM4jY630TmO0yGo8zznic5xnOqp9xqdm+MkuDlOx9CNKdY8dTMlmeuaZqsZeZlRAN2AqcATBHOcn1U6x81x4jJaiU03plhjMsfp2X872/28Kak2GtAc5z/AJ81sF2AEMFbSHuVOcHOc+IxWYtKNKdY8dbMnnV9Eo5rjmJm9kzztkmxlF79zc5z4jFZi0o0p1jx186DeVxjOeyn1JkkzgMXAvWa2jjlOCo0Wz/MwA3FznI6hG1OseermQb3X6HLtdTWztcAISb2BWyXtaGYzC8sUuoD123TTmpiBuDlOx9CNKdY8dbNGESy8+ZH0uprZUmAKMLbEsSvMbLSZje6/RX83x4nMaCUm3ZhizVM3DzpsjU7SJsBqM1sqqTvwaeD8Cue4OU5kRiux6cYUazzmOPU/YDhPc5ydgWuBJkLN8a9mdna5c9wcx3HyJQ9znA22HGa7nnpVqrL3fW+vhjPHeRIYmZe+4zh1gk/qdxyn0VEEvq6e6BzHqZom73V1HKfRyWrAsKSxkmZLmiPptFbK7CdphqRZku5LE5/X6BzHqYqQxKqv0UlqAi4F9gfmA9MkTTSzpwvK9AYuA8aa2SuS+qXRbjXRSRpV7kQzm17uuOM4HYeM7lzHAHPMbC6ApBuBg4GnC8ocAdxiZq8AmNniNMLlanS/KXPMgE+muYDjOI1PRp0R/YF5Bc/nA7sXldkO6CJpCrABcLGZ/bGScKuJzsw+0fY4HcfpiLQhz/WVVDhY9gozu6JZpkT54oG+nYFdgU8B3YF/S3rYzJ4rd9GKbXSSegDfBwaa2QmShgBDzezOSuc6jtP4CGhKn+mWlBkwPB/YsuD5AGBhiTJLzOxd4F1J9wO7AGUTXZpe16uBVcCeBRc6N8V5juN0BFLOc01xezsNGCJpkKSuwGHAxKIytwN7S+qcVMJ2B56pJJym13UbMztU0uEAZrZS9T460HGcj5QsMoKZrZE0HphMmDp6lZnNknRScnyCmT0j6W7gSeB94MriFZFKkSbRrUom5RuApG0Iqwc7juMgoFNGdR8zmwRMKto3oej5BcAFbdFNk+jOBO4GtpT0Z2Av4Ni2XMRxnMam3u/xKrbRmdm9wBcJye0GYLSZTckrIHcBc908dWOKNU/dLGleeDN6FzBCoruQMLbuC21x3yHcaz8O3FmprLuAxeUoFZtuTLHG5AK20dbb21evmZ5qo15dwCRdBpwEPAXMBE6UdGkbcul3SNErAu4CBvE5SsWkG1OseermgVJutSLN8JJ9gQPM7Gozuxo4ENgvjbikAcBngSvTlHcXsPgcpWLSjSnWPHXzoN6XUk+T6GYDAwueb0no2k3DRcAPCd3AJZF0gqRHJT26/O3lpY63eF5qRWR3AXPdNLoxxZqnbtaEXtd0W60oN6n/DsLvekPgGUlTk+e7A/+qJCzpIGCxmT0mab/WylmY/nEFwNChw8xdwOJylIpJN6ZY89TNnBrX1tJQrkb3a0LnwxnAOMIwk7OSx+ek0N4L+Lykl4AbgU9Kuq7cCT179nQXsMgcpWLSjSnWPHXzoN57XctN6k+1oF2Z808HToewUB7wAzM7qtw57gIWn6NUbLoxxRqLC1jzrWs9U9EFTNIewP8C2wNdCcNF3jWzXqkv8mGiO6hcOXcBc5x8ycMFrO/g4fa5X9yYquw1h+9cty5glxAm194EjAaOAYa05SIWBhhPaWNsjuNEQp1X6NItpW5mcyQ1mdla4GpJFTsjHMfpGEjZzXXNizSJbkWyZMoMSb8CFgE98w3LcZyYqPM8l2oc3dFJufHAu4RxdF/MMyjHceIi2l7XZszs5eThe8DPACT9BTg0x7gcx4kEoYa4dS3FxzKNwnGceEnp2VpL3NfVcZyqqfeZEe3xdRXQJZ9wHMeJkTSN/bWkvb6uz2YdiOM4cSIirtGZ+7o6jpOSznVepfM2OsdxqkKKuEbnOI6Tlnqf1O+JznGcqqnzCl0qzwhJOkrSGcnzgZLG5BWQu4C5bp66McWap26WNPu6ptlqRgoXr98BlwLPJM83Aqalcd4BXiKY6swghfuPu4DF5SgVm25MscbkArbZtsPtx5Nmp9rS5IE8tjR9Jbub2cmEKWCY2VuEdenS8gkzG5FmDSp3AYvPUSom3ZhizVM3a5SyNlfLGl2aRLdaUhOJL4ykTShjdlMN7gIWn6NUTLoxxZqnbh5I6bZakSbR/Ra4Fegn6efAg8AvUuobcI+kxySdUKqAu4C1PDc2R6mYdGOKNU/dPIjWBawZM/uzpMeATxHaHQ8xs1SG1MBeZrZQUj/gXknPmtn9RfruAhaxo1RMujHFmqdu1jR3RtQzaXpdBwIrgDuAicC7yb6KmNnC5P/FhFph2d5adwGLz1EqJt2YYs1TNw/q/dY1zTi6uwh3bAK6AYMIptZlLYUk9QQ6mdnbyePPAGdXOMddwCJzlIpNN6ZYY3EBQ9BU5zW6ii5g65wQVjU50cxOrFBuMKEWByGhXm9mPy93jruAOU6+5OECNmDoTjb+d7elKnv6p7atWxewFpjZdEm7pSg3F9ilXVE5jhMV0U8Bk/T9gqedgFHA67lF5DhOdDTCpP4NCh6vIbTZ/S2fcBzHiY3Q61rrKMpTNtElA4XXN7P/9xHF4zhObGTYoyppLHAx0ARcaWYlJ+kmzWcPA4ea2c2VdMstpd7ZzNaUWVLdcRwHAZ0zqNIlFatLgf2B+cA0SRPN7OkS5c4HJqfVLlejm0poj5shaSJwE8HXFQAzuyX1K3Acp6HJqEY3BpiTdGQi6UbgYODponKnEJrPKnaKNpOmjW5j4A3gk3w4ns4AT3SO4wCiU4npkq3QV1LhGLIrktlRAP2BeQXH5gO7t7iS1B/4AiEfZZLo+iU9rjP5MME107bBd47jNCzBHCd18SVlxtGVUinONRcBPzKztW3p6S2X6JqA9VNe3HGcjkp2E/bnA1sWPB8ALCwqMxq4MUlyfYEDJa0xs7IjlsslukVmVnbKluM4joCmbDLdNGCIpEHAAuAw4IjCAmY26IPrStcAd1ZKclA+0dX5yBjHceqFLFYvSUZ5jCf0pjYBV5nZLEknJccntFe7XKL7VHtFHcfpWGQ1js7MJgGTivaVTHBmdmxa3XIG1m+mFXEcp+Mi0q3gW0vqLj53AXPdPHVjijVP3UxJDKzTbDUjT+cdoDdwM/As8AzwsXLl3QUsLkep2HRjijUmF7Ctt9/Jrp32SqqNOnYBq4aLgbvNbBhhyaayS7C7C1h8jlIx6cYUa566WSPCwptptlqRW6KT1AvYB/gDgJmtMrOl5c5xF7D4HKVi0o0p1jx186Del1LPs0Y3mLBu3dWSHpd0ZbKkegvcBazluWleh+u2TzemWPPUzZ507XO1bKNr8wrDbdQeBZxiZo9Iuhg4DfhpYSFzF7CoHaVi0o0p1jx1s6aj97rOB+ab2SPJ85sJia9V3AUsPkepmHRjijVP3TzosDU6M3tV0jxJQ81sNmEAcvFyKy1wF7D4HKVi040p1mhcwKj/aVRtdgFrk7g0ArgS6ArMBY4zs7daK+8uYI6TL3m4gG07fBf71fV3pyr7pRFbxOEC1hbMbAZhtQHHcRqYRjDHcRzHKUt9pzlPdI7jZECdV+g80TmOUx1heEl9ZzpPdI7jVI3X6BzHaXCUycKbeeKJznGcqvBbV8dxGp8aT9hPgyc6x3GqxhOd4zgNT6mVfuoJT3SO41RF88Kb9YwnOsdxqqbO85wnOsdxqqfeb13rbr08dwFz3Tx1Y4o1T90sEdBJ6baakZfrDjAUmFGwLQe+W+4cdwGLy1EqNt2YYo3JBWzo8BF2/+w3U200mguYmc02sxFmNgLYFVgB3FruHHcBi89RKibdmGLNUzdzUhrjNKo5TiGfAl4ws5fLFXIXsPgcpWLSjSnWPHWzpkPbHRZxGHBDqQPuAtby3NgcpWLSjSnWPHXzQCm3WpF7r6ukrsDngdNLHTd3AYvaUSom3ZhizVM3F+q70zW/zoiCTomDgXvSlB05cpRtPWiQPfPc3A8aUB+bMbNF4+stt9/ZovF119G72crVZm+vXN3qud1GnGzbjftpq50Rh4y/rEVnxLSnQmdEz11PsbnzXrehB37YGTGyoDMij1jLHXPd6nRjijUv3Tw6I4btOMIenrM01UaNOiM+ikR3I8EUp2LZUaN2tVsn3mXbDhligwYPtrPOPtdWrjb77SW/s99e8jtbudpsxar37cSTvmWDBg+24cN3tAf/Pa1FD1TxuStXm/3l79Ns4eKltmrVGpv/6pt24lnX2fhzb7Dx597wQbL73Y332QuvLLannltgex5xfose2edees1eeGWxnfG/E1skyDxibe2Y62ajG1OseejmlegeeWFpqq1WiS5vF7AewDxgsJktq1TeXcAcJ1/ycAHbfqeR9sfbp6QqO2ab3g3pArYC6JPnNRzHqS3CXcAcx2l0IliPru6mgDmOEx9ZDS+RNFbSbElzJJ1W4viRkp5Mtn9J2iVNfF6jcxynejKo0UlqAi4F9gfmA9MkTTSzpwuKvQjsa2ZvSRpHGJq2eyVtT3SO41SJslq9ZAwwx8zmAki6kTA87YNEZ2b/Kij/MDCAFPitq+M4VZHh6iX9CaM0mpmf7GuNbwB/TxOj1+gcx6me9BW6vpIKx5BdYWF2VGsqJce/SfoEIdF9PM1FPdE5jlM1bbh1XVJmHN18YMuC5wOAhetcS9oZuBIYZ2ZvpLmo37o6jlM1GS3TNA0YImlQMkf+MGBiy+toIHALcLSZPZc2Pq/ROY5TNVl0RZjZGknjgclAE3CVmc2SdFJyfAJwBmESwmXJIOU1aWZaeKJzHKc6MlyDycwmAZOK9k0oeHw8cHxbdT3ROY5TFaHXtb6nRtRdG52b47hunroxxZqnbtbU+8KbeS/R9D1gFjCTsMJwt3Ll3RwnLqOV2HRjijUv3TyWaRq+80h7euE7qTYazRxHUn/g28BoM9uR0Lh4WLlz3BwnPqOVmHRjijVP3TxQyn+1Iu9b185Ad0mdgR6UGBNTiJvjxGe0EpNuTLHmqZsHHdYFzMwWAL8GXgEWAcvM7J626rg5jutmpRtTrHnq5kG9t9Hl1usqaSPChNxBwFLgJklHmdl1ReVOAE4A6LfppjUxA3FznI6hG1OseepmTQwLb+bZES6P1PwAAAvvSURBVPEV4A8Fz48BLqvUGeHmOPEYrcSmG1Oseenm0Rmx4y4j7fnXVqTaaDRzHMIaUbMIbXMCrgVOKXeOm+PEZbQSo25Mseahm1eim/PailRbrRJd3uY4PwMOBdYAjwPHm9l/Wivv5jiOky95mOPsNGKU3XbvQ6nKbtuvR0Oa45wJnJnnNRzHqTW1HTqSBp8C5jhOVTQvvFnPeKJzHKd6PNE5jtPo+K2r4zgNT70Po/NE5zhO1dR5nvNE5zhOldR4HmsaPNE5jlMVMUwB80TnOE7V1Hea80TnOE4G1HmFzhOd4zjV48NLHMdpfOo7z3micxyneuo8z7kLWDPuAtYxdGOKNU/dLJGC3WGarWbkutgdfIfgADYL+G6l8u4CFpejVGy6McWal24e69HtMnKULX57daqNBnQB2xH4JjAG2AU4SNKQcue4C1h8jlIx6cYUa566eVDvnhF53rpuDzxsZivMbA1wH/CFcie4C1h8jlIx6cYUa566edBhXcAIt6z7SOojqQdwILBlcSFJJ0h6VNKjy99evo6Iu4C5bla6McWap272pHV1rV2my63X1cyekXQ+cC/wDvAEYUn14nJXAFcADB06zNwFLC5HqZh0Y4o1T92sCVPAcpHOjo+qMRD4BfCtSp0R7gIWj6NUbLoxxZqXbh6dESNG7mpvrViTaqPRXMCS5NYv+X8g8CywUbny7gIWl6NUjLoxxZqHbl6JbumKtam2WiW6vF3AHgD6AKuB75vZP8qVdxcwx8mXPFzARu462u57aGqqsht2b2pIF7C989R3HKf21HroSBp8CpjjONVT55nOE53jOFVT0+ldKai7ua6O48RHVjMjJI2VNFvSHEmnlTguSb9Njj8paVSa+DzROY5TPRlkOklNwKXAOGAH4HBJOxQVGwcMSbYTgN+lCc8TneM4VZPRzIgxwBwzm2tmq4AbgYOLyhwM/NECDwO9JW1eSbiu2uimT39sSfcuejlF0b7AkhxCaJNu9y6X5qLbBmLSjSnWRtbdKusLPz79sck9uqpvyuLdJBWOIbvCwuwogP7AvIJj84Hdi84vVaY/sKjcResq0ZnZJmnKSXo0j7E4rpufbkyxum7bMLOxGUmVqvIVD/RNU2Yd/NbVcZx6YT4tF/4YACxsR5l18ETnOE69MA0YImmQpK7AYcDEojITgWOS3tc9gGVmVva2Fers1rUNXFG5iOvWmW5MsbpuDTCzNZLGA5OBJuAqM5sl6aTk+ARgEmHJtznACuC4NNq5znV1HMepB/zW1XGchscTneM4DY8nOmcdlN+a25kiqWdOupvF8h446Ygq0UkaKuljkrok00Wy1s9UU9K2kkZLWi9j3eGS9pXUJ0PNj0s6GsDMLKsfuqTPSfpOFlpFugcD50vql7HuAcCtlPA3qUJzD0lHJ/93zVB3SPL9asrj99BQ1GK1z/ZswBcJqxT/A/gj8G2gV0ba2xU8bspI8yDgSeCfwA2F16hSd1yiextwF7BZlXqdgPUJ3rtPAycVHqtS+zPADGD/jL8L+ybfhax1m+N9Cbg4I83PJ5/XtcDNwJCMdA8h+LD8DbgY+BbQM8v3o5G2mgeQ8kPtAvwF2Ct5/iXgAuDcapNdkpBWANcX7Ksq2QF7Jj/Ekcnzywhd5dW+D/sBzwFjkue3Ap/O6D3+IXBq8kfkexno7Qm8VhDrhoTpRz0y0P4+8IPk8RbA/oSpQhtWoflpwpCF4cn37R5gnyrj7EMYKrFj8vwq4CtAP6Bblbp/B3ZInn+dMAbtJ8AGWXwfGm2L6da1F2HFAgg/8DuBrsAR7b3NStp4xgPfBVZJug7AzNZmcCvwSzN7PHl8JrBxBrewrwEnmtlUSZsRftzjJV0u6ctV3m6uIdyuXQuMkXShpPOSgZnt+Z68QVhCf/PkFvs2wkoT12QUazM3E37o44FLJW1U+pSKNAHHmNksoCcwm5D0qmmzXAN0B4ZJ6kX4Q3UMcBHwkyraGNcQauGbAZjZVcDLwCaEP9xOMbXOtG34K7Y/YVT03snzJuAI4DqS8YDt1N2C8KXpS/jRXJdBrE0kNc3k8QDgcWCTZF+fDK7x38BPksfHEWq8m1Shtw1wWvL4VEIt99IqY9wFmEuYtvNNwm3y1wm38htXobsjIRHdCByX7BsMTAAOqDLmTsn/Y4FXgZ2q1Psy8BjwMPDTZN8ngWuAXarQPQn4E3A08PPkd3AiGdw5NOIWU43uAcLtxNGS9jGztWZ2PSFR7dJeUTNbaGbvmNkSwhele3PNTtIoScPaobnWzJrduAUsBd40s9clHQmcK6l7e2NOrvFzMzs3eXw1sAHVNaCvBIZK+ibhR/RLYKCkE6uI8QlCDeM8M/u9mb1vofaxEcEZrr26M4EfEGq0g5J9cwl/VFItDFFG+/3k/7sJsw0OqqJWi5ndTLgtfoDwxw4z+z/C51XNSiI3AHcTkmYPMzvKzC4H+iW1R6eAaKaAmdl7kv5MWKng9CQB/QfYlApLtLThGm8kP+wLJD1L+OF8okrNNcA7kuZJOo/Q4H2sma1sr6YkWfJnPXn+JcL7UHFyc5k4F0qaB/wUONnM7pD0CUK7Vbsxs6cJnRyFsW5C9Z/Z3wlNAmdJHyztNZKQoLPiCeB7wK/MbG17RczsLUn/B3xV0iqgGyFBP1mF5jLgz5JuaE7Oko4BNgbaHWvDUusqZVs3QrvcJwi3LdeQNPhnfI3vkcFtS6KlJOYXgFfIqNct0V4P+Aahx3THDPS2BHYteF5Vr2uJ9+HrhKQ3PEPdUQRz9N9k8XmV0P8rsHUGOr0JIwXuI3RQtPu2tRX95vc28/egEbZo57omnQVmyV+zDHU3Iny5TzWzdv/FLaF7LDDNQmN3VppdCG2XL5jZ7Ax1W9QYs9IkDAt51cyezVI7D/J4DxLdDQhtyssrFm6b7lZAFzOrqgbeqESb6PJEUjczey9jzVx+OI7jVMYTneM4DU9Mva6O4zjtwhOd4zgNjyc6x3EaHk90juM0PJ7oIkHSWkkzJM2UdJOkHlVoXSPpy8njK7WuG3ph2f0k7dmOa7wkrev12dr+VjSOlXRJFtd1Ojae6OJhpZmNMLMdgVWEaVof0N5FCMzseAuzF1pjP8JKJI4TLZ7o4uQBYNuktvVPSdcDTyULMF4gaZqkJ5vnqSZzNS+R9LSkuwjLBJEcmyJpdPJ4rKTpkp6Q9A9JWxMS6veS2uTekjaR9LfkGtMk7ZWc20fSPZIel3Q5pY2GSyJpjKR/Jef+S9LQgsNbSrpb0mxJZxacc5SkqUlcl7c30Tsdg2jmujoBSZ0Ji2/enewaQ5j+9aKkEwg+l7spLAn1kKR7CHNAhwI7EebEPk1YG61QdxPg94Q12F6UtLGZvSlpAvCOmf06KXc98D9m9qCkgYTpTNsT5p0+aGZnS/oscEIbXtazyXXXSPo0YUrXlwpfH2E1lWlJon4XOJSwPuFqSZcBRxLW0nOcdfBEFw/dJc1IHj8A/IFwSznVzF5M9n8G2Lm5/Y2w2OUQYB/gBgsT0xcmE8yL2QO4v1nLzN5sJY5PAzvowyXaeiXTmvYhrAKNmd0l6a02vLYNgWslDSEs2tCl4Ni9ZvYGgKRbgI8T1mPblZD4IKz5trgN13M6GJ7o4mGlmY0o3JH8yN8t3AWcYmaTi8odSEgg5VCKMhCaOz5mRauvJLG0d5rNOcA/zewLye3ylIJjxZqWxHqtmZ3ezus5HQxvo2ssJgP/lUz2R9J2CqvY3g8clrThbU7ppaf+DewraVBy7sbJ/rcJa6c1cw9hNV+Scs3J937C7SOSxhHWnEvLhsCC5PGxRcf2l7Sxwvp9hwAPEXxDvqzEGCc5Xs3abk6D44musbiS0P42XdJM4HJCrf1W4HngKcJy5vcVn2hmrxPa1W6R9ARhxWKAO4AvNHdGEJYaGp10djzNh72/PwP2kTSdcAv9Spk4n5Q0P9kuBH4FnCfpIcIagIU8SFhJdwbwNzN7NOkl/glwj6QngXuBzVO+R04HxCf1O47T8HiNznGchscTneM4DY8nOsdxGh5PdI7jNDye6BzHaXg80TmO0/B4onMcp+H5/x4+J4+KOjBMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=model.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 6. Model Ensemble\n", + "- Model ensemble is a reliable and promising way to boost performance of the model\n", + "- Usually create 8 to 10 independent networks and merge their results\n", + "- Here, we resort to scikit-learn API, **VotingClassifier**\n", + "- Doc: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier\n", + "from sklearn.ensemble import VotingClassifier\n", + "from sklearn.metrics import accuracy_score" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "y_train = np.argmax(y_train, axis = 1)\n", + "y_test = np.argmax(y_test, axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, )))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(50))\n", + " model.add(Activation('sigmoid')) \n", + " model.add(Dense(10))\n", + " model.add(Activation('softmax'))\n", + " \n", + " sgd = optimizers.SGD(lr = 0.001)\n", + " model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "model1 = KerasClassifier(build_fn = mlp_model, epochs = 100, verbose = 0)\n", + "model1._estimator_type = \"classifier\"\n", + "model2 = KerasClassifier(build_fn = mlp_model, epochs = 100, verbose = 0)\n", + "model2._estimator_type = \"classifier\"\n", + "model3 = KerasClassifier(build_fn = mlp_model, epochs = 100, verbose = 0)\n", + "model3._estimator_type = \"classifier\"" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "ensemble_clf = VotingClassifier(estimators = [('model1', model1), ('model2', model2), ('model3', model3)], voting = 'soft')" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "VotingClassifier(estimators=[('model1',\n", + " ),\n", + " ('model2',\n", + " ),\n", + " ('model3',\n", + " )],\n", + " voting='soft')" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ensemble_clf.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING:tensorflow:From C:\\Users\\Aeon\\anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\wrappers\\scikit_learn.py:264: Sequential.predict_proba (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01.\n", + "Instructions for updating:\n", + "Please use `model.predict()` instead.\n" + ] + } + ], + "source": [ + "y_pred = ensemble_clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy: 0.276\n" + ] + } + ], + "source": [ + "print('Test accuracy:', accuracy_score(y_pred, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[8.00000000e-01 1.98979592e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 1.02040816e-03 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [6.78294574e-03 9.91279070e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.93798450e-03\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [9.90099010e-03 9.89108911e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.90099010e-04\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [0.00000000e+00 6.27291242e-01 0.00000000e+00 0.00000000e+00\n", + " 1.01832994e-03 0.00000000e+00 2.03665988e-03 3.69653768e-01\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [9.64125561e-02 8.99103139e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.48430493e-03\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.35699374e-02 7.66179541e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 2.18162839e-01 2.08768267e-03\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [0.00000000e+00 3.86186770e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.13813230e-01\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.33470226e-02 9.72279261e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.43737166e-02\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.98216056e-03 3.96432111e-01 0.00000000e+00 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.01585728e-01\n", + " 0.00000000e+00 0.00000000e+00]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3wU1fqHnzcJEAglQEggCS1SAqGFahcLCorgtaFSFHtBr73cn71cr12siF3sigooUixU6U06UgKkQIgQIKGkvb8/Zgi7KZsNu2N2w3n4zIedOed852R2990zc8pXVBWDwWCozoRUdQUMBoPBaUygMxgM1R4T6AwGQ7XHBDqDwVDtMYHOYDBUe0ygMxgM1R4T6AIEEZkhItfbr4eKyDQ/67cSERWRMH/qennu2iIySUT2isg3Puj4/bpUBSLys4hcXdX1OJ44bgKdiKSIyE4RiXA5dr2IzKjCapWJqn6mquf+0+cVkatEZLGI5IhIhv2FPNUP0pcCMUBjVb3sWEWcui4i0tf+EfiuxPGu9vEZXuo8LiKfVpRPVQeo6sfHWF3DMXDcBDqbMODfvoqIRbW6diJyN/Aq8F+soNQCeAsY7Af5lsAGVS3wg5ZT7AJOFpHGLseuBjb46wTV8XMTNKjqcbEBKcCDwG4g0j52PTDDJc/JwCJgr/3/yS5pM4BngLnAQaANoMCtwF/AfuAp4ARgHrAP+BqoaZdvCPyI9YXaY7+OL6F/vf36GmCO/fp+IMdlywc+stMaAO8DGUAa8DQQaqeFAi8CWcBm4Da7vmFlXJsGtvZlHq5fLaxAmG5vrwK17LS+QCpwD5Bp12eknfYEkGfXOwe4Dngc+NRFu5Vr3ey/f7N9TbcAQ0teFy/fr6fs92s/MA2IKudvO1L/McBtLtcvFXgU98/IaGC7/f4uAU6zj/cv8Xeu8PC5cX2v3wa+ddF/DvgVkKr+zlSnrcor8I/9oVagOwf4DnjaPlYc6IBGWAFoOFbL70p7v7GdPgPYBiTZ6TXsL+dEoL59/LD9IU2wg8ca4Gq7fGPgEqAOUA/4BvjBpX6uH363L7RLnuZYQeZ8e/8H4B0gAogGFgI32Wk3A+vsMo2A3yk/0PUHCspKc8nzJDDfPk8T4A/gKTutr13+Sfu6nA8cABra6Y/jHthK7rc6Ujf7b9kHtLfTmgFJJa+Ll+/XJqAdUNve/185f1tfrKB2MrDAPnY+MJXSP4bD7PcyDCuw7wDCy/q7PHxuXN/rOlitxmuA07B+mOLLex/Mdmzb8diMfhS4XUSalDh+AfCXqo5T1QJV/QIrUFzokucjVV1tp+fbx55T1X2quhpYBUxT1c2quhf4GUgGUNW/VXW8qh5Q1f1Yv/JneFtpEamNFdhGq+pkEYkBBgB3qmquqmYCrwBX2EUuB15V1e2quht41oN8YyBLPd9aDgWeVNVMVd2F1VIb7pKeb6fnq+pkrFZNe2//vhIUAZ1EpLaqZtjXtiTevF8fquoGVT2I1bru5umkqvoH0EhE2gMjgE/KyPOp/V4WqOpLWC3div7Osj43R/QOYAXPl4FPgdtVNbUCPUMlOe4CnaquwrptfLBEUiywtcSxrUCcy/72MiR3urw+WMZ+XQARqSMi74jIVhHZB8wCIkUk1Muqvw+sV9Xn7P2WWK2DDBHJFpFsrNZdtMvf41rfkn+bK38DURX0yJa8PlvtY8UaJQLlAey/vTKoai4wBKtFmiEiP4lIohf1OVIn1/drxzHUZxwwCjgT+L5koojcIyJr7R7kbKyWe1QFmmV9bopR1YVYt+qCFZANfua4C3Q2jwE34P6lSMcKHq60wHr2dQRflnq5B+uXv4+q1gdOt49LRQVF5EG77HUuh7dj3SpHqWqkvdVX1SQ7PQPrtvUILTycYh5wCLjIQ56S16eFfexYyMW6ZTtCU9dEVZ2qqv2wblvXAe96UZ8jdUorI29lGIf13HWy3doqRkROAx7Aai03VNVIrOeDR97D8j4fHj83InIbVsswHeuZrMHPHJeBTlU3Al8Bd7gcngy0s4dYhInIEKAjVuvPH9TDauFli0gjrGBbISIywK7nRfYt2JG/IQPrAftLIlJfREJE5AQROXI7/DVwh4jEi0hDSrdgcdHai3VL/6aIXGS3PmuIyAARed7O9gXwsIg0EZEoO3+FQynKYTlwuoi0EJEGwEMuf2+MiAyyhwEdxroFLixDw5H3S1W3YD1S+L8ykuthPYvcBYSJyKNYz2ePsBNoVZmeVRFph9WJNAzrUcD9IuLxFttQeY7LQGfzJNaDb8B6hgYMxGp5/Y31yzpQVbP8dL5XsR6KZ2E91J/iZbkhWA//19rj23JEZIydNgKoidXpsQf4FqsVBFYraCqwAliK1QlTLqr6MnA38DDWF3k71i3cD3aWp4HFwJ/ASlvzaS//hpLnmo71Q/MnVs+la3AKwXoP0rF6yM/AamGV1HDs/VLVOapaVmt1KtZz1w1Yt8mHcL8tPTIY+m8RWVrReexHBZ9iPeddoap/Af8BxolILV/+BoM7omoW3jQYDNWb47lFZzAYjhNMoDMYDAGDiHwgIpkisqqcdBGR10Rko4j8KSLdvdE1gc5gMAQSH2ENYC+PAUBbe7sRa2ZJhZhAZzAYAgZVnYXVCVUeg4FP1GI+1ljUZh7yA9aUlIAhJLy+htYrOWHBd9o1a+B3TYDwGuZ3whBcbN2aQlZWVoVjNytDaP2WqgUHK84I6MFdq7F6q48wVlXHVuJ0cbj3dKfaxzI8FQqoQBdarwmNL3qu4oyV5PNHzvO7JkD72HqO6BoMTnFKn55+19SCg9Rqf7lXeQ8tf/OQqvpSibKCdIVDRwIq0BkMhmBE4J9bfSoV9xk/8XgxQ8fcexkMBt8QICTUu813JgIj7N7XE4G99iwhj5gWncFg8B3xz2M/EfkCa9msKBFJxZoqWQNAVcdgTf07H9iItVDDSG90TaAzGAw+4r9bV1W9soJ0xVpEtlKYQGcwGHzHTy06pwi4Z3RnJsUw56nzmPdMf0b1L72eYb3aYXwy6mR+ffQcZj7RjytObulV2bkzpjP4zO5ceHpXPnjr5VK6P33/FZeddxKXnXcSI/51DuvXrKyw7LSpU+iS1J6kxDa88Pz/SmmqKnffeQdJiW3oldyFZUuXelXW6DqnG0x1dVLXrwhWi86brapwcvlirBHO67Hupx+sKH/N6Da6Zed+7fXgZI2/6VtdtW2PnvbIFI25/pvi7ZnvVurrP6/TmOu/0Y53TtDdOYc1/qZvtdkN35RbdsnmPRrfopX+OHuFLvorS9t16KTjpy/U5Vv3FW8fjZ+us/7cqsu37tM3PvpWO3Xrocu37iu37JLNe7R1QoKuWb9J9+Ye1s6du+jSFav1YL4Wb99P/EnPPa+/Hsgr0hmz52nPXr31YL5qzqGCcst6SjO6vukGU12d0u3evYf6+3suEU01/MQHvNqAxU7GnPI2x0KsvXLum1hTNjoCV4pIR09lenfvypZdOWzLyiW/UPlh0XbO6xbrlkdVqVvLuuOOCA8jOzePgiIluXWjcsuuWr6Y5q0SiG/Rmho1a3LehZcwY/pPbrrdevahfoOGAHTp3oudGekey65avpgTTmhD64QEatasyWVDruDHSRPcNH+cOIGrho1AROhz4ons3ZtNRkYGixYuLLespzSj65tuMNXVSV1H+Od6XY+teg5q9wY2quWfkAd8SQXWebHNYkjffXSEdcaegzSLrO2W54PfNtG2WT1WvHABvz92Lo98uRxVaBZZu9yymTsyaNosvjgtplksmTvKH3rz/ZfjOLVvP49lM3dkEB9/dDhPXFw8aWnui9ump6eVypOellbm8SNlPaUZXd90g6muTur6Hwn4W1cnz1zeVA03RORG2zR5MfmHSiaXGvJ8ZlIMq7bvpet9P3H2k9P571XJ1A0PK/NZqBb/X3rgtJTz8HTRH7P44atP+PdDT3gs641mWWv9iUi5xz2VMbq+6wZTXZ3U9TuC1RnhzVZFONnr6tVUDXue21iA0wZcqrGNjrbgmjWszY5s9zl0V5zSitenrAcgZVcu27Jyadu0Hul7DlJe2ZimsezIOGqstDMjnSYxpecBb1i7iiceGMWbH48nsmFjj2VjmsYyLfVoHE9LSyU21v02Oy4untQSeZrFxpKXl1fq+JGyZZUxuv7RDaa6OqnrCAHuy+1k7So9VWPRsj9JiK5Li6g61AgVLurVnGkr3Ac9p+0+wGmJltFVVL1anBBTj61ZuSxP2VNu2aSuPdi2ZTNp21LIz8tj6qTxnNHvfDfdjLTt3HPTUJ5+5V1aJrQtPl5e2aSuPdi48S9StmwhLy+Pb776kgsGDnLTvODCQXz+6SeoKgvmz6d+/QY0a9aMnr16lVvWU5rR9U03mOrqpK7/CfxbVydbdIuAtiLSGsuZ6QrgKk8FCgsL+c/ny/niztMIFeGLuSmsT9/HiDMSAPhk5mZe/nEto0f24vfH+iECT49fye6cPIAyywKEhYXx4JMvcMuIf1FUWMjgy4fTpl0Hvvn0fQAuG3YdY0c/R/aePfz3kbutMqFhfP7jzHLLArwy+g0uvOA8CgsLufqaa+mYlMS771h2DjfcdDP9B5zP1J8nk5TYhjq16/DOex8W16essp7SjK5/dIOprk7pOkJIYI+jc9QzQkTOxzKFCQU+UNVnPOWv0eQEdWL1kqlm9RKDAbBWL1myZLFfo1JI/Tit1cu7yQqHfvu/Jerb6iXHhKMzI9RybJ/s5DkMBkNV84+uXnJMmClgBoPBdwJ8CpgJdAaDwXdMi85gMFRrqniMnDeYQGcwGHynCqd3eYMJdAaDwUdMZ0Sl6NKiIXPfvtTvug17jfK7JsCeRW84omswBB3m1tVgMFRrjqxHF8CYQGcwGHzE3LoaDIbjAXPrajAYqj2m19VgMFRrxNy6GgyG44EAv3UNuDDshOvRmMeGsvXXZ1n8zX/KPe9L91/KqgmPsfCrh+iWeHTp9H4nd2DF94+wasJj3Duyn+N1NbrO6gZTXZ3U9Tci4tVWZTjoAPYBkAms8rZMcnJ3R9yUzr72ZT3ximd11V9pGt7ttlLb4FFv6pQ5qzS82216+vAXdOGfWzS8221ap/so3bQtUxMveFTr9bxDV6zfrt0ufkrDu92mtbreEjTOT0bXuIA56QIWEtlS61zygVcb1c0FDPgIy+7Qa3Jzcx1xPZq7dBO79x4o97wDz+jC5z8uBGDhyhQa1KtN06j69OrUik3bs0hJ+5v8gkK+mbqUgX27AKAHMoPK+cnoGhcwx1zApBJbFeFYoFPVWcDuypTJz8+vEtej2OhIUnfsKd5P25lNbHQksdENSN3penwPcU0aWH9ffk5QOT8ZXeMC5qQLWEhIiFdbVVHlnREiciNwI0DjqKiy0t32nXA9KtNBTBUp4yfI03rMgez8ZHSNC5iTz8iq9PmbF1R5oFMXF7D27RO1KlyP0nZmE9+04dFzxESSsWsvNWuEER/jerwh6bv2AiA16gaV85PRNS5gTrqABXqgC6he14iIiCpxPfpp5kquGtgbgN6dW7Ev5yA7svaxePVW2rRoQsvYxtQIC+Wy87rz04w/AZA60UHl/GR0jQuYYy5gQfCMrspbdK6IiCOuRx8/ew2n9WhLVGRdNk55iqfGTKZGmDWS+71v5zBlzmrOOzWJ1RMf48ChfG56/FMACguLuOu5r5n01m2EhggfT5jP2s077LqGBJXzk9E1LmBOuYAJVTx0xAsccwETkS+AvkAUsBN4TFXf91SmR4+eOnfBYr/XxSzTZDBYOOECFtY4Qeuf/7RXefd8OrR6uYCp6pVOaRsMhsAi0Ft0AXXrajAYgpAqfv7mDSbQGQwGnwn0Fl1A9boaDIbg40hnhD/muopIfxFZLyIbReTBMtIbiMgkEVkhIqtFZKQ3dTSBzmAw+Iw/Ap2IhAJvAgOAjsCVItKxRLbbgDWq2hWrs/MlEalZUf1MoDMYDL4hICHi1VYBvYGNqrpZVfOAL4HBJfIoUE+sqFkXa5ppQUXCAfWMTil7SovPBPjqpwZDsFOJZ3RRIuI6hmysPTsKIA7Y7pKWCvQpUf4NYCKQDtQDhqhqUUUnDahAZzAYgpNKBLosD+PoyhIp2fI5D1gOnAWcAEwXkdmqus/TSc2tq8Fg8Ak/dkakAs1d9uOxWm6ujAS+U4uNwBYgsSJhE+gMBoPv+Geu6yKgrYi0tjsYrsC6TXVlG3A2gIjEAO2BzRUJm1tXg8HgG+KfcXSqWiAio4CpQCjwgaquFpGb7fQxwFPARyKy0jozD6hqVkXaJtAZDAaf8deimqo6GZhc4tgYl9fpwLmV1TWBzmAw+E5gT4wIvGd006ZOoWtSIp06tOXFclyP7rnrDjp1aEvv7l1Ztuyo69FNN1xLy7gYenbrXKpcv5MSWTH+P6z64WHuveacUumR9Wrz1YvXsfDLB5j98d10PKFZcdptV57B4q8eZMnXDzLqyjPc6hpMzk9GN7jq6qSuvzmeXcCaA78Da4HVwL8rKtPNdgFbvW6jZucc0s6du+iS5av0QF5R8fbdhB+133n9Nfdwoc6Y/Yf27NW7OG3arzN07oLF2rFjkluZOj3/rZu279LEC5/Qer3v0hXrU7XbJc9oePc7ireXP/5Fn3x7soZ3v0O7XPy0/rZgvYZ3v0O7X/asrvorXRuefI9G9LpTf52/TpMGP6W1kkcFjfOT0TUuYE66gNWMbqMtbp/o1UY1dAErAO5R1Q7AicBtZUzncONACRewSy8fUtr1aNIEhg4djojQu8+J7M22XI8ATj3tdBo1bFRKt1dSSzZt33XUzWvaUgb2dW/1JSY0ZcaiDQBsSMmkZWwjohvVI7F1DAtXpXDwUD6FhUXMXrqRwWd2RnN3BpXzk9E1LmCOuYAR+C06J13AMlR1qf16P1bLLs5Tmbz8fOLij5pHx8XFk55e0vUonfjmLu5G8aXzlMRy88ou3k/bmV3s5nWElRvSGXymZWXYM6kFLZo2JC66Aas3ZnBq8gk0alCH2uE16H9KR+JjGhoXsCDUDaa6OqnrBIEe6P6RzggRaQUkAwvKSPOLC1gF5y91rKTMix9N58V7L2H+5/exemMGK9anUVBYxPqUnbz08a/8+Nat5B44zJ8b0ikoLHvGSSA7Pxld4wLmZKDxYh5rleJ4oBORusB44E4tY5qGlnABS0tNLU5LS0ulWbOSrkdxpG53cTdKLZ2nJGk7s4mPiTyqERNJetZetzz7cw9z0xOfF++vm/QoKel/A/DxhPl8PGE+AE/cNpC0zGzjAhaEusFUVyd1/Y6fxtE5iaO9riJSAyvIfaaq31WUv04JF7Bvv/6qtOvRwEF89tk4VJWFC+ZTv4HleuSJxWu20aZ5E1rGNrLcvM7tzk8zV7nlaVC3drFhzsh/ncScpZvYn3sYgCYN6wLQvGlDBp/Vha+nLEEiYoLK+cnoGhcwp1zABMsb2ZutqnCsRWcvo/I+sFZVX/ayDC+/+jqDLuhPYVEhI64eabkejbVdj260XY+mTKZTh7bUqV2HMe99UFz+6mFXMWvWDP7OyqJN6+Y8/OjjXDPyOsvN6/nxTHrjFkJDQ4rdvK6/5BQA3hs/l8TWMbz35DAKi4pYt3kHNz/5RbHuFy9cS6MGEeQXFHLn/74le/9B4wIWpLrBVNdgcQHjOHcBOxWYDawEjjzU+o9aI5/LpHuPnjp3/iK/16XRiXf6XRNgz4LRjugaDE7hhAtYeNN22mLEa17l/euFAdXOBWwOAT9e2mAw+IxAyPHeGWEwGKo3ggl0BoPhOCDAH9GZQGcwGHwn0DsjTKAzGAy+UcVDR7wh4AKdQ53ABoPBIaxxdIEd6QIu0BkMhmBDTGeEwWCo/pgWncFgqN6YZ3QGg6G6Y57RGQyG44IAj3Mm0BkMBt8J9BZdQJrjdOuUSOcObXnxhbLNQO696w46d2hL7x7u5jg333gtLeNj6JlszHGMrjHH+cfMcey5rt5sVYZTZhRAOLAQWIFljvNERWW6JXfX1q0TdNXajbpn/yHt1LmLLl6+SnMPFxVv43/4Ufud219zDhXq77Msc5wjaVN/maFz5i/WDh2T3MoYcxyja8xxnDPHiYhrp32eneHVRjU0xzkMnKWqXYFuQH8ROdFTgQO5uSRUYI7z06QJXDXMmOMYXWOOc6y6/sc7v4jqao6jqppj79awN4/zHvLy84lv7m6Ok1HKDCTdzfQjNi6eDGOOY3S90A2mujqp6wTH7QrDACISCiwB2gBvqmopcxwvNNz2j8X0w5jjGF1jjuOwOU6Ad0Y4GuhUtRDoJiKRwPci0klV3cwaXF3AomNiSN3ubo7TtJQZSJyb6Ud6WipNjTmO0fVCN5jq6qSuv5EgWHjzH+l1VdVsYAbQv4y0saraU1V7xsbGsckLc5zPPzXmOEbXmOMcq64TBPozOifNcZoA+aqaLSK1gXOA5yoow0uvvs7ggf0pLCxkxDUj6dgxifdsc5zrb7yZ82xznM4d2lK7Th3eedfFHGf4Vcy2zXHaJjTn4Uce52pjjmN0jTmOw+Y4gT9g2ElznC7Ax0AoVsvxa1V90lOZ7j166px5/jfHaXySMccxGMAZc5x6zRO1xz0fVJwRmHnXKdXOHOdPINkpfYPBECCYSf0Gg6G6I0Hg62oCncFg8JlQ0+tqMBiqO/4aMCwi/UVkvYhsFJEHy8nTV0SWi8hqEZnpTf1Mi85gMPiEFcR8b9HZEwzeBPoBqcAiEZmoqmtc8kQCbwH9VXWbiER7o11uoBOR7p4KqupST+kGg+H4wU93rr2Bjaq6GUBEvgQGA2tc8lwFfKeq2wBUNdMbYU8tupc8pClwljcnqAxOOX6fdPUQv2sagpOvlm3zu+aQ5BZ+1ww2/NQZEQdsd9lPBfqUyNMOqCEiM4B6wGhV/aQi4XIDnaqeWfl6GgyG45FKxLkoEVnssj9WVccekSkjf8mBvmFAD+BsoDYwT0Tmq+oGTyet8BmdiNQB7gZaqOqNItIWaK+qP1ZU1mAwVH8ECPU+0mV5GDCcCjR32Y8H0svIk6WquUCuiMwCugIeA503va4fAnnAyS4netqLcgaD4XjAy3muXtzeLgLaikhrEakJXAFMLJFnAnCaiITZjbA+wNqKhL3pdT1BVYeIyJUAqnpQAn10oMFg+EfxR0RQ1QIRGQVMxZo6+oGqrhaRm+30Maq6VkSmAH8CRcB7JVdEKgtvAl2ePSlfAUTkBKzVgw0Gg8HqRPRT20dVJwOTSxwbU2L/BeCFyuh6E+geA6YAzUXkM+AU4JrKnMRgMFRvAv0er8JndKo6HbgYK7h9AfRU1RlOVcgp16NeLSP5eHgy40Ykc2WPuDLP3TWuPmOv7MoHQ7vxyiXWkjY1QoW3Lu/Mu/bxq/scfVYabM5PRhf+nDeDBy89k/svPp0fP36rlObSmdN4+KrzeGToAB4fMZANy63VdDK2buKRoQOKt5vPTGLqF+8H5TXwN0cW3gx6FzCsQPcy1ti6f1XGfQfrXnsZ8GNFeZOTuzvipnT2a3M1LfugXvXhYu33+h+6MTNHrxm3VM8cPbd4G/j2fN3yd64OeX+Rnjl6rv5r7MLitAFvzdMzR8/Vc17/Q9dk7NNbv1qhfV+ZFTTOT0b3qAtYk7gW+vz3s/W9uX9p8zYd9Jkvp+tHC7cWb2NmrNEPF6ToRwu36lOfTdGmLU9wS/9o4Vb9YN5mrd+oib44Ya5+tHBrUF0DJ1zAGrbqoJd/tNSrjUB1ARORt4CbgZXAKuAmEXmzErH033jRKwKQm5vriOtRYkxd0rIPkrHvMAVFym9/ZXFygrtb2NntmzBn499k5uQBkH0wvzjtUL7lEREWIoSFCKqwb+vaoHJ+MrqWC1hMfCui41oQVqMmfc69kGWzprtphteJKO4dPHzwQJm3ZGsWzSU6vgVRzeKD7ho4hXi5VRXeDC85AzhPVT9U1Q+B84G+3oiLSDxwAfCeN/nz8/MdcT2KqlurOIABZOXk0SSipptu88hw6oaH8fLFSYy5ogv9EpsUp4UIjL2yK99d34vF2/aybmcOh/fuCirnJ6NrHW8Uc3TZ/YbRzdizawclWfL7FB687CxeuXsk1z1c+pn3gukTOfHco8uSB9M1cIpAX0rdm0C3HnCd49Icq2vXG14F7sfqBi4TEblRRBaLyOJ9+/eVle62X9aKyBW5Hnkz3Do0RGgXXZf/TFzL/T+sYXjveOIjwwEoUrjxixVc/sFiEpvWpVWjOqVtxPxUV09pRtf/LmBlfTp6nNmf/33zG3c8/y7fveM+E7IgP49ls36h19kXVFgPX+rqpK6/sXpdvduqCk+T+idhxYMGwFoRWWjv9wH+qEhYRAYCmaq6RET6lpdPrekfYwHat09UJ1yPduUcJrru0RZcVN2aZOUebeFZefLYeyibQwVFHCoo4s+0fZwQFUFq9qHiPLl5haxI3UvvlpGsiIwmdfVsv9c12Bylgkk3Li6e3Tszio/vycygYZMYyqN99z5kPrGV/dm7qRdpPer4848ZtEzsRIPGR1v8wXQNHKGKW2ve4KlF9yJW58OjwACsYSaP26+f8kL7FGCQiKQAXwJnicinngpEREQ44nq0bmcOcZG1aVq/FmEhwllto5i3ebeb7tzNu+kcW48QgVphIXRoWo+tuw/SoHYYETUtd7CaoSF0bx7Jtj0HqdciMaicn4yu5QK2c/sWdqVtoyA/jwXTJpF8Wj83zZ3bU4pbQynrVlJQkE/dBg2L0+dPc79tDbZr4BSB3uvqaVK/VwvaeSj/EPAQWAvlAfeq6jBPZUTEEdejIoXXZ2zmucEdCQ0Rfl69k5TdB7mwk/VrPmnVTrbtOciirdm8N7QbqjB59U5Sdh8goXEdHji3DSEihIgw468s5qfsISQ0uJyfjK6lO+y+J3nxjhEUFRVy2oWXE3dCO34bb/3+nnXJMBb/9jNzJ48nNKwGNWvV4tZn3jzaOXHoIKsXzOaah/7r9rkNtmvgb47cugYyFbqAiciJwOtAB6Am1nCRXFWt7/VJjga6gZ7y9ejRU+cuWOwpyzFx/lsV3mkfE5NvPbniTIaA4nhfpskJF7CohInugaAAACAASURBVCS98L9fepX3oyu7BKwL2BtYk2u/AXoCI4C2lTmJWgOMZ1SybgaDIUgI8Aadd0upq+pGEQlV1ULgQxFxpolkMBiCDhH/zXV1Cm8C3QF7yZTlIvI8kAFEOFstg8EQTAR4nPNqHN1wO98oIBdrHN3FTlbKYDAEF0Hb63oEVd1qvzwEPAEgIl8BxojBYDAgSLW4dS2Lk/xaC4PBELx46dlalQSUr2tBkfL3fv+v6Tlviv+HrABghpcEHZd3a15xJkOlCfSZEcfi6ypADWeqYzAYghFvHvZXJcfq67rO3xUxGAzBiRDELTo1vq4Gg8FLwgK8SRdQz+gMBkPwIRLELTqDwWDwlkCf1G8CncFg8JkAb9B55RkhIjJMRB6191uISG+nKvT7L9M4vXdnTunRkTdeLb2M9cYN6xl07hkkNK3PmNdf8bpsvx4tWTF2OKveG8G9l/UopRtZtxZfPXwBC9+8itmvXE7Hlo0qLBtszk9G1zreNSmRTh3a8mI5mvfcdQedOrSld/euLFu21KuywXQN/M0RX1dvtirDCxevt4E3gbX2fkNgkTfOO0AKlqnOcrxw/+ncNVlbtmqtc5eu0c079mmHpM762x/LNHX3oeJt+fpt+uMvc/T2u+/Xh594tvj41l255Zatc8Fruik9WxNHfqj1LnxdV2zK1G43jtPwAaOLt5e/WaxPjpun4QNGa5cbPtHflm3T8AGjyy1bq/8rQeP8ZHSPuoC1TkjQ1es2anbOIe3cuYsuWb5KD+QVFW/fTfhR+53XX3MPF+qM2X9oz1699UBeke4/mF9u2WC6Bk64gDVtk6T/mbzeq82bOODE5k1fSR9VvQ1rChiqugdrXTpvOVNVu3mzBtWBA7m0an0CLVtZzkWDL76MaT9PcssT1SSabt17EhbmPpRv+ZJF5Zbt1S6GTenZpOzYR35BEd/M+ouBJyW4lU9s0YgZy62lpzek7qFlTH2iI2uXW1aztwaV85PRnVDq+KWXDymtOWkCQ4cOR0To3edE9mZbmosXlV82mK6BE4iXrbmqbNF5E+jyRSQU209GRJrgwezGF/Lz82kWF1+83zQ2joyMdK/KZmSkl1s2tnFdUrNyitPSsnKIa+y+AMvKLVkMPqUNAD3bxdAiuh5xUXXLLauH9gaV85PRtY7Hxce7508vqZlOfHOXsvFWnvS08ssG0zVwChHvtqrCm0D3GvA9EC0izwBzgP96LlKMAtNEZImI3FhWBlcXsJx9FbuAlX8mDy5gZUiUzP7i10uIrFuL+a9fyS2DurJi0y4KCtVD2eByfjK63jljBUpdndR1gqB1ATuCqn4mIkuAs7GeO16kql4ZUgOnqGq6iEQD00VknarOKqFf7ALWpl17zUhLLU7bkZ5G06bN8IZmsXGUVzYtK4f4qLrFaXFRdUnfnetWfv/BPG565Zfi/XUfXkPKjn3UqRVWZlkJjyQ1dU3x8UB3fjK6lgtYWmqqe/5mJTXjSN3uUjbVypOfl1du2WC6Bk5wpDMikPGm17UFcACYBEwEcu1jFaKq6fb/mVitQo+9tXXqRLBl80a2bbWciyZ89w39+nu0mSima/ee5ZZdvGEnbWIjaRlTnxphIVx2elt+mr/ZrXyDiJrUsId3jzwviTmr0th/MK/cstKgRVA5PxndQaWOf/v1V6U1Bw7is8/GoaosXDCf+g0szR49yy8bTNfAKQL91tWbcXQ/Yd2nCRAOtMYytfZoKSQiEUCIqu63X58LPFlBGZ56/lWGXnohRYWFDBl6Ne07dGTch+8CMHzkDWTu3MH5Z51Czv59hISE8N6YN/h93jLq1a9fZlmAwiLlrrdnMOnpwYSGhPDxtNWs3bab68/vBMB7k1eR2LwR791zLoVFRazbtpubR//qsayEhAaV85PRtXRffvV1Bl3Qn8KiQkZcPdLSHGtr3mhrTplMpw5tqVO7DmPe+6BYs6yywXgN/I5AaIC36Cp0AStVwFrV5CZVvamCfAlYrTiwAurnqvqMpzJdk3vo5N/8b0fRZug7ftcE2DPxDkd0Dc5R2c+7NwT69CdXnHABi2/fWUe9/YNXeR86u03AuoC5oapLRaSXF/k2A12PqVYGgyGoCPopYCJyt8tuCNAd2OVYjQwGQ9AR6K1ab1p09VxeF2A9sxvvTHUMBkOwYfW6VnUtPOMx0NkDheuq6n3/UH0MBkOw4cceVRHpD4wGQoH3VLXMSbr247P5wBBV/bYiXU9LqYepaoGHJdUNBoMBAcL80KSzG1ZvAv2AVGCRiExU1TVl5HsOmOqttqcW3UKs53HLRWQi8A2WrysAqvqd13+BwWCo1vipRdcb2Gh3ZCIiXwKDgTUl8t2O9fiswk7RI3jzjK4R8DdwFkfH0yng90AXGiJERlRmvQDvaHJCK79rGpxldWrp6YD+ICm+viO6xzdCCF5HuigRcbXlG2vPjgKIA7a7pKUCfdzOJBIH/AsrHvkl0EXbPa6rOBrgjuD/wUgGgyEoscxxvM6e5WEcXVkqJWPNq8ADqlpYmZ5eT4EuFKjr5ckNBsPxiv8m7KcCrsa78UDJ5Yt6Al/aQS4KOF9EClTV44hlT4EuQ1U9TtkyGAwGwXrs5AcWAW1FpDWQBlwBXOWaQVVbF59X5CPgx4qCHHgOdAE+MsZgMAQK/li9xB7lMQqrNzUU+EBVV4vIzXb6mGPV9hTozj5WUYPBcHzhr3F0qjoZmFziWJkBTlWv8VbXk4H1bm9FDAbD8Yvg3Qq+VUnA1W/61Ckkd0qkS4e2vPRC2a5H9951B106tKVPj64sd3FpuuXGa2kVH0Ov5M6lyp3RoQm/P3wWsx49m1v7tSmVftPZJ/DzA2fw8wNnMP2hvmwZfSEN6tQgITqi+PjPD5zB6ucHcF1fy28i2Jyfgk33j5m/cPFZPbiobzc+evvlUro///A1V/Q/mSv6n8y1l/Rjw5qVAOxIT+WmKwdy6Tm9uPzcPnzx4dtBew2CwQUM28Dam63KcNJ5B4gEvgXWAWuBkzzl75bcXVu3TtCVazfq7v2HtFPnLrpo+SrNOVxUvI3/4Uftd25/3X+oUH+bZbk0HUmb8ssMnTN/sXbomORWpuXtEzQlM0dPeWy6Jvx7oq5Ozdaznv5Vm4+aUOY2csx8nbM+s9TxlrdP0J17D+qJj0zT+Fu/Cxrnp2DUXbBxt8a1aKU/zFyu89bv0raJnfTraQt08Za9xdv7307T35an6OIte3X0h99qUtceunjLXp2yYL1+OmmmLt6yV2euTNUWrU7Qr6ct0AUbdwfVNQgWF7BWHTrrx4u2ebURwC5gvjAamKKqiVhLNnlcgv1Abi4JJZyWfirDpenKYe4uTTsyMgA49bTTadiwUSndbi0bkpKVy7a/D5BfqExaksa5nZuWW49BPeKYuKS0kcgp7ZuwLesAaXsOkrfzr6Byfgo23dUrltC8ZQLxLVpTo2ZNzr3wYmZO/8lNt2uPPtRv0BCAzsk9ydxhjUSIim5KYqduAETUrUerNu3J3JHO6hVLguoaBI0LGNbCm95sVYVjgU5E6gOnA+8DqGqeqmZ7KpOXn0988xJOSyWcizLS093cjWLLcHIqSdPIcNL3HDyqkX2ImMjaZeYNrxFK3w7RTF6eUSptUPc4JiyxfAMKc/8OKuenYNPN3JFOTLO44rTopnFk7ij9nhxhwlfjOPmMc0odT0/dyvo1f9KpmxUIg+kaGBcw/+Fkiy4Ba926D0VkmYi8Zy+p7oarC9j+/RW7gJW1QmxF9/5ljnguZ6XZfp1jWLx5N3sP5LsdrxEq9Oscw0/Lyv+yBbLzU7DpUon3efG8WUz4ehy3P+g+7PNAbg733zKcex55lrr16nulGUjXwLFr63e8ez5Xlc/oKr3CcCW1uwO3q+oCERkNPAg84ppJXVzA2rdP1NTtJZyWSjgXxcbFubkbpZfh5FSSjOxDxDY82oJrFhlO5t5DZea9sHscE8q4be3bMYZV2/eStf8wAKERjUlNXe5W10B2fgo23ehmcezMOPo+ZO5Io0lM6ccNf61dxVMP3s5rH44n0uWxRUF+PvffMpz+gy/nrP6DijV/CaJrEFQuYI4o+w8n65cKpKrqAnv/W6zAVy51IiLYVMJp6fwyXJq++NTdpalpM8+WiCu2ZdO6SQTNG9ehRqhwYY84pq/cWSpfvfAwTmzTmGkrd5RKG9zDPQDWjGkbVM5PwabbsUt3tqdsIm17Cvl5eUyb9B2nn3O+m+6OtO3cd8swnnx5LC0TjvakqypPPjCK1m3aM+z6UcXHO3bpHlTXILhcwI7TFp2q7hCR7SLSXlXXYw1ALrncihsiwkuvvs5FA/tTWFjI8GtG0rFjEu/ZLk3X33gz59kuTV06tKV2nTqMefeD4vLXDL+K2bNm8HdWFu0SmvN/jzzO1SOvo7BIeeSblYy79URCRfhq/jY27NjPsFNaAvDp3K0AnNe1GbPW7eJgXqFbvcJrhHJaYhMe+nLF0boaFzDHde974kVuH3ExhUWFDLpsGCe068C3n70PwKVDr+Pd155j757dPPfIPQCEhoUybuJMViyez+Tvv6RN+ySuOv9UAG6971FOPfPcoLsGQeECRuBPo6q0C1ilxEW6Ae8BNYHNwEhV3VNe/u49eurseYv8Xo8O90zyuybAhlec+4U83jHLNDmDEy5gbZK66vOfT/Eq7yXdYoPDBawyqOpyrNUGDAZDNaY6mOMYDAaDRwI7zJlAZzAY/ECAN+hMoDMYDL5hDS8J7EhnAp3BYPAZ06IzGAzVHPHLwptOElCBzo9LMrvxyNCuftc0OItTw0AGvTPf75oTbzrR75rBhLl1NRgM1Z8qnrDvDSbQGQwGnzGBzmAwVHvE3LoaDIbqzJGFNwMZE+gMBoPPBHicM4HOYDD4TqDfugbcenlOuR6tmjeDR4acxf9degY/f/JWKd3ls6bxxLD+PDliAM+MvJC/VhxdReXXrz7g8aHn8thV/fjly/cdr6vRdU63Z4sGvH9VVz4c1o0h3cteiLJLbH3eHtKZsVd24cWLOhYfv/usBL4e2YOxV3QpVSaYroG/ESBEvNuqDKdcd4D2wHKXbR9wp6cyycndHXFTGjNnk0bFtdBnvp2lb83aoPFtEvXxz6fr2Hkpxdtrv67Wd/7YomPnpeij437WmBYJOnZeij726VSNTWinr/++Vt+evVETe56iT339u46ZsylonJ+M7tGyadkHdfgnS3XAW/N1464cve6z5drvjXnF20VjF2rK37l61UdLtN8b8/Sy9xcVp909fpXe8uUK3ZKV61YmmK6BEy5g7ZO66az1u73aqG4uYKq6XlW7qWo3oAdwAPjeU5nc3FxHXI+2rFlOdHxLmsS1IKxGTXqdcyErZk1z0w2vE1G81MzhgweKX2ekbCQhKZla4bUJDQujXXIfls2cypY1y4PK+cnoTkCA9L2H2LHvMAVFysy//ubk1g3dNM9qF8XczbvZlZMHQPbBguK0lRn72X/YfVHWYLsGjuClMU51Ncdx5Wxgk6pu9ZQpPz/fEdej7F07aRR99DYlMroZe3aVXkp92YwpPDLkLF6/51qu/r/nLZ0T2rNh+UJy9u7h8KGDrJr3O3t2ZpC9a2dQOT8Z3TREKA5gYL1uHFHTTTMuMpy6tcJ44aKOvHlZJ85pH0VFBNM1cIJgsDv8pzojrgC+KCtBRG4EbgRoHFX6Q/VPuSkBJPftT3Lf/mxYtoAJY1/m7tc/o1mrNvQfdjOv3DGM8DoRxLfpQEhoaNA5Pxndsr9kJXOGitC2SQQPTFhLzbAQRl+SxNodOaSVY6bkZF3/qWvgDwK7K+IfCHQiUhMYBDxUVrqWdAFzwPWoYXRTdmemF6dlZ2YQGRVdbp3bJfdhV9pW9mfvpl5kI04dNIRTBw0B4Pu3n6dhdDMaRjdlyczgcX4yurGoQpO6R1twTerWZHdunptmVm4e+7YVcKigiEMFRaxM309CVB2PgS6YroFjBHik+yduXQcAS1W19L1iCSIiIhxxPWrVoSuZ21PISt9OQX4ei36ZRNfT+rnpZm5PKf4V3Lp+FYX5+dS1XeD37c4C4O8daSydMYVe/QbRqkPXoHJ+MrqDUCCuQThN69UiLEQ4o21j5qW4W5j8sWU3nWLrESJQKyyExJi6bHcxPy+LYLoGTiFe/qsq/olb1ysp57a1JCLiiOtRaFgYV97zJK/eOYKiokJOGXg5sQntmPndpwCccfEwls74mXk/f0doWBg1a4Vzw9NvFDf1x/znFnL37iE0LIyr7n2KiPoNAILK+cnoWrpvzE7hv4MSCRFh6tpMtu4+yAVJVuv+p9WZbN9ziMXbsnnnii6ows9rMknZbQW6h/q1oUtcfRqEh/HZ1cmMW5jKlLW7gu4aOEGgDxh22gWsDrAdSFDVvRXl79Gjp85dsNjv9Ri32GMfyDEzvGdLR3QNznG8L9PkhAtYh87J+smEGV7l7X1CZLV0ATsANHbyHAaDoWoRjAuYwWCo7gTBenQBNwXMYDAEH+LlVqGOSH8RWS8iG0XkwTLSh4rIn/b2h4h4tXy4adEZDAbf8UOLTkRCgTeBfkAqsEhEJqrqGpdsW4AzVHWPiAzAGprWpyJtE+gMBoOP+G3oSG9go6puBhCRL4HBQHGgU9U/XPLPB+K9EQ6oQKdAYZH/e4HvuPNNv2sCDJ/zvCO6Buf4/oYKf/wNleTI6iV+IA5rlMYRUvHcWrsO+Nkb4YAKdAaDIUjxPtBFiYjrGLKx9uyo8lTKbPmIyJlYge5Ub05qAp3BYPCZSty6ZnkYR5cKNHfZjwfSS2YSkS7Ae8AAVf3bm5OaXleDweAzflqmaRHQVkRa23PkrwAmup9HWgDfAcNVdYO39TMtOoPB4DP+eESnqgUiMgqYCoQCH6jqahG52U4fAzyKNQnhLXuQcoE3My1MoDMYDL7h7SA5L1DVycDkEsfGuLy+Hri+srom0BkMBp+wel0De2pEwD2jmz51CsmdEunSoS0vvVC2Gci9d91Blw5t6dOjK8uXHTUDueXGa2kVH0Ov5M6lyvU7sR0rvrqPVd/cz73D+5ZKj6xXm6/+N4KFn97F7PdH0TEhBoC2LZow/5M7i7edvz7JqCFWR0+wGaIYXec+X8F0DZzAXzMjHMNJQwrgLmA1sAprqaZwT/m7JXfX1q0TdOXajbp7/yHt1LmLLlq+SnMOFxVv43/4Ufud21/3HyrU32b9oT179S5Om/LLDJ0zf7F26JjkVqbOSffrpu1ZmvivZ7XeKQ/qig1p2m3ICxre577i7eVxM/TJsVM1vM992uXy5/W3hRvc0sP73Kd1TrpfM7L2abvBz2it3vcEjSGK0bXK5hwqcOTzFUzXwAlznKQuybomPcerjepmjiMiccAdQE9V7YT1cPEKT2UO5OaS4GLocenlQ/ippBnIpAlcOWw4IkLvPieyNzubHRkZAJx62uk0bNiolG6vjs3ZlJpFSvpu8gsK+Wb6Cgae7r42V2LraGYs3gjAhq27aNmsEdGN6rrlObNnG7ak/c22HdloTkZQGaIY3QksWrjQkc9XMF0Dpwj0hTedvnUNA2qLSBhQhzLGxLiSl59PfPOjMzqOGH24kpGe7mb6ERsXT3q6Z9OP2CYNSM08uhxeWuZe4prUd8uz8q8MBvftBEDPjs1p0TSSuCYN3PJc1q8bX09bDoDm5QSVIYrRtY878PkKpmvgFMetC5iqpgEvAtuADGCvqk7zXKo03pqBeNYoo34l9l/85Hci69Vm/id3cstlJ7NiQzoFhUXF6TXCQrngtI5899ufPtfV09/gzd9ndI9N1xdNTwTTNXCKQH9G51ivq4g0xJqQ2xrIBr4RkWGq+mmJfMUuYNExMaRuTy1OO2L04UpsXJyb6Ud6WirNmnk2/UjL3Et89NHWWVx0A9J37XPLs//AYW56+pvi/XXfP0hK+u7i/fNOas/y9Wlk7s6x6l2zblAZohjdWCu/A5+vYLoGThAMC286eet6DrBFVXepaj7WaOaTS2ZS1bGq2lNVe8bGxrHJxdDj26+/4vySZiADB/HFp+NQVRYumE/9Bg1o2qyZx4osXptKm+ZRtGzWkBphoVzWrys/zV7jlqdB3XBqhIUCMHJwb+Ys28L+A4eL0y8/9+htK4DUbRZUhihGdxA9e/Vy5PMVTNfAEby8ba3SWOhgj2sfrB7XOtal4GPgdk9lkrv30PE//Kht2rTV1q0T9NEnntKcw0X66utv6auvv6U5h4t0/6FCveGmW7R16wTtmNRJZ/2xsLj369LLr9CYpk01LCxMY+Pi9M0x72rO4SIN73OfDr7zfd2wNVM3bc/SR9/+WcP73Kej/jdeR/1vvIb3uU/PuO51/WvbLl23Zaf+8Puf2vScR4t7Wxue/h/Nys7R6LMeceuF/X7iT9qmbVttnZCgjz/5tB7MV33tjbf1tTfe1oP5qgfyivSmm2/V1gkJmpTUSefMW+TWW1ayrKc0o+sfXSc+X8F0DZzode3UNVk37jzg1UYV9bo6bY7zBDAEKACWAder6uHy8nfv0VNnz1vk93pEnf6A3zUB9phlmoIOJ5YBC/XTGkX/BE6Y43Tu1l1/mD7Xq7xtoutUS3Ocx4DHnDyHwWCoaqp26Ig3mClgBoPBJ/y48KZjmEBnMBh8xwQ6g8FQ3TG3rgaDodoT4MPoTKAzGAy+E+BxLrACneBMV/1LL9/qd01DcHLp+wv9rnncO4tV9WBgLwioQGcwGIKPYJgCZgKdwWDwmcAOcybQGQwGPxDgDToT6AwGg++Y4SUGg6H6E9hxzgQ6g8HgOwEe5wLPBcwp16PV82fyxBVn8djlfZk27u1yz7917QpGnXYCS3+fXGHZYHN+MrrQo3kD3r2yC+9f1ZXLksteZ65zbD3euKwTY4Z05vnBHbwqG0zXwN+IWHaH3mxVhpNrQAH/xnIAWw3cWVH+5OTujrgpvT5ro0bFttAnvp6po2es17g2ifrwp9P0zblb3LbXZ23Udt1P0o4n9tXrnn6z+FhZZV+ftTFonJ+M7tGy6dkH9Zpxy3TgmAW6aVeO3vjFCu3/1vzi7ZL3FunWvw/o8E+Wav+35uuQDxdr/7fm6/lvzy+3bDBdAyfWo+ua3F0z9+d7tVENXcA6ATcAvYGuwEARaeupTG5uriOuRylrV9AkviVRcS0Iq1GTHmdfyJ+zp5c6/4xvP6Zb3/7Ua9i4+Fh5ZVPWrggq5yejOwEB0vceYsf+wxQUKTM37ubEVg3dNPu2bczcLbvZlZMHwN6DBQC0i65bbtlgugZOEeieEU7eunYA5qvqAVUtAGYC//JUID8/3xHXo+xdO2gYffRWIzK6Kdm7drjpZu/awYpZUzntoqGljpdVNnvXjqByfjK6aYjArty84uNZuXk0jqjhphkfGU7dWmE8N6gDr13aibPbRQEQFVGz3LLBdA2cItCXUneyM2IV8IyINAYOAucDi0tmcjXHaRwVVUrEL65HntJsvh39JBfd8iAhoaHuGcsr64XmsdTV499hdH3WrYgQEdo2ieDBiWupFRbCy/9KYt3OHI9lqts1qDzH8cKbqrpWRJ4DpgM5wAqsJdVL5hsLjAVo3z5RnXA9ioxuxp7MjOK07MwdNIiKcdPdtm4lHzx2OwA5e/ewet4MQkPDyi0bGd2MFbMm+r2uweYoFUy6qtAkombx8aiImvydm++mmZWbx75t2RwuKOJwQRGrMvbRunEdsnLzyi0bTNfACawpYI5I+w1He11V9X1V7a6qpwO7gb885Y+IiHDE9ahlYhcyU1PISt9OQX4eS36dROdTz3HTffLb2Tw1fg5PjZ9Dct8BDLn3Sbqefm65ZVsmdgkq5yejOwgFYiPDialXi7AQ4Yw2jZifssdNc/6WPXRqVo8QgVphIbSPqcv27INsyMwpt2wwXQOnOJ5vXRGRaFXNFJEWwMXASRXk55XRb3DhBedRWFjI1ddcS8ekJN59ZwwAN9x0M/0HnM/UnyeTlNiGOrXr8M57H1p/SFhYmWUBQsPCuPyuJ3jz7hEUFRZx0sDLiE1ox+zvPwPgtH8NLbtCHsoCjtS1vDSj6x/dt2en8PTA9oSKMG3dLrbtOcj5HaMBmLwmk+3Zh1i8fS9vX96FIpSpa3exdffBcssG4zVwgkC/dXXaBWw20BjIB+5W1V895e/Ro6fOXVDqMZ7PfLAwxe+aANf2buWIrsE5/vXuAr9rBtMyTU64gCX36Kkz53q3/FWD2qHV0gXsNCf1DQZD1VPVQ0e8wUwBMxgMvhPgkc4EOoPB4DNVOr3LCwJurqvBYAg+/DUzQkT6i8h6EdkoIg+WkS4i8pqd/qeIdPemfibQGQwG3/FDpBORUOBNYADQEbhSRDqWyDYAaGtvNwLlr9Dhggl0BoPBZ8TLfxXQG9ioqptVNQ/4EhhcIs9g4BO1mA9EikjZy9C4EFDP6JYuXZJVu4Zs9SJrFJDlQBUqpXubQ7qVIJh0g6muldKtXTmTuaqub0t/n3jZ0iVT69SU0vM3yyZcRFzHkI21Z0cBxAHbXdJSgZJjd8rKEwdk4IGACnSq2sSbfCKy2ImxOEbXOd1gqqvRrRyq2t9PUmU1+UoO9PUmTynMravBYAgUUoHmLvvxQPox5CmFCXQGgyFQWAS0FZHWIlITuAKYWCLPRGCE3ft6IrBXVT3etkKA3bpWgrEVZzG6AaYbTHU1ulWAqhaIyChgKhAKfKCqq0XkZjt9DDAZa8m3jcABYKQ32o7OdTUYDIZAwNy6GgyGao8JdAaDodpjAp2hFOLcmtt+RUQiHNJtGizXwOAdQRXoRKS9iJwkIjXs6SL+1verpoi0EZGeIlLLz7pJInKG7cfhL81TRWQ4gKqqv77oInKhiPzbH1oldAcDz4lItJ91zwO+x30Ig6+aJ4rIcPv/mhWX8Fq3rf35CnXi+1CtqAqPxWPZsFYoXgf8z67DlgAAB/hJREFUCnwC3AHU95N2O5fXoX7SHAj8CfwOfOF6Dh91B9i6PwA/AU191AsB6mJ5764BbnZN81H7XGA50M/Pn4Uz7M+Cv3WP1DcFGO0nzUH2+/Ux8C3Q1k+6F2H5sIwHRgO3AhH+vB7VaavyCnj5ptYAvgJOsfcvAV4AnvY12NkB6QDwucsxn4IdcLL9RUy299/C6ir39Tr0BTYAve3974Fz/HSN7wfusX9E7vKD3snATpe6NsCaflTHD9p3A/far2OBflhThRr4oHkO1pCFJPvzNg043cd6NsYaKtHJ3v8AuAyIBsJ91P0Z6GjvX4s1Bu1hoJ4/Pg/VbQumW9f6WCsWgPUF/xGoCVx1rLdZ9jOeUcCdQJ6IfAqgqoV+uBX4n6ous18/BjTywy3sTuAmVV0oIk2xvtyjROQdEbnUx9vNAqzbtY+B3iLysog8aw/MPJbPyd9YS+g3s2+xf8BaaeIjP9X1CN9ifdFHAW+KSMOyi1RIKDBCVVcDEcB6rKDnyzPLAqA2kCgi9bF+qEYArwIP+/CMsQCrFd4UQFU/ALYCTbB+uA0lqepIW4lfsX5Yo6JPs/dDgauAT7HHAx6jbizWhyYK60vzqR/qGord0rRfxwPLgCb2scZ+OMf/AQ/br0ditXib+KB3AvCg/foerFbumz7WsSuwGWvazg1Yt8nXYt3KN/JBtxNWIPoSGGkfSwDGAOf5WOcQ+//+wA6gs496lwJLgPnAI/axs4CPgK4+6N4MjAOGA8/Y34Ob8MOdQ3XcgqlFNxvrdmK4iJyuqoWq+jlWoOp6rKKqmq6qOaqahfVBqX2kZSci3UUk8Rg0C1V1n70rQDawW1V3ichQ4GkRqX2sdbbP8YyqPm2//hCoh28P0A8C7UXkBqwv0f+AFiJykw91XIHVwnhWVd9V1SK1Wh8NgRY+6K4C7sVq0ba2j23G+lHxamEID9pF9v9TsGYbDPShVYuqfot1Wzwb68cOVf0N6/3yZSWRL4ApWEGzjqoOU9V3gGi79WhwIWimgKnqIRH5DGulgofsAHQYiKGCJVoqcY6/7S/2CyKyDuuLc6aPmgVAjohsF5FnsR54X6OqB49VU0RE7Z91e/8SrOtQ4eRmD/VMF5HtwCPAbao6SUTOxHpudcyo6hqsTg7XujbB9/fsZ6xHAo+LFC/tlYwVoP3FCuAu4HlVLTxWEVXdIyK/AZeLSB4QjhWg//RBcy/wmYh8cSQ4i8gIoBFwzHWttlR1k7KyG9ZzuTOxbls+wn7g7+dz3IUfbltsLbHrvAnYhp963WztWsB1WD2mnfyg1xzo4bLvU69rGdfhWqygl+RH3e7Af4GX/PF+laH/NdDKDzqRWCMFZmJ1UBzzbWs5+keurd+vQXXYgnauq91ZoGr/mvlRtyHWh/seVT3mX9wydK8BFqn1sNtfmjWwnl1uUtX1ftR1azH6SxNrWMgOVV3nT20ncOIa2Lr1sJ4p76swc+V0WwI1VNWnFnh1JWgDnZOISLiqHvKzpiNfHIPBUDEm0BkMhmpPMPW6GgwGwzFhAp3BYKj2mEBnMBiqPSbQGQyGao8JdEGCiBSKyHIRWSUi34hIHR+0PhKRS+3X70lpN3TXvH1F5ORjOEeKSGmvz/KOl6NxjYi84Y/zGo5vTKALHg6qajdV7QTkYU3TKuZYFyFQ1evVmr1QHn2xViIxGIIWE+iCk9lAG7u19buIfA6stBdgfEFEFonIn0fmqdpzNd8QkTUi8hPWMkHYaTNEpKf9ur+ILBWRFSLyq4i0wgqod9mtydNEpImIjLfPsUhETrHLNhaRaSKyTETeoWyj4TIRkd4i8odd9g8Rae+S3FxEpojIehF5zKXMMBFZaNfrnWMN9Ibjg6CZ62qwEJEwrMU3p9iHemNN/9oiIv/f3hm7RhFEYfz3FRY2BgIWaQSLKAqKoIKCnE0U1MagoGBjFbDwDxBs1EIQ0U4UtUijVWIhFrkU6nmHoBJilCBYBEQtFGOhwULhWbx3ZFk13MUqe+8HC8vM7MzswX3svOF9M4Kfc7lTbgnVklTHc0A3AlvwnNhZ3But2O9a4CbuwTYnqd/M5iVdB76b2eVodwe4amZNSevwdKZNeN5p08zOSzoEjHTxWm9i3F+ShvCUriPF98PdVJ6HUC8Ax3B/wp+SrgEncC+9JPmDFLqVw2pJ03H/BLiNLymfmdlclO8Htrbjb7jZ5SBQA+6aJ6Z/jATzMruARrsvM5v/xzyGgM1atGhbE2lNNdwFGjN7IOlrF+/WB4xKGsRNG1YV6ibN7AuApHFgD+7Hth0XPnDPt09djJf0GCl0K4cfZratWBB/8oViEXDazCZK7Q7iArIU6qANeLhjt5XcV2Iuy02zuQA8NLPhWC4/KtSV+7SY66iZnVnmeEmPkTG6ajEBnIpkfyRtkLvYNoDjEcMb4O/WU0+BvZLWx7P9Uf4N905rU8fdfIl2bfFt4MtHJB3APec6pQ/4EPcnS3X7JPXL/fsOAy383JCjioNxov5/vN2SipNCVy1u4fG3KUmvgRv4V/s94C3wCrczf1x+0Mw+43G1cUkvccdigPvAcHszArca2hGbHbMs7v6eA2qSpvAl9Lsl5jkj6X1cV4BLwEVJLdwDsEgTd9KdBsbM7EXsEp8F6pJmgElgoMPfKOlBMqk/SZLKk190SZJUnhS6JEkqTwpdkiSVJ4UuSZLKk0KXJEnlSaFLkqTypNAlSVJ5fgPsF0g1Q1SmQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=ensemble_clf.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Slight boost in the test accuracy from the outset **(0.2144 => 0.3045)**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Summary\n", + "\n", + "|Model | Naive Model | He normal | Relu | Adam | Batchnorm | Dropout | Ensemble |\n", + "|----------------|-------------|------------|-------------|-------------|------------|-----------|------------|\n", + "|Test Accuracy | 0.2144 | 0.4105 | 0.9208 | 0.9248 | 0.9154 | 0.1135 | 0.3045 |\n", + "\n", + "
\n", + "It turns out that most methods improve the model training & test performance.\n", + "Why don't try them out altogether?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Putting it altogether" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "from sklearn.ensemble import VotingClassifier\n", + "from sklearn.metrics import accuracy_score\n", + "from sklearn.model_selection import train_test_split\n", + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier\n", + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Activation, Dense, BatchNormalization, Dropout\n", + "from tensorflow.keras import optimizers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "(X_train, y_train), (X_test, y_test) = mnist.load_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "# reshaping X data: (n, 28, 28) => (n, 784)\n", + "X_train = X_train.reshape((X_train.shape[0], X_train.shape[1] * X_train.shape[2]))\n", + "X_test = X_test.reshape((X_test.shape[0], X_test.shape[1] * X_test.shape[2]))" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(60000, 784)\n", + "(10000, 784)\n", + "(60000,)\n", + "(10000,)\n" + ] + } + ], + "source": [ + "# We use all training data and validate on all test data\n", + "print(X_train.shape)\n", + "print(X_test.shape)\n", + "print(y_train.shape)\n", + "print(y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training & Validating Model\n", + "- Measures to improve training is applied simultaneously\n", + " - More training set\n", + " - Weight Initialization scheme\n", + " - Nonlinearity (Activation function)\n", + " - Optimizers: adaptvie\n", + " - Batch Normalization\n", + " - Dropout (Regularization)\n", + " - Model Ensemble" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "def mlp_model():\n", + " model = Sequential()\n", + " \n", + " model.add(Dense(50, input_shape = (784, ), kernel_initializer='he_normal'))\n", + " model.add(BatchNormalization())\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout(0.2))\n", + " model.add(Dense(50, kernel_initializer='he_normal'))\n", + " model.add(BatchNormalization())\n", + " model.add(Activation('relu')) \n", + " model.add(Dropout(0.2))\n", + " model.add(Dense(50, kernel_initializer='he_normal'))\n", + " model.add(BatchNormalization())\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout(0.2))\n", + " model.add(Dense(50, kernel_initializer='he_normal'))\n", + " model.add(BatchNormalization())\n", + " model.add(Activation('relu'))\n", + " model.add(Dropout(0.2))\n", + " model.add(Dense(10, kernel_initializer='he_normal'))\n", + " model.add(Activation('softmax'))\n", + " \n", + " adam = optimizers.Adam(lr = 0.001)\n", + " model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "# create 5 models to ensemble\n", + "model1 = KerasClassifier(build_fn = mlp_model, epochs = 100)\n", + "model1._estimator_type = \"classifier\"\n", + "model2 = KerasClassifier(build_fn = mlp_model, epochs = 100)\n", + "model2._estimator_type = \"classifier\"\n", + "model3 = KerasClassifier(build_fn = mlp_model, epochs = 100)\n", + "model3._estimator_type = \"classifier\"\n", + "model4 = KerasClassifier(build_fn = mlp_model, epochs = 100)\n", + "model4._estimator_type = \"classifier\"\n", + "model5 = KerasClassifier(build_fn = mlp_model, epochs = 100)\n", + "model5._estimator_type = \"classifier\"" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "ensemble_clf = VotingClassifier(estimators = [('model1', model1), ('model2', model2), ('model3', model3), ('model4', model4), ('model5', model5)], voting = 'soft')" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.7718 - accuracy: 0.7637\n", + "Epoch 2/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.4351 - accuracy: 0.8747\n", + "Epoch 3/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3609 - accuracy: 0.8984\n", + "Epoch 4/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3160 - accuracy: 0.9107\n", + "Epoch 5/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2935 - accuracy: 0.9173\n", + "Epoch 6/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2726 - accuracy: 0.9219\n", + "Epoch 7/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2638 - accuracy: 0.9257\n", + "Epoch 8/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2552 - accuracy: 0.9285\n", + "Epoch 9/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2505 - accuracy: 0.9288\n", + "Epoch 10/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2414 - accuracy: 0.9323\n", + "Epoch 11/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2314 - accuracy: 0.9342\n", + "Epoch 12/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2267 - accuracy: 0.9355\n", + "Epoch 13/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2228 - accuracy: 0.9356\n", + "Epoch 14/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2216 - accuracy: 0.9360\n", + "Epoch 15/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2171 - accuracy: 0.9393\n", + "Epoch 16/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2095 - accuracy: 0.9402\n", + "Epoch 17/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2075 - accuracy: 0.9402\n", + "Epoch 18/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2074 - accuracy: 0.9410\n", + "Epoch 19/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2006 - accuracy: 0.9426\n", + "Epoch 20/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1973 - accuracy: 0.9438\n", + "Epoch 21/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1939 - accuracy: 0.9438\n", + "Epoch 22/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1955 - accuracy: 0.9428\n", + "Epoch 23/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.1896 - accuracy: 0.9463\n", + "Epoch 24/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1935 - accuracy: 0.9449\n", + "Epoch 25/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1859 - accuracy: 0.9467\n", + "Epoch 26/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1879 - accuracy: 0.9456\n", + "Epoch 27/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1870 - accuracy: 0.9468\n", + "Epoch 28/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1817 - accuracy: 0.9478\n", + "Epoch 29/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1858 - accuracy: 0.9471\n", + "Epoch 30/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1806 - accuracy: 0.9475\n", + "Epoch 31/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1804 - accuracy: 0.9477\n", + "Epoch 32/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1803 - accuracy: 0.9482\n", + "Epoch 33/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1763 - accuracy: 0.9490\n", + "Epoch 34/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1740 - accuracy: 0.9498\n", + "Epoch 35/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1758 - accuracy: 0.9492\n", + "Epoch 36/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1743 - accuracy: 0.9492\n", + "Epoch 37/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1692 - accuracy: 0.9508\n", + "Epoch 38/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1754 - accuracy: 0.9492\n", + "Epoch 39/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1741 - accuracy: 0.9494\n", + "Epoch 40/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1672 - accuracy: 0.9515\n", + "Epoch 41/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1655 - accuracy: 0.9520\n", + "Epoch 42/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1662 - accuracy: 0.9521\n", + "Epoch 43/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1687 - accuracy: 0.9507\n", + "Epoch 44/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1643 - accuracy: 0.9520\n", + "Epoch 45/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1671 - accuracy: 0.9512\n", + "Epoch 46/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1638 - accuracy: 0.9528\n", + "Epoch 47/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1657 - accuracy: 0.9518\n", + "Epoch 48/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1688 - accuracy: 0.9514\n", + "Epoch 49/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1678 - accuracy: 0.9515\n", + "Epoch 50/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1625 - accuracy: 0.9524\n", + "Epoch 51/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.1607 - accuracy: 0.9534\n", + "Epoch 52/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1581 - accuracy: 0.9543\n", + "Epoch 53/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1653 - accuracy: 0.9524\n", + "Epoch 54/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1611 - accuracy: 0.9536\n", + "Epoch 55/100\n", + "1875/1875 [==============================] - 5s 2ms/step - loss: 0.1615 - accuracy: 0.9528\n", + "Epoch 56/100\n", + "1875/1875 [==============================] - 5s 2ms/step - loss: 0.1570 - accuracy: 0.9545\n", + "Epoch 57/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1635 - accuracy: 0.9523\n", + "Epoch 58/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1552 - accuracy: 0.9547\n", + "Epoch 59/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1561 - accuracy: 0.9559\n", + "Epoch 60/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1595 - accuracy: 0.9541\n", + "Epoch 61/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1564 - accuracy: 0.9546\n", + "Epoch 62/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1559 - accuracy: 0.9542\n", + "Epoch 63/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1556 - accuracy: 0.9551\n", + "Epoch 64/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1549 - accuracy: 0.9549\n", + "Epoch 65/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1542 - accuracy: 0.9563\n", + "Epoch 66/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1523 - accuracy: 0.9566\n", + "Epoch 67/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1513 - accuracy: 0.9567\n", + "Epoch 68/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1584 - accuracy: 0.9541\n", + "Epoch 69/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1537 - accuracy: 0.9552\n", + "Epoch 70/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1529 - accuracy: 0.9549\n", + "Epoch 71/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1518 - accuracy: 0.9554\n", + "Epoch 72/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1518 - accuracy: 0.9549\n", + "Epoch 73/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.1491 - accuracy: 0.9568\n", + "Epoch 74/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1536 - accuracy: 0.9553\n", + "Epoch 75/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1470 - accuracy: 0.9569\n", + "Epoch 76/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1511 - accuracy: 0.9558\n", + "Epoch 77/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1488 - accuracy: 0.9562\n", + "Epoch 78/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1508 - accuracy: 0.9565\n", + "Epoch 79/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1458 - accuracy: 0.9572\n", + "Epoch 80/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1485 - accuracy: 0.9563\n", + "Epoch 81/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1473 - accuracy: 0.9574\n", + "Epoch 82/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1466 - accuracy: 0.9578\n", + "Epoch 83/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1482 - accuracy: 0.9575\n", + "Epoch 84/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1487 - accuracy: 0.9564\n", + "Epoch 85/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1433 - accuracy: 0.9584\n", + "Epoch 86/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1493 - accuracy: 0.9561\n", + "Epoch 87/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1452 - accuracy: 0.9580\n", + "Epoch 88/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1458 - accuracy: 0.9569\n", + "Epoch 89/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1449 - accuracy: 0.9570\n", + "Epoch 90/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1486 - accuracy: 0.9575\n", + "Epoch 91/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1451 - accuracy: 0.9575\n", + "Epoch 92/100\n", + "1875/1875 [==============================] - 5s 2ms/step - loss: 0.1448 - accuracy: 0.9579\n", + "Epoch 93/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1451 - accuracy: 0.9574\n", + "Epoch 94/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1425 - accuracy: 0.9596\n", + "Epoch 95/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1454 - accuracy: 0.9565\n", + "Epoch 96/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1416 - accuracy: 0.9581\n", + "Epoch 97/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1455 - accuracy: 0.9581\n", + "Epoch 98/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1411 - accuracy: 0.9583\n", + "Epoch 99/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1427 - accuracy: 0.9577\n", + "Epoch 100/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1391 - accuracy: 0.9594\n", + "Epoch 1/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.7638 - accuracy: 0.7666\n", + "Epoch 2/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.4399 - accuracy: 0.8748\n", + "Epoch 3/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3683 - accuracy: 0.8952\n", + "Epoch 4/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3257 - accuracy: 0.9064\n", + "Epoch 5/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2972 - accuracy: 0.9147\n", + "Epoch 6/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2836 - accuracy: 0.9205\n", + "Epoch 7/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.2672 - accuracy: 0.9245\n", + "Epoch 8/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2607 - accuracy: 0.9268\n", + "Epoch 9/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2470 - accuracy: 0.9302\n", + "Epoch 10/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.2409 - accuracy: 0.9318\n", + "Epoch 11/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2301 - accuracy: 0.9350\n", + "Epoch 12/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.2262 - accuracy: 0.9356\n", + "Epoch 13/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.2242 - accuracy: 0.9368\n", + "Epoch 14/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.2189 - accuracy: 0.9373\n", + "Epoch 15/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.2173 - accuracy: 0.9379\n", + "Epoch 16/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2137 - accuracy: 0.9396\n", + "Epoch 17/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2066 - accuracy: 0.9408\n", + "Epoch 18/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2046 - accuracy: 0.9410\n", + "Epoch 19/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2002 - accuracy: 0.9428\n", + "Epoch 20/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1962 - accuracy: 0.9441\n", + "Epoch 21/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1954 - accuracy: 0.9440\n", + "Epoch 22/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1925 - accuracy: 0.9451\n", + "Epoch 23/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1919 - accuracy: 0.9453\n", + "Epoch 24/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1849 - accuracy: 0.9475\n", + "Epoch 25/100\n", + "1875/1875 [==============================] - 5s 2ms/step - loss: 0.1918 - accuracy: 0.9452\n", + "Epoch 26/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1892 - accuracy: 0.9455\n", + "Epoch 27/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1852 - accuracy: 0.9468\n", + "Epoch 28/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1833 - accuracy: 0.9476\n", + "Epoch 29/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1843 - accuracy: 0.9462\n", + "Epoch 30/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1816 - accuracy: 0.9478\n", + "Epoch 31/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1799 - accuracy: 0.9481\n", + "Epoch 32/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1750 - accuracy: 0.9495\n", + "Epoch 33/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1745 - accuracy: 0.9503\n", + "Epoch 34/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1785 - accuracy: 0.9478\n", + "Epoch 35/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1733 - accuracy: 0.9503\n", + "Epoch 36/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1772 - accuracy: 0.9492\n", + "Epoch 37/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1728 - accuracy: 0.9501\n", + "Epoch 38/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1730 - accuracy: 0.9504\n", + "Epoch 39/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1730 - accuracy: 0.9503\n", + "Epoch 40/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1700 - accuracy: 0.9511\n", + "Epoch 41/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1719 - accuracy: 0.9503\n", + "Epoch 42/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1640 - accuracy: 0.9526\n", + "Epoch 43/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1669 - accuracy: 0.9509\n", + "Epoch 44/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1667 - accuracy: 0.9526\n", + "Epoch 45/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1664 - accuracy: 0.9521\n", + "Epoch 46/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1665 - accuracy: 0.9519\n", + "Epoch 47/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1693 - accuracy: 0.9515\n", + "Epoch 48/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1653 - accuracy: 0.9528\n", + "Epoch 49/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1646 - accuracy: 0.9528\n", + "Epoch 50/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1649 - accuracy: 0.9529\n", + "Epoch 51/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1660 - accuracy: 0.9523\n", + "Epoch 52/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1621 - accuracy: 0.9533\n", + "Epoch 53/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1630 - accuracy: 0.9521\n", + "Epoch 54/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1617 - accuracy: 0.9533\n", + "Epoch 55/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1613 - accuracy: 0.9531\n", + "Epoch 56/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1629 - accuracy: 0.9529\n", + "Epoch 57/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1563 - accuracy: 0.9545\n", + "Epoch 58/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1586 - accuracy: 0.9538\n", + "Epoch 59/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1574 - accuracy: 0.9545\n", + "Epoch 60/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1617 - accuracy: 0.9525\n", + "Epoch 61/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1576 - accuracy: 0.9544\n", + "Epoch 62/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1582 - accuracy: 0.9542\n", + "Epoch 63/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1554 - accuracy: 0.9556\n", + "Epoch 64/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1567 - accuracy: 0.9546\n", + "Epoch 65/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1565 - accuracy: 0.9554\n", + "Epoch 66/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1543 - accuracy: 0.9548\n", + "Epoch 67/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1561 - accuracy: 0.9550\n", + "Epoch 68/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1600 - accuracy: 0.9541\n", + "Epoch 69/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1512 - accuracy: 0.9559\n", + "Epoch 70/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1521 - accuracy: 0.9562\n", + "Epoch 71/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1547 - accuracy: 0.9549\n", + "Epoch 72/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1531 - accuracy: 0.9545\n", + "Epoch 73/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1471 - accuracy: 0.9566\n", + "Epoch 74/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1498 - accuracy: 0.9569\n", + "Epoch 75/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1514 - accuracy: 0.9565\n", + "Epoch 76/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1525 - accuracy: 0.9561\n", + "Epoch 77/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1513 - accuracy: 0.9555\n", + "Epoch 78/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1518 - accuracy: 0.9550\n", + "Epoch 79/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1518 - accuracy: 0.9554\n", + "Epoch 80/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1469 - accuracy: 0.9572\n", + "Epoch 81/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1473 - accuracy: 0.9571\n", + "Epoch 82/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1494 - accuracy: 0.9571\n", + "Epoch 83/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1451 - accuracy: 0.9575\n", + "Epoch 84/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1512 - accuracy: 0.9570\n", + "Epoch 85/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1484 - accuracy: 0.9565\n", + "Epoch 86/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1456 - accuracy: 0.9572\n", + "Epoch 87/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1494 - accuracy: 0.9568\n", + "Epoch 88/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1493 - accuracy: 0.9568\n", + "Epoch 89/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1480 - accuracy: 0.9565\n", + "Epoch 90/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1458 - accuracy: 0.9573\n", + "Epoch 91/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1424 - accuracy: 0.9581\n", + "Epoch 92/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1467 - accuracy: 0.9574\n", + "Epoch 93/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1499 - accuracy: 0.9562\n", + "Epoch 94/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1507 - accuracy: 0.9557\n", + "Epoch 95/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1446 - accuracy: 0.9580\n", + "Epoch 96/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1430 - accuracy: 0.9587\n", + "Epoch 97/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1426 - accuracy: 0.9593\n", + "Epoch 98/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1453 - accuracy: 0.9580\n", + "Epoch 99/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1439 - accuracy: 0.9575\n", + "Epoch 100/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1427 - accuracy: 0.9583\n", + "Epoch 1/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.7670 - accuracy: 0.7670\n", + "Epoch 2/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.4196 - accuracy: 0.8786\n", + "Epoch 3/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3609 - accuracy: 0.8970\n", + "Epoch 4/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3198 - accuracy: 0.9098\n", + "Epoch 5/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2941 - accuracy: 0.9155\n", + "Epoch 6/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2779 - accuracy: 0.9203\n", + "Epoch 7/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2641 - accuracy: 0.9252\n", + "Epoch 8/100\n", + "1875/1875 [==============================] - 5s 2ms/step - loss: 0.2510 - accuracy: 0.9279\n", + "Epoch 9/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2483 - accuracy: 0.9296\n", + "Epoch 10/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.2352 - accuracy: 0.9323\n", + "Epoch 11/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.2325 - accuracy: 0.9323\n", + "Epoch 12/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2231 - accuracy: 0.9367\n", + "Epoch 13/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2216 - accuracy: 0.9357\n", + "Epoch 14/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2195 - accuracy: 0.9370\n", + "Epoch 15/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2139 - accuracy: 0.9387\n", + "Epoch 16/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2107 - accuracy: 0.9406\n", + "Epoch 17/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.2048 - accuracy: 0.9420\n", + "Epoch 18/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.2042 - accuracy: 0.9407\n", + "Epoch 19/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.2021 - accuracy: 0.9426\n", + "Epoch 20/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1977 - accuracy: 0.9432\n", + "Epoch 21/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1954 - accuracy: 0.9433\n", + "Epoch 22/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1929 - accuracy: 0.9446\n", + "Epoch 23/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1955 - accuracy: 0.9434\n", + "Epoch 24/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1906 - accuracy: 0.9444\n", + "Epoch 25/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1900 - accuracy: 0.9456\n", + "Epoch 26/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1899 - accuracy: 0.9459\n", + "Epoch 27/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1863 - accuracy: 0.9463\n", + "Epoch 28/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1803 - accuracy: 0.9478\n", + "Epoch 29/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1807 - accuracy: 0.9485\n", + "Epoch 30/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1790 - accuracy: 0.9483\n", + "Epoch 31/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1791 - accuracy: 0.9476\n", + "Epoch 32/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1760 - accuracy: 0.9491\n", + "Epoch 33/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1789 - accuracy: 0.9480\n", + "Epoch 34/100\n", + "1875/1875 [==============================] - 10s 5ms/step - loss: 0.1776 - accuracy: 0.9496\n", + "Epoch 35/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1795 - accuracy: 0.9483\n", + "Epoch 36/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1769 - accuracy: 0.9487\n", + "Epoch 37/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1717 - accuracy: 0.9502\n", + "Epoch 38/100\n", + "1875/1875 [==============================] - 8s 5ms/step - loss: 0.1724 - accuracy: 0.9501\n", + "Epoch 39/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1720 - accuracy: 0.9506\n", + "Epoch 40/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1701 - accuracy: 0.9508\n", + "Epoch 41/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1688 - accuracy: 0.9513\n", + "Epoch 42/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1683 - accuracy: 0.9509\n", + "Epoch 43/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1695 - accuracy: 0.9515\n", + "Epoch 44/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1687 - accuracy: 0.9518\n", + "Epoch 45/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1677 - accuracy: 0.9509\n", + "Epoch 46/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1600 - accuracy: 0.9538\n", + "Epoch 47/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1671 - accuracy: 0.9514\n", + "Epoch 48/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1655 - accuracy: 0.9513\n", + "Epoch 49/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1638 - accuracy: 0.9520\n", + "Epoch 50/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1580 - accuracy: 0.9542\n", + "Epoch 51/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1588 - accuracy: 0.9538\n", + "Epoch 52/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1651 - accuracy: 0.9513\n", + "Epoch 53/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1582 - accuracy: 0.9530\n", + "Epoch 54/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1615 - accuracy: 0.9533\n", + "Epoch 55/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1585 - accuracy: 0.9542\n", + "Epoch 56/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1616 - accuracy: 0.9535\n", + "Epoch 57/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1572 - accuracy: 0.9551\n", + "Epoch 58/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1591 - accuracy: 0.9544\n", + "Epoch 59/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1558 - accuracy: 0.9548\n", + "Epoch 60/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1557 - accuracy: 0.9556\n", + "Epoch 61/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1590 - accuracy: 0.9542\n", + "Epoch 62/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1555 - accuracy: 0.9542\n", + "Epoch 63/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1570 - accuracy: 0.9550\n", + "Epoch 64/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1562 - accuracy: 0.9552\n", + "Epoch 65/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1545 - accuracy: 0.9553\n", + "Epoch 66/100\n", + "1875/1875 [==============================] - 7s 3ms/step - loss: 0.1543 - accuracy: 0.9554\n", + "Epoch 67/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1524 - accuracy: 0.9552\n", + "Epoch 68/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1545 - accuracy: 0.9562\n", + "Epoch 69/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1547 - accuracy: 0.9554\n", + "Epoch 70/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1538 - accuracy: 0.9554\n", + "Epoch 71/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1500 - accuracy: 0.9556\n", + "Epoch 72/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1506 - accuracy: 0.9568\n", + "Epoch 73/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9559\n", + "Epoch 74/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9569\n", + "Epoch 75/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1476 - accuracy: 0.9573\n", + "Epoch 76/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1500 - accuracy: 0.9561\n", + "Epoch 77/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1504 - accuracy: 0.9554\n", + "Epoch 78/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1504 - accuracy: 0.9555\n", + "Epoch 79/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1500 - accuracy: 0.9569\n", + "Epoch 80/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1511 - accuracy: 0.9563\n", + "Epoch 81/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1513 - accuracy: 0.9564\n", + "Epoch 82/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9563\n", + "Epoch 83/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1500 - accuracy: 0.9565\n", + "Epoch 84/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1436 - accuracy: 0.9580\n", + "Epoch 85/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1458 - accuracy: 0.9576\n", + "Epoch 86/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1448 - accuracy: 0.9576\n", + "Epoch 87/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1480 - accuracy: 0.9565\n", + "Epoch 88/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1484 - accuracy: 0.9570\n", + "Epoch 89/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1450 - accuracy: 0.9586\n", + "Epoch 90/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1421 - accuracy: 0.9581\n", + "Epoch 91/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1475 - accuracy: 0.9575\n", + "Epoch 92/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1462 - accuracy: 0.9575\n", + "Epoch 93/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1429 - accuracy: 0.9579\n", + "Epoch 94/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1424 - accuracy: 0.9583\n", + "Epoch 95/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1432 - accuracy: 0.9585\n", + "Epoch 96/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1445 - accuracy: 0.9580\n", + "Epoch 97/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1450 - accuracy: 0.9579\n", + "Epoch 98/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1451 - accuracy: 0.9577\n", + "Epoch 99/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1414 - accuracy: 0.9585\n", + "Epoch 100/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1455 - accuracy: 0.9577\n", + "Epoch 1/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.7666 - accuracy: 0.7677\n", + "Epoch 2/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.4348 - accuracy: 0.8763\n", + "Epoch 3/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3607 - accuracy: 0.8973\n", + "Epoch 4/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3194 - accuracy: 0.9097\n", + "Epoch 5/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2967 - accuracy: 0.9159\n", + "Epoch 6/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2792 - accuracy: 0.9202\n", + "Epoch 7/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2631 - accuracy: 0.9236\n", + "Epoch 8/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2571 - accuracy: 0.9262\n", + "Epoch 9/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2445 - accuracy: 0.9303\n", + "Epoch 10/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2381 - accuracy: 0.9317\n", + "Epoch 11/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2266 - accuracy: 0.9360\n", + "Epoch 12/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2255 - accuracy: 0.9355\n", + "Epoch 13/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2176 - accuracy: 0.9381\n", + "Epoch 14/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2155 - accuracy: 0.9385\n", + "Epoch 15/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2108 - accuracy: 0.9404\n", + "Epoch 16/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2086 - accuracy: 0.9402\n", + "Epoch 17/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2045 - accuracy: 0.9415\n", + "Epoch 18/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2042 - accuracy: 0.9421\n", + "Epoch 19/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1999 - accuracy: 0.9427\n", + "Epoch 20/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.2021 - accuracy: 0.9423\n", + "Epoch 21/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1928 - accuracy: 0.9441\n", + "Epoch 22/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1936 - accuracy: 0.9434\n", + "Epoch 23/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1899 - accuracy: 0.9451\n", + "Epoch 24/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1887 - accuracy: 0.9459\n", + "Epoch 25/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1881 - accuracy: 0.9459\n", + "Epoch 26/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1833 - accuracy: 0.9463\n", + "Epoch 27/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1856 - accuracy: 0.9459\n", + "Epoch 28/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1816 - accuracy: 0.9474\n", + "Epoch 29/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1795 - accuracy: 0.9487\n", + "Epoch 30/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1805 - accuracy: 0.9484\n", + "Epoch 31/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1791 - accuracy: 0.9482\n", + "Epoch 32/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1764 - accuracy: 0.9490\n", + "Epoch 33/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1769 - accuracy: 0.9497\n", + "Epoch 34/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1758 - accuracy: 0.9487\n", + "Epoch 35/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1710 - accuracy: 0.9509\n", + "Epoch 36/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1713 - accuracy: 0.9505\n", + "Epoch 37/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1728 - accuracy: 0.9499\n", + "Epoch 38/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1685 - accuracy: 0.9505\n", + "Epoch 39/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1682 - accuracy: 0.9509\n", + "Epoch 40/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1646 - accuracy: 0.9518\n", + "Epoch 41/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1659 - accuracy: 0.9506\n", + "Epoch 42/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1606 - accuracy: 0.9525\n", + "Epoch 43/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1610 - accuracy: 0.9524\n", + "Epoch 44/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1653 - accuracy: 0.9520\n", + "Epoch 45/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1608 - accuracy: 0.9524\n", + "Epoch 46/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1677 - accuracy: 0.9516\n", + "Epoch 47/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1625 - accuracy: 0.9532\n", + "Epoch 48/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1643 - accuracy: 0.9529\n", + "Epoch 49/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1621 - accuracy: 0.9522\n", + "Epoch 50/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1576 - accuracy: 0.9546\n", + "Epoch 51/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1615 - accuracy: 0.9528\n", + "Epoch 52/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1621 - accuracy: 0.9522\n", + "Epoch 53/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1624 - accuracy: 0.9535\n", + "Epoch 54/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1593 - accuracy: 0.9538\n", + "Epoch 55/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1596 - accuracy: 0.9538\n", + "Epoch 56/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1555 - accuracy: 0.9548\n", + "Epoch 57/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1566 - accuracy: 0.9537\n", + "Epoch 58/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1541 - accuracy: 0.9550\n", + "Epoch 59/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1589 - accuracy: 0.9536\n", + "Epoch 60/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1521 - accuracy: 0.9562\n", + "Epoch 61/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1552 - accuracy: 0.9544\n", + "Epoch 62/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1577 - accuracy: 0.9543\n", + "Epoch 63/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9563\n", + "Epoch 64/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1543 - accuracy: 0.9555\n", + "Epoch 65/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1530 - accuracy: 0.9562\n", + "Epoch 66/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1513 - accuracy: 0.9563\n", + "Epoch 67/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1540 - accuracy: 0.9547\n", + "Epoch 68/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9563\n", + "Epoch 69/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1507 - accuracy: 0.9561\n", + "Epoch 70/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1490 - accuracy: 0.9562\n", + "Epoch 71/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1515 - accuracy: 0.9553\n", + "Epoch 72/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1513 - accuracy: 0.9550\n", + "Epoch 73/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1500 - accuracy: 0.9569\n", + "Epoch 74/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1514 - accuracy: 0.9557\n", + "Epoch 75/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1486 - accuracy: 0.9567\n", + "Epoch 76/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1474 - accuracy: 0.9569\n", + "Epoch 77/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1476 - accuracy: 0.9567\n", + "Epoch 78/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1507 - accuracy: 0.9566\n", + "Epoch 79/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1439 - accuracy: 0.9577\n", + "Epoch 80/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1480 - accuracy: 0.9572\n", + "Epoch 81/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1468 - accuracy: 0.9573\n", + "Epoch 82/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1468 - accuracy: 0.9569\n", + "Epoch 83/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1458 - accuracy: 0.9563\n", + "Epoch 84/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1511 - accuracy: 0.9563\n", + "Epoch 85/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1496 - accuracy: 0.9564\n", + "Epoch 86/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1425 - accuracy: 0.9585\n", + "Epoch 87/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1515 - accuracy: 0.9554\n", + "Epoch 88/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1406 - accuracy: 0.9577\n", + "Epoch 89/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1451 - accuracy: 0.9578\n", + "Epoch 90/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1418 - accuracy: 0.9582\n", + "Epoch 91/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1502 - accuracy: 0.9560\n", + "Epoch 92/100\n", + "1875/1875 [==============================] - 5s 3ms/step - loss: 0.1477 - accuracy: 0.9568\n", + "Epoch 93/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1447 - accuracy: 0.9573\n", + "Epoch 94/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1416 - accuracy: 0.9591\n", + "Epoch 95/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1447 - accuracy: 0.9575\n", + "Epoch 96/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1392 - accuracy: 0.9593\n", + "Epoch 97/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1418 - accuracy: 0.9578\n", + "Epoch 98/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1432 - accuracy: 0.9582\n", + "Epoch 99/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1413 - accuracy: 0.9590\n", + "Epoch 100/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1415 - accuracy: 0.9584\n", + "Epoch 1/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.7567 - accuracy: 0.7686\n", + "Epoch 2/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.4217 - accuracy: 0.8794\n", + "Epoch 3/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3620 - accuracy: 0.8972\n", + "Epoch 4/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.3199 - accuracy: 0.9092\n", + "Epoch 5/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2953 - accuracy: 0.9166\n", + "Epoch 6/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2800 - accuracy: 0.9215\n", + "Epoch 7/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2678 - accuracy: 0.9241\n", + "Epoch 8/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2558 - accuracy: 0.9262\n", + "Epoch 9/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2459 - accuracy: 0.9308\n", + "Epoch 10/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2358 - accuracy: 0.9330\n", + "Epoch 11/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2310 - accuracy: 0.9344\n", + "Epoch 12/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2282 - accuracy: 0.9353\n", + "Epoch 13/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2252 - accuracy: 0.9367\n", + "Epoch 14/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2211 - accuracy: 0.9370\n", + "Epoch 15/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2139 - accuracy: 0.9385\n", + "Epoch 16/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2116 - accuracy: 0.9387\n", + "Epoch 17/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2068 - accuracy: 0.9412\n", + "Epoch 18/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.2018 - accuracy: 0.9422\n", + "Epoch 19/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1988 - accuracy: 0.9437\n", + "Epoch 20/100\n", + "1875/1875 [==============================] - 11s 6ms/step - loss: 0.2020 - accuracy: 0.9431\n", + "Epoch 21/100\n", + "1875/1875 [==============================] - 11s 6ms/step - loss: 0.2002 - accuracy: 0.9420\n", + "Epoch 22/100\n", + "1875/1875 [==============================] - 10s 5ms/step - loss: 0.1985 - accuracy: 0.9427\n", + "Epoch 23/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1934 - accuracy: 0.9444\n", + "Epoch 24/100\n", + "1875/1875 [==============================] - 8s 5ms/step - loss: 0.1951 - accuracy: 0.9438\n", + "Epoch 25/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1882 - accuracy: 0.9457\n", + "Epoch 26/100\n", + "1875/1875 [==============================] - 10s 5ms/step - loss: 0.1878 - accuracy: 0.9469\n", + "Epoch 27/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1865 - accuracy: 0.9454\n", + "Epoch 28/100\n", + "1875/1875 [==============================] - 12s 6ms/step - loss: 0.1909 - accuracy: 0.9443\n", + "Epoch 29/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1849 - accuracy: 0.9466\n", + "Epoch 30/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1856 - accuracy: 0.9461\n", + "Epoch 31/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1829 - accuracy: 0.9478\n", + "Epoch 32/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1797 - accuracy: 0.9490\n", + "Epoch 33/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1797 - accuracy: 0.9488\n", + "Epoch 34/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1796 - accuracy: 0.9483\n", + "Epoch 35/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1759 - accuracy: 0.9489\n", + "Epoch 36/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1794 - accuracy: 0.9478\n", + "Epoch 37/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1738 - accuracy: 0.9497\n", + "Epoch 38/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1742 - accuracy: 0.9491\n", + "Epoch 39/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1735 - accuracy: 0.9503\n", + "Epoch 40/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1742 - accuracy: 0.9495\n", + "Epoch 41/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1737 - accuracy: 0.9489\n", + "Epoch 42/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1714 - accuracy: 0.9517\n", + "Epoch 43/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1733 - accuracy: 0.9507\n", + "Epoch 44/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1651 - accuracy: 0.9516\n", + "Epoch 45/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1658 - accuracy: 0.9530\n", + "Epoch 46/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1674 - accuracy: 0.9511\n", + "Epoch 47/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1662 - accuracy: 0.9523\n", + "Epoch 48/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1681 - accuracy: 0.9510\n", + "Epoch 49/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1672 - accuracy: 0.9518\n", + "Epoch 50/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1651 - accuracy: 0.9533\n", + "Epoch 51/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1621 - accuracy: 0.9520\n", + "Epoch 52/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1647 - accuracy: 0.9523\n", + "Epoch 53/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1648 - accuracy: 0.9521\n", + "Epoch 54/100\n", + "1875/1875 [==============================] - 10s 5ms/step - loss: 0.1655 - accuracy: 0.9517\n", + "Epoch 55/100\n", + "1875/1875 [==============================] - 11s 6ms/step - loss: 0.1662 - accuracy: 0.9527\n", + "Epoch 56/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1574 - accuracy: 0.9540\n", + "Epoch 57/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1624 - accuracy: 0.9531\n", + "Epoch 58/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1607 - accuracy: 0.9541\n", + "Epoch 59/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1608 - accuracy: 0.9526\n", + "Epoch 60/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1622 - accuracy: 0.9531\n", + "Epoch 61/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1578 - accuracy: 0.9541\n", + "Epoch 62/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1647 - accuracy: 0.9527\n", + "Epoch 63/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1543 - accuracy: 0.9555\n", + "Epoch 64/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1588 - accuracy: 0.9544\n", + "Epoch 65/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1552 - accuracy: 0.9550\n", + "Epoch 66/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1587 - accuracy: 0.9538\n", + "Epoch 67/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1586 - accuracy: 0.9543\n", + "Epoch 68/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1551 - accuracy: 0.9549\n", + "Epoch 69/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1577 - accuracy: 0.9542\n", + "Epoch 70/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1573 - accuracy: 0.9538\n", + "Epoch 71/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1562 - accuracy: 0.9544\n", + "Epoch 72/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1560 - accuracy: 0.9545\n", + "Epoch 73/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1533 - accuracy: 0.9557\n", + "Epoch 74/100\n", + "1875/1875 [==============================] - 10s 5ms/step - loss: 0.1572 - accuracy: 0.9540\n", + "Epoch 75/100\n", + "1875/1875 [==============================] - 11s 6ms/step - loss: 0.1545 - accuracy: 0.9556\n", + "Epoch 76/100\n", + "1875/1875 [==============================] - 9s 5ms/step - loss: 0.1540 - accuracy: 0.9557\n", + "Epoch 77/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1506 - accuracy: 0.9559\n", + "Epoch 78/100\n", + "1875/1875 [==============================] - 8s 5ms/step - loss: 0.1480 - accuracy: 0.9564\n", + "Epoch 79/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1570 - accuracy: 0.9549\n", + "Epoch 80/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1528 - accuracy: 0.9561\n", + "Epoch 81/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1516 - accuracy: 0.9553\n", + "Epoch 82/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1543 - accuracy: 0.9542\n", + "Epoch 83/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1505 - accuracy: 0.9565: 0s - loss: 0.1507 - \n", + "Epoch 84/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1502 - accuracy: 0.9566\n", + "Epoch 85/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1557 - accuracy: 0.9545\n", + "Epoch 86/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1485 - accuracy: 0.9558\n", + "Epoch 87/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1513 - accuracy: 0.9559\n", + "Epoch 88/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1472 - accuracy: 0.9576\n", + "Epoch 89/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1476 - accuracy: 0.9556\n", + "Epoch 90/100\n", + "1875/1875 [==============================] - 6s 3ms/step - loss: 0.1474 - accuracy: 0.9558\n", + "Epoch 91/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1516 - accuracy: 0.9555\n", + "Epoch 92/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1484 - accuracy: 0.9565\n", + "Epoch 93/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1500 - accuracy: 0.9566\n", + "Epoch 94/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1506 - accuracy: 0.9563\n", + "Epoch 95/100\n", + "1875/1875 [==============================] - 8s 4ms/step - loss: 0.1502 - accuracy: 0.9571\n", + "Epoch 96/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1474 - accuracy: 0.9570\n", + "Epoch 97/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1471 - accuracy: 0.9567\n", + "Epoch 98/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1442 - accuracy: 0.9582\n", + "Epoch 99/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1488 - accuracy: 0.9573\n", + "Epoch 100/100\n", + "1875/1875 [==============================] - 7s 4ms/step - loss: 0.1460 - accuracy: 0.9568\n" + ] + }, + { + "data": { + "text/plain": [ + "VotingClassifier(estimators=[('model1',\n", + " ),\n", + " ('model2',\n", + " ),\n", + " ('model3',\n", + " ),\n", + " ('model4',\n", + " ),\n", + " ('model5',\n", + " )],\n", + " voting='soft')" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ensemble_clf.fit(X_train, y_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = ensemble_clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Acc: 0.98\n" + ] + } + ], + "source": [ + "print('Acc: ', accuracy_score(y_pred, y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized Confusion Matrix\n", + "[[9.91836735e-01 1.02040816e-03 2.04081633e-03 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00 2.04081633e-03 1.02040816e-03\n", + " 2.04081633e-03 0.00000000e+00]\n", + " [0.00000000e+00 9.91189427e-01 2.64317181e-03 8.81057269e-04\n", + " 0.00000000e+00 0.00000000e+00 1.76211454e-03 8.81057269e-04\n", + " 2.64317181e-03 0.00000000e+00]\n", + " [1.93798450e-03 0.00000000e+00 9.82558140e-01 1.93798450e-03\n", + " 1.93798450e-03 0.00000000e+00 0.00000000e+00 7.75193798e-03\n", + " 3.87596899e-03 0.00000000e+00]\n", + " [0.00000000e+00 0.00000000e+00 2.97029703e-03 9.85148515e-01\n", + " 0.00000000e+00 2.97029703e-03 0.00000000e+00 5.94059406e-03\n", + " 2.97029703e-03 0.00000000e+00]\n", + " [1.01832994e-03 0.00000000e+00 3.05498982e-03 0.00000000e+00\n", + " 9.76578411e-01 0.00000000e+00 5.09164969e-03 3.05498982e-03\n", + " 2.03665988e-03 9.16496945e-03]\n", + " [2.24215247e-03 0.00000000e+00 0.00000000e+00 7.84753363e-03\n", + " 0.00000000e+00 9.76457399e-01 5.60538117e-03 2.24215247e-03\n", + " 3.36322870e-03 2.24215247e-03]\n", + " [5.21920668e-03 3.13152401e-03 1.04384134e-03 0.00000000e+00\n", + " 2.08768267e-03 4.17536534e-03 9.84342380e-01 0.00000000e+00\n", + " 0.00000000e+00 0.00000000e+00]\n", + " [1.94552529e-03 7.78210117e-03 8.75486381e-03 1.94552529e-03\n", + " 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.73735409e-01\n", + " 0.00000000e+00 5.83657588e-03]\n", + " [7.18685832e-03 3.08008214e-03 3.08008214e-03 2.05338809e-03\n", + " 5.13347023e-03 4.10677618e-03 1.02669405e-03 5.13347023e-03\n", + " 9.67145791e-01 2.05338809e-03]\n", + " [2.97324083e-03 2.97324083e-03 0.00000000e+00 7.92864222e-03\n", + " 7.92864222e-03 9.91080278e-04 9.91080278e-04 5.94648167e-03\n", + " 9.91080278e-04 9.69276511e-01]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAAEYCAYAAADMJjphAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deXxU1fmHn5cAJiCyKIskgImggbATEHFDWxQtlbZqte5ai1hxQbEutS6otVb0p3WpWquiuO8LVLAqFRdkExQUEAQlCYIoIPuSvL8/7k2YmUwmk8w9Zm54Hz73Q+bec773zLkz75x7z/IVVcUwDKM+06CuC2AYhuEaC3SGYdR7LNAZhlHvsUBnGEa9xwKdYRj1Hgt0hmHUeyzQpQkiMlVEzvP/Pk1EpgSsv5+IqIg0DFI3yXNnicjrIrJeRJ5PQSfweqkLROQ/InJWXZdjd2K3CXQislxEVolI04h954nI1DosVlxU9UlVPfqnPq+InCois0Rko4is9L+QhwYgfSLQFthbVU+qrYirehGRwf6PwEsx+3v5+6cmqXODiEyoLp2qHquq42tZXKMW7DaBzqchcEmqIuJRr+pORC4D7gL+iheUOgL3A8MDkO8ELFbVnQFoueI7YJCI7B2x7yxgcVAnqI+fm9CgqrvFBiwHrgJ+AFr4+84DpkakGQTMBNb7/w+KODYVuAX4ANgCdAYU+CPwJbABuAnYH/gI+BF4Dmjs528JvIH3hVrr/50To3+e//fZwPv+338CNkZsO4DH/GPNgX8DK4Fi4GYgwz+WAYwD1gBfARf65W0Yp26a+9onJai/PfACYYm/3QXs4R8bDBQBlwOr/fKc4x+7Edjul3sj8HvgBmBChPZ+kWXz3/9Xfp0uA06LrZckr9dN/vXaAEwB9qnivZWX/wHgwoj6KwKuI/ozcjewwr++s4HD/P1DY97nvASfm8hr/U/ghQj924C3Aanr70x92uq8AD/ZG/UC3c+Bl4Cb/X0VgQ5ohReAzsBr+f3Of723f3wq8A1Q4B9v5H85XwP28vdv8z+keX7w+Bw4y8+/N3AC0ARoBjwPvBJRvsgPf9QXOiJNB7wgc5z/+hXgQaAp0AaYAZzvHxsJLPTztALepepANxTYGe9YRJqxwHT/PK2BD4Gb/GOD/fxj/Xo5DtgMtPSP30B0YIt9vV952fz38iNwoH9sX6Agtl6SvF5LgQOALP/136p4b4Pxgtog4GN/33HAZCr/GJ7uX8uGeIH9WyAz3vtK8LmJvNZN8FqNZwOH4f0w5VR1HWyr3bY7NqOvAy4SkdYx+38BfKmqT6jqTlV9Gi9Q/DIizWOqusA/vsPfd5uq/qiqC4D5wBRV/UpV1wP/AfoAqOr3qvqiqm5W1Q14v/JHJFtoEcnCC2x3q+okEWkLHAtcqqqbVHU18H/AKX6W3wJ3qeoKVf0BuDWB/N7AGk18a3kaMFZVV6vqd3gttTMiju/wj+9Q1Ul4rZoDk31/MZQB3UUkS1VX+nUbSzLX61FVXayqW/Ba170TnVRVPwRaiciBwJnA43HSTPCv5U5VvQOvpVvd+4z3uSnX24wXPO8EJgAXqWpRNXpGDdntAp2qzse7bbwq5lB74OuYfV8D2RGvV8SRXBXx95Y4r/cEEJEmIvKgiHwtIj8C7wEtRCQjyaL/G1ikqrf5rzvhtQ5Wisg6EVmH17prE/F+Issb+94i+R7Yp5oe2dj6+drfV6EREyg347/3mqCqm4CT8VqkK0VkoojkJ1Ge8jJFXq9va1GeJ4BRwJHAy7EHReRyEfnC70Feh9dy36cazXifmwpUdQberbrgBWQjYHa7QOdzPfAHor8UJXjBI5KOeM++ykllqZfL8X75D1LVvYDD/f1SXUYRucrP+/uI3SvwbpX3UdUW/raXqhb4x1fi3baW0zHBKT4CtgK/SpAmtn46+vtqwya8W7Zy2kUeVNXJqjoE77Z1IfCvJMpTXqbiOGlrwhN4z10n+a2tCkTkMOBKvNZyS1Vtgfd8sPwaVvX5SPi5EZEL8VqGJXjPZI2A2S0DnaouAZ4FLo7YPQk4wB9i0VBETga64bX+gqAZXgtvnYi0wgu21SIix/rl/JV/C1b+HlbiPWC/Q0T2EpEGIrK/iJTfDj8HXCwiOSLSksotWCK01uPd0t8nIr/yW5+NRORYEfm7n+xp4FoRaS0i+/jpqx1KUQVzgcNFpKOINAeujni/bUXkeH8Y0Da8W+DSOBpOrpeqLsN7pPDnOIeb4T2L/A5oKCLX4T2fLWcVsF9NelZF5AC8TqTT8R4F/ElEEt5iGzVntwx0PmPxHnwD3jM0YBhey+t7vF/WYaq6JqDz3YX3UHwN3kP9N5PMdzLew/8v/PFtG0XkAf/YmUBjvE6PtcALeK0g8FpBk4F5wBy8TpgqUdU7gcuAa/G+yCvwbuFe8ZPcDMwCPgU+8zVvTvI9xJ7rLbwfmk/xei4jg1MDvGtQgtdDfgReCytWw9n1UtX3VTVea3Uy3nPXxXi3yVuJvi0tHwz9vYjMqe48/qOCCXjPeeep6pfANcATIrJHKu/BiEZUbeFNwzDqN7tzi84wjN0EC3SGYdR7LNAZhlHvsUBnGEa95ydfsicR0jBLpXGzwHX7dE00hMwwdh++/no5a9asqXbsZk3I2KuT6s4t1ScEdMt3k1V1aJDnT4b0CnSNm7HHgb8NXPeDj+8NXNMwwsghBxUGrqk7tyT9vd06977qZpE4Ia0CnWEYYUQgzVefskBnGEZqCNAg2SnbdYMFOsMwUkcCfewXOBboDMNIEbt1NQxjdyDNW3RpF4aHDOrKvJf/wvxXr2fMOUMqHW/RLItn7/gDM569mmlPjKHb/vtWHLvwd4OZ9fw1zH7hz4w6dXBUvimT36RnwYEU5Hfm9r//rZKuqnLZpRdTkN+Z/n168smcOdXmdaFpum51w1RWl7qBIngtumS2usLl8sV4S3QvApYAV1WXPqNpW136zWrN/8V12qzwYp23aIX2/s1Nmtn7wortzsfe0rH3v6GZvS/Unr8aq+9MX6iZvS/UvifcrPO/LNaWAy/Vpv0u0renf6EFx9+gmb0v1I1bd2puXp5+vmiprt+0TXv06Klz5i3QLTu0Ynv5tYl69DFDdfP2Mp067SMt7D9At+zQKvO60KzumOnaNUtVt2/ffhr091yattPMgVcmtQGzXMacqjZnIdZfOfc+vOW+uwG/E5FuifIMKOzL0hVrWF78PTt2lvL85DkMG9wzKk1+XjumzlgEwOLlq+jUvhVtWjUjP7cdMz5bzpatOygtLWPa7CUMP7IXADNnzGD//TuTm5dH48aNOenkU3jj9VejdN947VVOPf1MRISDBg5k/fp1rFy5ssq8LjRdldV07ZrFyxsoDTKS2+oIl23JAcAS9fwTtgPPUI11Xnb7dhStWlvxunjVWrJbN49K89niYob/zFuXsLCgEx33bUV22xYsWFrCoX0706p5U7IyGzH00AJy2rUEoKSkmJycXYvtZmfnUFwcvRBtvDQlxcVV5nWh6aqspmvXLF7e4JC0v3V1eeZsohclLCJ66XIARGSEb5o8i2jfEKDyGtTjHn2LFs2aMP2Zq7jglCOYt6iInaVlLFq2ijsee4s3/jmK1+67kE8XF7Nzp7cwbbw19yTm4WlVaWq6PxVNV2U1Xbtm8fIGhuB1RiSz1REue13jvatKta+qDwEPAQwafJzmtG1ZcSy7bUtKvlsflX7Dpq2cf8OuFbwXTryR5cXfAzD+lY8Y/8pHANw46pcUr1rn6WTnUFS0K+YWFxfRvn2kr0v8NPu2b8/27dvj5nWh6aqspmvXLF7eQEnz4SUuS1dEtDlLDtWYqcyc/QmdO7amU/u9adQwg5OO6cvEqZ9GpWm+ZxaNGnr3+uf8ehDvz1nChk1bAWjd0jN56tCuJcOP6sVzb84CoLB/f5Ys+ZLly5axfft2nn/2GX4x7Pgo3V/88niemvA4qsrH06ez117N2XfffavM60LTVVlN165ZvLzBkf63ri5bdDOBLiKSi+fMdApwaqIMpaWljL7tOV6//0IyGgjjX53OF199y3knHgrAwy+8T35eOx6+6QxKS8tY+NW3jLzxyYr8T487j1YtmrJjZymX/u051m3wVlRo2LAh/3f3vfzyF8dQWlrKWWefS7eCAv71oGe98IfzRzL02OOY/J9JFOR3pklWEx58+NGEeQEnmq7Karp2zcp1ndAgvcfROfWMEJHj8ExhMoBHVPWWROkbNGmjLlYvWTvTVi8xDPBWL5k9e1agUanBXtm6R/8Lk0q79Z0/z1bV4JdQqQanMyPUc2yf5PIchmHUNTYFzDCM3YE0nwJmgc4wjNSxFp1hGPWaOh4jlwwW6AzDSB1beNMwjPqNdUbUiD5dOzoxsmnZf1TgmmDDVgyjArt1NQyjXlO+Hl0aY4HOMIwUsVtXwzB2B+zW1TCMeo/1uhqGUa8Ru3U1DGN3IM1vXdMuDLtyPXLhLhY25yfTDVdZXeoGjYgktdUZrlx3gEeA1cD8ZPP06dPXiZtSk76jAncX26PXBaFxfjJdcwFz6QLWoEUnbXLCI0lt1DcXMOAxPLvDpNm0aZMT16P+3fcL3F1MN68OlfOT6ZoLmDMXMKnBVkc4C3Sq+h7wQ03y7Nixw4nrUfs2zQN3F9MdG0Pl/GS65gLm0gWsQYMGSW11RZ13RojICGAEwN777BPveNTr2rgeSZyfknjuYuOuOJHpz1zFgi9L4rqLbdqyLcpdzEVZw+YoFSbdMJXVpa4L6vT5WxLUeaDTCBewAw/MVxeuR8Wr1xG0u5g02jNUzk+may5gLl3A0j3QpVWva9OmTZ24Hs1a8HXg7mLSpE2onJ9M11zAnLmAheAZXZ236CIRESeuR6WlZYG7i4k0CJXzk+maC5grFzChjoeOJIEzFzAReRoYDOwDrAKuV9V/J8rTr1+hfvDxrMDLYss0GYaHCxewhnvn6V7H3ZxU2rUTTqtfLmCq+jtX2oZhpBfp3qJLq2d0hmGEkACf0YnIUBFZJCJLROSqOMebi8jrIjJPRBaIyDnJFNECnWEYKRPEFDARyQDuA44FugG/E5FuMckuBD5X1V54j8buEJHG1ZXPAp1hGClR3hkRwFzXAcASVf1KVbcDzwDDY9Io0Ew8sT3xJiXsrE44rXpdDcMIJwE9o8sGVkS8LgIOiklzL/AaUAI0A05W1bLqhK1FZxhGaghIA0lqA/YRkVkR24hopUrEDgs5BpgLtAd6A/eKyF7VFXG3aNG5GgbS8qBLAtdc+/HdgWsauygrC344lasOx3TvyYykBmVdk2B4SRHQIeJ1Dl7LLZJzgL+pNy5uiYgsA/KBGYlOai06wzBSJqBndDOBLiKS63cwnIJ3mxrJN8DP/HO2BQ4EvqpOeLdo0RmG4Y6gZkao6k4RGQVMBjKAR1R1gYiM9I8/ANwEPCYin+Hd6l6pqmuq07ZAZxhG6gR0l62qk4BJMfseiPi7BDi6proW6AzDSA1J/+eJFugMw0iZulxUMxks0BmGkTrp3aBLv17XMLkpDTk4n3kvXsP8V65lzNk/r6TZolkWz477PTOeuZJp4y+Lcha76NTBzH7uKmY9exXjbzmTPRrv+s0JUx2ETXfK5Dfp3T2fHl27MO72+JpjRl9Mj65dGNCvF598sktz5Ihz6ZTTlsI+PSrlmzL5TXoV5NO9axfGVVHWy0dfTPeuXRjQN1o3UV5zAQsIV647eONh3gW+ABYAl1SXx5ULmCuXpqUrvtP8X96ozQaM1nmLirT3CbdoZt+LK7Y7x/9Xx/5zkmb2vVh7/uZmfefjRZrZ92LNO+YvuqxojbY4+HLN7HuxvjBljp53/QTN7HtxqBylwqa7cetOzc3N0/lfLNG1G7Zq9x49ddbc+bppW1nF9uIrb+iQo4fqxq2l+u57H2ph/wEVxyb/d6q+P32Wdu1WEJVnw5YdmpuXpwsWLtF1G7dqjx49dfbc+bp5e1nF9tKrb+iQY4bqpm2lOnWap7t5e+K8YXEBa9yms3a86LWkNuqhC9hO4HJV7QoMBC6MM0E3ClcuYC7clARYuuK7Xc5iU+YwbHD0L31+XjumzlwMwOLlqyucxQAaZjQga49GZGQ0ICuzMSv9pd3D5igVJt2ZM2aQF7H/xN+eXElz4uuvcurpZyAiDDhoIOvXeZoAhx52OK1atqr0uZ01M/p88XTfeP1VTjutsm6ivKFxASP9W3QuXcBWquoc/+8NeC277ER5XLmAuXBTEoGiVesq9hevWhfHWayE4Ud6toqFBR3p2K4l2W2aU/Ldeu6a8C6LJ97Assk38ePGLbw9fZGzsppuhAtYh5yo/SsraZZE5W2fncPKksTuWSXFxWTnROuWlMTR7RBRphwvTaK84XEB240DXSQish/QB/g4zrER5fPeftzwY7y8Ua/T2U0pNum4x96ixV5NmP7UFVxw8uHMW1TMztIyWjTLYtgR3en6yxvJG/oXmmY15pRjC52W1XRTcwFLRJjqwBU1mOtaJzjvdRWRPYEXgUtVtVIk05/ABcyFm5Iq5LRtsSt/2xaUrIl1FtvG+Tc+VfF64evXsbzke4Yc3JXlxT+wZt0mAF5551MG9srlmf/MCp2jVJh0s7NzKFpRFLW/XSXN7Ki8JcVFtNs3sXtWdk4OxUXRuvvuG0d3RUSZirw0O7ZvrzJvaFzAQjCOzmmLTkQa4QW5J1X1perSu3IBc+GmpEDnDq3p1L6V5yx2dF8m/m9+lGa0s9jBvD9nKRs2bWPFt2sZ0KMTWZmNADhywAEsWvats7Ka7i4XsKUR+1947tnKmsOO56kJT6CqzPh4Ons19zQT0a8w+nxV6T75ZGXdRHnD4gImeAsbJLPVFc5adP7CeP8GvlDVO5PMEyo3pdF/f5HX772AjIwGu5zFTjgEgIdf/ID83LY8PPZ0Sst8Z7GxTwMwc/7XvPz2PD568gp27ixj3qIi/v3Sh07Larqe7h133cPwYUMpLS3lzLPPoVu3Ah5+yNM8b8RIjjn2OCa/OYkeXbuQ1aQJD/7rkYrP51lnnMq096by/Zo1dMnrwLV/uYGzzvk9DRs25M677uH4XwyltKyUM886xyurr/uHEX5Z35xE965daJLVhAcefqSirPHyuqyD4Nm9XcAOBaYBnwHlC+Ndo95ctri4cgFzhS3TFD5292WaXLiAZbY7QDue+Y+k0n55+7H1zgXsfdJ+vLRhGCkj0KAOOxqSwaaAGYaREoIFOsMwdgPS/BGdBTrDMFIn3TsjLNAZhpEadTx0JBks0KWAix7SlgMuClwTYO2Me5zohg0XX8h0b824xhtHl951YIHOMIwUEeuMMAyj/mMtOsMw6jf2jM4wjPqOPaMzDGO3IM3jnAU6wzBSJ91bdGaOk4Kuq7IOGdSVeS9dy/xXr2PM2UMq6XqmO+cx49mrmPb4mCjTnQt/dwSznrua2c9fw6hTBzuvg7DppmJic/4fzqVTdlsKe8c3xwlLHQSOP9c1ma3OcGVGAWQCM4B5eOY4N1aXJ0zmOK5MYZr0u0iXfrNa84ddr836X+KZ7vzmZs3sM6piu3P8Wzr2nxM1s88o7fnrm/SdjxdqZp9R2vfEW3T+l8Xa8uDR2rTwYn17+kItOP5GzewzKlQmNq6vWW1MbDZvL9Mpb0/VDz6epd26FUTlCVMduDDHaZp9gB5069SkNuqhOc424ChV7QX0BoaKyMBEGcJkjuPKuKR/904sLVqzy3Rn8uzKpju5+zJ1hucxsXj5Kjrt65nu5Oe2ZcZny9mydQelpWVMm/0lw4/q6awOwqYbu78mJjZQtTlOmOrADcn5RdRLzwj12Oi/bORvCRcDC5M5jivjkvatW1D07dqKY8Wr15HdZteS7QCffVnM8KN6AVBY0ImO+7Yiu20LFixdyaF9O9OqeROyMhsx9NACctq2dFYHYdMtKam9iU0iwlQHrthtVxgGEJEMYDbQGbhPVSuZ4yShEfU6XUxGXBmXxPswxKYf9+hbjLviBKY/fSULlpQwb1ERO3eWsWjZKu547C3euH8Um7Zs49PFnhlPorKkWt4w6aaimYgw1YEr0r0zwmmgU9VSoLeItABeFpHuqhplrCAiI4ARAG3atg2X0YqDshavXkdOu5a7NNq0oOS7WNOdrZx/w5MVrxe+cQPLS74HYPyr0xn/6nQAbhz1S4p9S8Ywmdi40s3Orr2JTSLCVAcukBAsvPmT9Lqq6jpgKjA0zrGHVLVQVQuz22eHymjFRVlnLfjGN93Z2zPdOaYfE//3WZRutOnOIN90ZysArVvuCUCHdi0ZfmQvnntzlrM6CJtu7P6amNgkIkx14Ip0f0bn0hynNbBDVdeJSBbwc+C2avKEymjFhWZpaRmjb3ue1+/7IxkNhPGvxTHdyWvLw2PPoLRUWbjsW0beuKt19/S482jVvAk7dpZx6W3PsW7DFqd1EDbd2prYAJx1+qm855vjdM7twLXX3cDZvjlOmOrABWl+5+rUHKcnMB7IwGs5PqeqYxPlCZs5jgtsmSa3uPi8p/vzqUhcmOM065Cv/S5/pPqEwP9GH1LvzHE+Bfq40jcMI02wSf2GYdR3JAS+rmk3BcwwjPCR0UCS2qpDRIaKyCIRWSIiV1WRZrCIzBWRBSLyv2TKZy06wzBSJogGnT/u9j5gCFAEzBSR11T184g0LYD7gaGq+o2ItElG21p0hmGkhDfrIZDhJQOAJar6lapuB54BhsekORV4SVW/AVDV1cmUscoWnYj0TZRRVeckOm4Yxu5DDcYL7yMikUMrHlLVh/y/s4EVEceKgINi8h8ANBKRqUAz4G5Vfby6kya6db0jwTEFjqpO3Kg5roaBtBx4qRPdtdPvcqLrcNiTE10XlJUFXwduarVG9bomwfCSeCKxRW4I9AN+BmQBH4nIdFVdnOikVQY6VT0yUUbDMIxyAvr9KAI6RLzOAUripFmjqpuATSLyHtALSBjoqn1GJyJNRORaEXnIf91FRIbVpPSGYdRfBMgQSWqrhplAFxHJFZHGwCnAazFpXgUOE5GGItIE79b2i+qEk+l1fRRvBZJB/usi4HngjSTyGoZR3wloHquq7hSRUcBkvBlVj6jqAhEZ6R9/QFW/EJE3gU+BMuDh2IVC4pFMoNtfVU8Wkd/5J9siYXrQYRiGc4KKCKo6CZgUs++BmNe3A7fXRDeZQLfdn5SvACKyP97qwYZhGAjQIM3bPskEuuuBN4EOIvIkcAhwtstCGYYRLtI8zlXfGaGqbwG/wQtuTwOFqjrVVYHC5KYUprICDDk4n3kvXsP8l//MmLN+Vkm3RbMsnr39XGY8/SemjR9Nt/3bVRy76NQjmP3slcx69krG33ImezTe9Rvpsh6CduwK2zWbMvlNenfPp0fXLoy7Pb7umNEX06NrFwb0i66DkSPOpVNOWwr7VHYtC5LyhTdD7wKGF+juxBtb9+uauO/gPVT8BHijurTmAubOVatJ/0t16YrvNP/4sdrsoMs8d7ET/6qZ/S6p2O4c/7aOfWCSZva7RHv+5hZ95+NFmtnvEs0bep0uK1qjLQaN0cx+l+gLU+boedc/qZn9LnFW3g1bdgTu2FWuGZZr9uPmHZqbm6fzv1iiazds1e49euqsufN107ayiu3FV97QIUcP1Y1bS/Xd97w6KD82+b9T9f3ps7Rrt4KKfX0cuIC13K+r/vaxOUltpKsLmIjcD4wEPgPmA+eLyH01iKWXkET3L5gLmKuyAvQv6MTSFRHuYlM+YdgRMe5ieW2ZOsMbjrT469V0at+KNq28FYsbZjQga49GZGQ0ICuzMSv95d1dlXfWzOAdu2I10/2azZo5g7xq6mDi669y6uk1cy1zgSS51RXJzHU9AjhGVR9V1UeB44DByYiLSA7wC+DhZNKbC5g756f2bZpTtCrWXax5lO5ni0si3MU60rFdywrPirsmvMviN65n2Ztj+XHjFt7+eJHT8pYUB+/YVVIcrmtWUlJMTofoOlhZSbckKn/77BxWVuNa5oJ0X0o9mUC3COgY8boD3hiWZLgL+BPeeJe4iMgIEZklIrN+3PBjvONRr+NNDQqbo9RPXVaoYm5NTPpx4/9Li2ZZTH/yCi44+TDmLfJcxFo0y2LYEd3pevxY8oZeR9OsPTjl2H5Oy5uKblWkY1l/6jpwgdfrmtxWVySa1P863pCS5sAXIjLDf30Q8GF1wv7sidWqOltEBleVTr0JvQ8BHHhgvobFTSlszk/Fq9dXeLxCubtY9A/Lhk3bOH/s0xWvF752HctLvmfIwHyWl/zAmnWbAHjl3U8Z2DOXZ/4z21095ATv2JWdE65rlp2dQ9GK6DpoV0k3Oyp/SXER7apxLQucOm6tJUOiFt04vM6H64Bj8YaZ3OD/fVMS2ocAx4vIcrzlVo4SkQmJMjRt2jQ0bkphc36a9fk3dO6wD53at/LcxY7uw8T3ogeUR7mL/Wog73+ylA2btrHi23UM6N6JrD0aAXBk/y4sWr7KaXn7FQbv2BWrme7XrF9hf5YmUQdPTaiZa5kL0r3XNdGk/qRW7kyQ/2rgavBWBAXGqOrpifKYC5i7spaWljH69hd5/Z6RZGQ0YPxrH/vuYt7Mvodf/JD83LY8fONplJaVsfCrbxl50zMAzFzwNS+/PY+PnhzDztIy5i0q4t8vfei0vA0bNnTi2BWma9awYUPuuOsehg8bSmlpKWeefQ7duhXwsF8H540YyTF+HfTo2oWsJk148F8RdXDGqUzz66BLXgeu/csNib5+tab81jWdqdYFTEQGAvcAXYHGeMNFNqnqXkmfZFegS7gYgLmAucOWafJI91usSFws03Towf2ZE7AL2D55BfrLvz6TVNrHftczbV3A7sVbReB5oBA4E+hSk5OoN8B4ag3LZhhGSEj3n4+kPCNUdYmIZKhqKfCoiFTbGWEYxu6BSP2Y67rZXxtqroj8HVgJNHVbLMMwwkSax7mkxtGd4acbBWzCG0f3G5eFMgwjXIS217UcVf3a/3MrcCOAiDwLnOywXIZhhARB6sWtazwODrQUhmGEF0n/W1czsE4zXAwpAHfDQFwNW/nho/9zohsmXNzquYpH6T5spza+rgI0ciSYtBMAAB+USURBVFMcwzDCSDIP++uS2vq6Lgy6IIZhhBMhxC06NV9XwzCSpGGaN+nsGZ1hGCkhEuIWnWEYRrKk+6R+C3SGYaRMmjfokvKMEBE5XUSu8193FJEBrgoUJpemsDk/hdFdzFzA3OgGSbmvazJbnZGEi9c/gfuAL/zXLYGZyTjvAMvxTHXmkoT7j7mAuXF+2rStLHTuYuYC5ka3rwMXsHadC/SaSYuS2pKJAy62ZPpKDlLVC/GmgKGqa/HWpUuWI1W1dzJrUJkLmDvnp7C5i5kLmDvdoJEkW3N12aJLJtDtEJEMPL8IRKQ1CcxuUsFcwNw5P4XOXcxcwJzpukAkua2uSCbQ/QN4GWgjIrcA7wN/TVJfgSkiMltERsRLYC5gwZU1Ea7Km47uYlWRjtesLnRdEFoXsHJU9UkRmQ38DO9z/StVTcqQGjhEVUtEpA3wlogsVNX3YvTNBewncH4KnbuYuYA50w2a8s6IdCaZXteOwGbgdeA1YJO/r1pUtcT/fzVeqzBhb625gLlzfgqbu5i5gLnTdUG637omM45uIt4tqACZQC6eqXVBokwi0hRooKob/L+PBsZWkydULk1hcX4665zfh9JdzFzA3OgGjkBGmrfoqnUBq5TBW9XkfFU9v5p0eXitOPAC6lOqekuiPOYC5m6ZJleru4ZtmaZ0n6rkmkMOKmR2wC5gOQf20FH/fCWptFf/rHPauoBFoapzRKR/Eum+AnrVqlSGYYSK0E8BE5HLIl42APoC3zkrkWEYoSPdW8rJDC9pFrHtgffMbrjLQhmGER68XtdghpeIyFARWSQiS0TkqgTp+otIqYicmEwZE7bo/IHCe6rqFcmIGYaxGxJQj6ofb+4DhgBFwEwReU1VP4+T7jZgcrLaVbboRKSheobVVS2pbhiGgQANG0hSWzUMAJao6lequh14hvh3jxcBLwKrky1johbdDLwgN1dEXgOex/N1BUBVX0r2JIZh1G9q0KLbR0Qih1Y85E8aAMgGVkQcKwIOij6PZAO/Bo4Cqu0ULSeZXtdWwPe+cPl4OgUCD3RK/CktqZLuD0ojqUuT39rgahhIq4MudqK7dsY9TnR3b4QGyfuLrUkwvCTujMKY13cBV6pqaU2+14kCXRu/x3U+uwJcVSc3DGM3xTPHCUSqCOgQ8ToHKIlJUwg84we5fYDjRGSnqiYcyJco0GUAe5JclDUMY3cluAn7M4EuIpILFAOnAKdGJlDV3IrTijwGvFFdkIPEgW6lqiacsmUYhiFARgCRTlV3isgovN7UDOARVV0gIiP94w/UVjtRoAvXwyLDMOqMoFYvUdVJwKSYfXEDnKqenaxuokBXefF/wzCMOKR7f18iA+sffsqCGIYRToTkpljVJWlXPhfOT+W6YXIBC5tuba9ZorxDBnVl3kvXMv/V6xhz9pBKui2aZfHsuPOY8exVTHt8DN3237UW3UWnHcns569h1nNXM/6vZ1e4i4WxbtPdBQzfwDqZrc5w6bwDtABeABYCXwAHJ0rf23cBC9L5afN2Nw5YYXJ+cqmbiltXorxN+l2kS79ZrfnDrtdm/S/x3MV+c7Nm9hlVsd05/i0d+8+JmtlnlPb89U36zscLNbPPKM07+s+eu9jA0ZrZZ5S+MHm2nnfdE7pH7z+Gqm7D4gK2X9ceOn7mN0ltpLELWCrcDbypqvl4SzYlXIJ9c4wLWBDOTxAuF7Cw6abi1pUob//unVhaFOEuNnk2wwbHuIvl7svUGZ6ZzuLlq+i0byvatGoGxLiLZXnuYrp5VajqNjQuYHgLbyaz1RXOAp2I7AUcDvwbQFW3q+q6RHm279gRuPOTlydkLmBh0k3BrStR3vatW1D0bay7WIso3c++LI5wF+tEx31bkd3Wdxd74m0WTxrLsik38+OGLbw9fSG6fVO46tZcwALDZYsuD2/dukdF5BMRedhfUj2KSBewDSm4gCUimTxVpanp/lQ0XZU1jLrxLmls+nGPvkWLvZow/ekrueCUw5m3qIidO313scE96TrsBvKOudZzFzsu/qyjdK4DV7rBk9zzubp8RlfjFYZrqN0XuEhVPxaRu4GrgL9EJtIYF7CgnZ+8PCFzAQuTbgpuXTu2b68yb/HqdeS0i3UXWx+lu2HTVs6/4cmK1wvfuMFzFzs4n+XF37Nm3UYAXnlnHgN75vHU803DVbdhcgFzohwcLstXBBSp6sf+6xeoZsmnJjEuYEE4P0G4XMDCppuKW1eivLMWfEPnDq3p1H5vz13smH5M/N9nUbpR7mK/HsT7c5ayYdNWVny7lgE99iMr03cXG3AAi5Z9izRpG6q6DZcL2G7aolPVb0VkhYgcqKqL8AYgf54oj4g4cX4KmwtY2HRre82qygu+u9htz/P6fX8ko4Ew/rXpvrvYIQA8/OIH5Oe15eGxZ1Baqixc9i0jb/RadzPnf83Lb8/loyevZGdpaYW7mEiD0NVtKFzASP9pVDV2AauRuEhv4GGgMfAVcI6qrq0qfd9+hfrB9JkuyhG4puHh6vNjyzS5wYULWOeCXvr3p95MKu0JvduHwwWsJqjqXLxlVQzDqMeke2PCaaAzDGP3IL3DnAU6wzACIM0bdBboDMNIDW94SXpHOgt0hmGkjLXoDMOo50hgC2+6Iq0CnWeyEXyFlZWFx+IibC5grnrbXA0DaXnwZYFrrv3ozsA1wc3QHRffBLt1NQyj/lPHE/aTwQKdYRgpY4HOMIx6j9itq2EY9ZnyhTfTGQt0hmGkTJrHOQt0hmGkTrrfuqbdenku3ZR6d8+nR9cujLs9vu6Y0RfTo2sXBvSLdqoaOeJcOuW0pbBPtGeBC03XdbC76w45OJ95L1zF/JeuYcxZR1XSbNEsi2f/fg4znhrDtMcupdv+7QDo0qk105+8vGJb9e5fGfW7w3+SOnDhihckAjSQ5LY6w5XrDnAgMDdi+xG4NFGePr4LWNBuSj9u3qG5uXk6/4slunbDVu3eo6fOmjtfN20rq9hefOUNHXL0UN24tVTffc9zqio/Nvm/U/X96bO0a7eCin0uNDdtc+NYFjanKpe6S1d8p/nDb9JmA8fovEXF2vukv2lm4eiK7c7H39GxD/xHMwtHa88TbtV3ZiyKOp5ZOFqbDLhMV65ZrwcMG6uZhaPT0mGtKle8Pg5cwA4s6K3vLfohqY365gKmqotUtbeq9gb6AZuBlxPl2RTjAhakU1VeNU5VE19/lVNPT95dzIUmhM9RKky6AixdsYblxT94zmJvfcKwI7pHaebntmXqzC8BWPz1at9ZbM+oNEf278Kyou/5xjfvSUeHtUSfscBJ0hinvprjRPIzYKmqfp0o0Y4dO9y5KXWIdptaWUm3JCp/++wcViZwF3OhWdX7S2dHqTDpikDRql1GdMWr1pHdunmU5mdfljD8SO9Wr7BbRzq2a1nJfeyko/vw3ORPEpajrh3Wfkp2a7vDGE4Bno53INIF7McUXMBcuSlVhQvNVHXrk1OVK91YYtOOG/+25yz25OVccPKhzFtczM7SsorjjRpm8IvDC3jp7bnVliPVsrr6jLlAktzqCue9riLSGDgeuDrecY1xAXPmprQi2m2qXSXd7Kj8JcVFtEvgLuZCs6r3l86OUmHSVYWctrtaZ9ltW1CyJvrHdcOmbZw/9pmK1wtfvZblJd9XvD5mUD5zFxaz+oeNCctR1w5rPznp3en6k7TojgXmqOqq6hI2jXEBC9KpamkSTlVPTUjeXcyFJoTPUSpMugp07tiaTu1bec5iQ/ow8b35UZrN98zc5Sz2q4G8/8lSNmzaVnH8t8f05bkpc6LypKPD2k+NJPmvznDd2wE8g2eKU23avn376cuvTdTOXbpobl6e3jD2Zt2yQ/Uf9/5T/3HvP3XLDtXN28v0/JF/1Ny8PC0o6K7vfzQzqmcrNu+WHVrRA9q5cxfNzc3T62+8STdtK9O777lf777nfr+3s1RHnH+B5ubmabeC7jrtwxkVPaEn/vYUbduunTZs2FDbZ2fr/Q/8y5lmVe8j1TowXW//8Isf0sXLV+nSFd/pdfdN1MzC0Trqr8/pqL8+p5mFo/WIc+7SL79erQuXfauvvDNP2x15TUVva8tD/qRr1m7UNkdcHdUL66qs5b2qnTt7x66/8SbdvL1M7773fr373vt18/Yy3bStVEeMvKBCd9pHMyp6WE+K/Yw9+C8nva753Xvrx0vXJbVRR72url3AmgArgDxVXV9d+n79CvWDj2cFXg5bpskoZ3dfpumQgf2ZE7ALWNceffTxV6cmlXbA/i3qpQvYZmBvl+cwDKNucbWOZJDYFDDDMFIjBOvRpd0UMMMwwkdQw0tEZKiILBKRJSJyVZzjp4nIp/72oYj0SqZ81qIzDCN1AmjRiUgGcB8wBCgCZorIa6r6eUSyZcARqrpWRI7FG5p2UHXaFugMw0iRwIaODACWqOpXACLyDDAcqAh0qvphRPrpQA5JkFaBTnHT02Q9mW7q1SWuHm7/8OEdgWu2POSKwDUB1n5we+CaLmq1fPWSJNlHRCKHVjzkTxoAyMYbpVFOEYlba78H/pPMSdMq0BmGEVKSD3RrEgwviacS9xdaRI7EC3SHJnNSC3SGYaRMQLeuRUCHiNc5QEmlc4n0BB4GjlXV72OPx8N6XQ3DSJmAlmmaCXQRkVx/jvwpwGvR55GOwEvAGaq6ONnyWYvOMIyUCaI9p6o7RWQUMBnIAB5R1QUiMtI//gBwHd4khPv957g7k5lpYYHOMIzUCHANJlWdBEyK2fdAxN/nAefVVNcCnWEYKeH1uqb3yIa0e0bnygzEhXlJmExhyo+5qtva6ibK6+qauaiDIQMPZN5zVzD/hSsZc+aRlY63aJbFs7edxYwJlzHtkYvoltcWgC4dWzP9idEV26p3bmLUKbs6El19FoIm3RfedL1E02hgATAfb4XhzETpe/vmOEGagWze7sZwJmymMC6MVjZvL0tJN1Fel9cs6DpoMvAKXbpijeb/6q/abNCVOm9xsfY++e+aOWBMxXbnE+/q2Acna+aAMdrzpNv0nRmLo45nDhijTQZeoSvX/KgHHH+zZg4Y46QO+jpYpqmgZx/9vGRjUhv1zRxHRLKBi4FCVe2O93DxlER5NseY4wRlBuLCvCRMpjDgzmglFd1EeX+KaxZUHfTv1pGlRWtYXlJuujOXYYcXRKXJz23L1FnlpjvfVWO6s87pZ8EF6b7wputb14ZAlog0BJoQZ0xMJNt37HBiBuLCvCRMpjDgzmglFd1EeV1dMxd10L7NXtGmO6vXxzfdGVxuutOBju1akN0mOs1JQ3rx3BT3pjsu2G1dwFS1GBgHfAOsBNar6pSa6qSr4YwLTVdlTVU3EelYXhfXLBHxWiqxOuMef5cWe2Ux/YnRXPDbQ5i3uKSy6c5hBbz0zqc1Kksq7zVI0v0ZnbNeVxFpiTchNxdYBzwvIqer6oSYdCOAEQBt2rZ1YgbiwrwkTKYw4M5oJRXdHdu3V5nX1TVzUQfFq9dHm+60aR7fdOem5ypeL3z5apaX/FDx+phB+cxd9NOY7gRNGBbedHnr+nNgmap+p6o78EYzD4pNpKoPqWqhqha2b5/txAzEhXlJmExhwJ3RSiq6ifL+FNcsqDqY9cUKOnfYh077tvRNd3oz8b3Po9JEme4MH8D7c5dFm+4c3TvqttVVHTghydvWOo2FDntcD8LrcW3iVQXjgYsS5enTt1/gZiCbt7sznAmTKYwLo5XInsra6sbL6/KauaiDzAFjdPilD+vir1fr0hVr9Lr7J2nmgDE66tYXdNStL2jmgDF6xLn36JffrNaFy1bpK+98qu1+9peK3taWh12ta9Zt1DZHXhvVC+uiDlz0unbv1UeXrNqc1EY9Nce5ETgZ2Al8ApynqtuqSt+3X6F+MH2mi3IErhk2XF5nF7i6Zi7qodWhfwpcE9ws03TIQYXMDtgcp0fvvvrKWx8klbZzmyb10hzneuB6l+cwDKOuqWPP1iSwKWCGYaREDRferBMs0BmGkToW6AzDqO/YrathGPWedO/vs0BnGEbKpHmcS69AF4YR1q4pKwvXMBBzWHMzDASg5aDLA9fctrCo+kQ1pa4HAydBWgU6wzDCRxgaKBboDMNImfQOcxboDMMIgDRv0FmgMwwjdWx4iWEY9Z/0jnMW6AzDSJ00j3Pp6QIWFmctl2Xt3T2fHl27MO72+LpjRl9Mj65dGNAv2qlq5Ihz6ZTTlsI+8d26XOmG6ZqFxWUOfHex569k/otXM+bMoyrptmiWxbN/P5sZT17OtEcvoVteO8B3F5twWcW26p1bGHXKYZXyB4GIZ3eYzFZnuFwDCrgEzwFsAXBpden7+C5gYXDWcuXW9ePmHZqbm6fzv1iiazds1e49euqsufN107ayiu3FV97QIUcP1Y1bS/Xd9zynqvJjk/87Vd+fPku7diuIyuNKN0xuaK5cwFzVQZODLtelK77T/OE3a7ODr/DcxX57m2b2v6xiu/Pxd3Tsg29qZv/LtOeJf/PcxSKOZ/a/TJscdLmuXLNeD/jlTSpN2ga+Hl2vPn119YYdSW3UQxew7sAfgAFAL2CYiHRJlGdTjAtYOjtruXTryqvGqWri669y6uk1d+tyoRsmNzRXLmCu6qB/QUeWFn2/y11syifx3cVmlruLrabTvi0TuIutrVT2oEh3zwiXt65dgemqullVdwL/A36dKMOOHTtC46zl1AWsQ7RT1cpKuiVR+dtn57AyGSc0V7ohumZhcZkDaN+6eXLuYkdGuou1JLtNi6g0Jw3pU2mZ9qBJ96XUXQa6+cDhIrK3iDQBjgM6xCYSkREiMktEZv244cdKIvXRUcpVWRORjrphumaJcFUH8U4bm3rc4+/QolkW0ydcxgW/PZR5i4vZWVpacbxRwwx+cXgBL709L+F7SI1kXV3rLtI563VV1S9E5DbgLWAjMA9vSfXYdA8BDwEceGC+hsVZy6kL2Ipop6p2lXSzo/KXFBfRLhknNFe6IbpmYXGZgyrcxb5bH6XruYs9W/F64St/ruwutrAoyl0saLwpYM7kA8Fpr6uq/ltV+6rq4cAPwJeJ0jdt2jQ0zlou3bqWJuFU9dSEmrt1udANkxuaKxcwV3Uw63PfXax9K89d7Og+TJy2IEo32l3sIN6f+1WMu5j721ZI/1tX172ubfz/OwILgZaJ0vft2y9UzlouNMt7Pzt37qK5uZ5T1aZtZXr3Pffr3ffc7/d0luqI8y/Q3Nw87VbQXad9OKOiF/TEWKeqB/4V1asatG7Y3NDC5DKX2f8yHX7JQ7672Hd63f0TNbP/ZTrq1ud11K3Pa2b/y/SIc+/WL78udxebp+2O+nNFb2vLQ6/03MUGX1Oxz0Wva+8+/XTd5tKkNuqpC9g0YG9gB3CZqr6dKH2/foX6wceznJUnDNgyTW5x8Xl3tXKHk2WaFjxJ2aZvAy1wn36F+r8PZiSVtnlWRr10AXMzQtEwjLShroeOJINNATMMI3XSPNJZoDMMI2XqdHpXEqTdXFfDMMJHUDMjRGSoiCwSkSUiclWc4yIi//CPfyoifZMpnwU6wzBSJ4BIJyIZwH3AsUA34Hci0i0m2bFAF38bAfwzmeJZoDMMI2UCmhkxAFiiql+p6nbgGWB4TJrhwOPqMR1oISKJBzqSZs/o5syZvSarkXydRNJ9gDUOimC67nTDVNb6rNsp6BN/Mmf25CaNZZ8kk2eKSOQYsof82VEA2cCKiGNFwEEx+eOlyQZWJjppWgU6VW2dTDoRmeViLI7putMNU1lNt2ao6tCApOI1+WIHPiaTphJ262oYRrpQRPTCHzlASS3SVMICnWEY6cJMoIuI5IpIY+AU4LWYNK8BZ/q9rwOB9aqa8LYV0uzWtQY8VH0S000z3TCV1XTrAFXdKSKjgMlABvCIqi4QkZH+8QeASXhLvi0BNgPnJKPtdK6rYRhGOmC3roZh1Hss0BmGUe+xQGdUQlytOxQwItLUkW67sNSBkRyhCnQicqCIHCwijfzpIkHrB6opIp1FpFBE9ghYt0BEjhCRvQPUPFREzgBQVQ3qiy4ivxSRS4LQitEdDtwmIm0C1j0GeJk4/iYpaA4UkTP8/xsHqNvF/3xluPg+1CvqYrXP2mzAb/BWKX4beBy4GNgrIO0DIv7OCEhzGPAp8C7wdOQ5UtQ91td9BZgItEtRrwGwJ5737ufAyMhjKWofDcwFhgT8WTjC/ywErVte3uXA3QFpHu9fr/HAC0CXgHR/hefD8iJwN/BHoGmQ9VGftjovQJIXtRHwLHCI//oE4Hbg5lSDnR+QNgNPRexLKdgBg/wvYh//9f14XeWp1sNgYDEwwH/9MvDzgOr4T8Dl/o/I6AD0BgGrIsraHG/6UZMAtC8Dxvh/tweG4E0Vap6C5s/xhiwU+J+3KcDhKZZzb7yhEt39148AJwFtgMwUdf8DdPNfn4s3Bu1aoFkQn4f6toXp1nUvvBULwPuCvwE0Bk6t7W2W/4xnFHApsF1EJgCoamkAtwJ/U9VyV5LrgVYB3MKuAs5X1Rki0g7vyz1KRB4UkRNTvN3ciXe7Nh4YICJ3isit/sDM2nxOvsdbQn9f/xb7FbyVJh4LqKzlvID3RR8F3CciLWupmQGcqaoLgKbAIrygl8ozy51AFpAvInvh/VCdCdwFXJvCM8adeK3wdgCq+gjwNdAa74fbiKWuI20NfsWG4I2KPsx/nQGcCkzAHw9YS932eB+affC+NBMCKGsGfkvT/zsH+ARo7e/bO4Bz/Bm41v/7HLwWb+sU9PYHrvL/vhyvlXtfimXsBXyFN23nD3i3yefi3cq3SkG3O14gegY4x9+XBzwAHJNimRv4/w8FvgV6pKh3IjAbmA78xd93FPAY0CsF3ZHAE8AZwC3+9+B8ArhzqI9bmFp00/BuJ84QkcNVtVRVn8ILVL1qK6qqJaq6UVXX4H1QsspbdiLSV0Tya6FZqqrlbtwCrAN+UNXvROQ04GYRyaptmf1z3KKqN/t/Pwo0I7UH6FuAA0XkD3hfor8BHUXk/BTKOA+vhXGrqv5LVcvUa320xHOGq63ufGAMXos219/3Fd6PSlILQyTQLvP/fxNvtsGwFFq1qOoLeLfF0/B+7FDVd/CuVyoriTwNvIkXNJuo6umq+iDQxm89GhGEZgqYqm4VkSfxViq42g9A24C2VLNESw3O8b3/xb5dRBbifXGOTFFzJ7BRRFaIyK14D7zPVtUttdUUEVH/Z91/fQJePVQ7uTlBOUtEZAXwF+BCVX1dRI7Ee25Va1T1c7xOjsiytib1a/YfvEcCN4hULO3VBy9AB8U8YDTwd1Utra2Iqq4VkXeA34rIdiATL0B/moLmeuBJEXm6PDiLyJlAK6DWZa231HWTsqYb3nO5I/FuWx7Df+Af8DlGE8Bti68lfpmXAt8QUK+br70H8Hu8HtPuAeh1APpFvE6p1zVOPZyLF/QKAtTtC/wVuCOI6xVH/zlgvwB0WuCNFPgfXgdFrW9bq9Avr9vA66A+bKGd6+p3Fqj6v2YB6rbE+3Bfrqq1/sWNo3s2MFO9h91BaTbCe3a5VFUXBagb1WIMShNvWMi3qrowSG0XuKgDX7cZ3jPlH6tNXDPdTkAjVU2pBV5fCW2gc4mIZKrq1oA1nXxxDMOoHgt0hmHUe8LU62oYhlErLNAZhlHvsUBnGEa9xwKdYRj1Hgt0IUFESkVkrojMF5HnRaRJClqPiciJ/t8PS2U39Mi0g0VkUC3OsVykstdnVfur0DhbRO4N4rzG7o0FuvCwRVV7q2p3YDveNK0KarsIgaqep97shaoYjLcSiWGEFgt04WQa0Nlvbb0rIk8Bn/kLMN4uIjNF5NPyear+XM17ReRzEZmIt0wQ/rGpIlLo/z1UROaIyDwReVtE9sMLqKP91uRhItJaRF70zzFTRA7x8+4tIlNE5BMReZD4RsNxEZEBIvKhn/dDETkw4nAHEXlTRBaJyPUReU4XkRl+uR6sbaA3dg9CM9fV8BCRhniLb77p7xqAN/1rmYiMwPO57C/eklAfiMgUvDmgBwI98ObEfo63NlqkbmvgX3hrsC0TkVaq+oOIPABsVNVxfrqngP9T1fdFpCPedKauePNO31fVsSLyC2BEDd7WQv+8O0Xk53hTuk6IfH94q6nM9AP1JuBkvPUJd4jI/cBpeGvpGUYlLNCFhywRmev/PQ34N94t5QxVXebvPxroWf78DW+xyy7A4cDT6k1ML/EnmMcyEHivXEtVf6iiHD8HusmuJdr28qc1HY63CjSqOlFE1tbgvTUHxotIF7xFGxpFHHtLVb8HEJGXgEPx1mPrhxf4wFvzbXUNzmfsZligCw9bVLV35A7/S74pchdwkapOjkl3HF4ASYQkkQa8xx0Ha8zqK35ZajvN5ibgXVX9tX+7PDXiWKym+mUdr6pX1/J8xm6GPaOrX0wGLvAn+yMiB4i3iu17wCn+M7x9ib/01EfAESKS6+dt5e/fgLd2WjlT8FbzxU9XHnzfw7t9RESOxVtzLlmaA8X+32fHHBsiIq3EW7/vV8AHeL4hJ4pvjOMfT2VtN6OeY4GufvEw3vO3OSIyH3gQr9X+MvAl8Bnecub/i82oqt/hPVd7SUTm4a1YDPA68Ovyzgi8pYYK/c6Oz9nV+3sjcLiIzMG7hf4mQTk/FZEif7sT+Dtwq4h8gLcGYCTv462kOxd4UVVn+b3E1wJTRORT4C1g3yTryNgNsUn9hmHUe6xFZxhGvccCnWEY9R4LdIZh1Hss0BmGUe+xQGcYRr3HAp1hGPUeC3SGYdR7/h/qupPpH60WAwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_confusion_matrix(y_true=y_test, y_pred=ensemble_clf.predict(X_test), classes=np.array(range(10)), normalize=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Final model produces over **98% of accuracy**, which is rather improved from before" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 30ba3f24f89cca82c71bb5e98ac60af80663eecb Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Sun, 6 Sep 2020 19:56:00 +0200 Subject: [PATCH 11/13] Add files via upload A short tutorial on CNN and DenseNet --- .../Convolutional_neural_networks.ipynb | 504 ++++++ .../Densely_connected_networks_ipy.ipynb | 1417 +++++++++++++++++ 2 files changed, 1921 insertions(+) create mode 100644 tensorflow_v2/notebooks/3_NeuralNetworks/Convolutional_neural_networks.ipynb create mode 100644 tensorflow_v2/notebooks/3_NeuralNetworks/Densely_connected_networks_ipy.ipynb diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Convolutional_neural_networks.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Convolutional_neural_networks.ipynb new file mode 100644 index 00000000..b97ec6ec --- /dev/null +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Convolutional_neural_networks.ipynb @@ -0,0 +1,504 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "e80sv5tuZl2J" + }, + "source": [ + "# Chapter 6: Convolutional Neural Networks\n", + "\n", + "(by Miguel Tomás : mtpsilva@gmail.com)\n", + "\n", + "Deep Learning is becoming a very popular subset of machine learning due to his high performance results achieved on a wide range of datasets types. One known way to use this ML technique in particular, is to classify images and photos. The algorithm is known as Convolutional Neural Network (CNN) and is available on the Keras library in Python with all its simplicity for building neural networks.\n", + "![image.png]()\n", + "\n", + "The computer uses pixels to view images. The pixels in an image are usually related. For example, a certain set of pixels can represent edges in an image or some other pattern. Convolution Neural Networks can be used to help identify patterns, objects and even people in images and photos.\n", + "\n", + "Convolution multiplies the pixel matrix with the filter matrix or “kernel” and then adds the multiplied values. Then, the process of convolution slides to the next pixel and repeats the same process until all image pixels are covered. This process is shown further bellow.\n", + "\n", + "The purpose of computer vision is to enable machines, computers or programs to observe the world like humans and apply knowledge to specific tasks, such as image and video recognition and image classification. With the development of deep learning algorithms (more specifically, convolutional neural networks), this has become possible nowadays. And affordable to everyone.\n", + "\n", + "The architecture of the Convolutional networks are the connectivity pattern of neurons in the animal brain, and are inspired by biological processes, the connectivity pattern between neurons resembles the organization of the animal visual cortex.\n", + "Convolutional neural networks have the ability to capture spatial and temporal correlations in input images by applying correlation filters. Due to the reduced number of parameters involved and the reusability of weights, it performs better on image data sets.\n", + "\n", + "## 1. How does it work?\n", + "Convolutional neural networks (CNNs) do not view images like we humans. We treat the image as a flat canvas with colors. We may not care about the width and height of the image, but we can perceive these parameters.\n", + "![image.png]()\n", + "\n", + "However, CNNs will view the image into different three-dimensional objects, such as three-dimensional objects where the three-dimensions are the color coding (or color channel), mainly red, green and blue (RGB), when combined, produce the colors we see.\n", + "![image.png]()\n", + "\n", + "The first key point on implementing a CNN is to accurately measure each dimension of an image, because it will become the basis of linear algebra operations for processing images.\n", + "Figure demonstrates how CNN works on RGB images. Each layer represents a RGB color , and numbers represent intensity (between 0 and 255).\n", + "\n", + "![image.png]()\n", + "\n", + "If we use the upper left pixel RGB (5, 1, 4) as seen on figure 4, our eyes will see the color lavender.\n", + "Now imagine a digital picture. For instance, a 7-megapixel camera can produce 3072 x 2304 pixel resolution of a photograph. How much calculations are require no analysis this image using a CNN ?\n", + "\n", + "The convolutional neural network will discover which of those pixels are valid signals by simplifying the image into a form that is easy to process and without loss of features, it does so to help on classification of the image more accurately. This is another important concept to keep in mind when designing a CNN architecture. The architecture is not only good at learning functions, but also scalable to massive image data sets.\n", + "\n", + "## 2. Convolutional Neural Network Layers\n", + "![image.png]()\n", + "\n", + "There are several main layers implemented in CNNs.\n", + "\n", + "### Conv2D layer\n", + "It is a two-dimensional convolutional layer, mainly used as a layer for extracting features from the original input image. The first layer is responsible for capturing low-level features, such as edges, colors, and gradient directions. By adding layers, the architecture will try to capture advanced features.\n", + "![image.png]()\n", + "\n", + "The CNN filter extends through the three channels (red, green and blue) in the image. The filter for each channel may also be different.\n", + "\n", + "The red area shows the area calculated by the current filter, which is called the receiving field. The numbers in the filter are called weights or parameters. The filter slides (or convolving) around the image, calculates element-wise multiplication and fills the input into the output, which is called the activation map (or feature map).\n", + "\n", + "We can have multiple convolutional layers to identify and capture advanced features, however this requires more computing power.\n", + "\n", + "### Pooling layer\n", + "The next layer after the convolutional layer is the pooling layer (or downsampling or subsampling layer). The activation map is fed to the downsampling layer, which will apply one patch at a time a pooling layer.\n", + "\n", + "The pooling layer gradually reduces the size of the space represented. Therefore, it reduces the number of parameters and the amount of calculations in the network.\n", + "\n", + "The convergence layer also aims to control overfitting.\n", + "\n", + "![image.png]()\n", + "\n", + "\n", + "There are two main types of pooling layers: maximum pooling returns the maximum value of a specific pool size (2×2), and average pooling returns the average of all values of a specific pool size, as shown in Figure .\n", + "\n", + "The maximum pool acts as a noise suppressor, and the average pool acts as a noise reduction mechanism to perform dimensionality reduction. Therefore, the performance of maximum pooling is much better than average pooling and is the most common pooling layer.\n", + "\n", + "After the maximum pooling layer above, the CNN model is capable to understand the image function. In the next part, we feed it to a fully connected neural network for classification tasks.\n", + "However, before the output of the pooling layer is provided to the fully connected layer, we need an intermediate layer to convert the data dimension used for classification tasks in the Flatten layer.\n", + "\n", + "### Flatten Layer\n", + "![image.png]()\n", + "\n", + "As mentioned earlier and the name suggests, this layer will flatten/convert the multidimensional array into a single long continuous linear vector. In more professional terms, it destroys the spatial structure of the data and converts a multi-dimensional tensor into a one-dimensional tensor, thus becoming a vector.\n", + "\n", + "### Dense / Fully connected Layer\n", + "Each neuron receives input from all neurons in the upper layer and is therefore tightly connected. This layer has a weight matrix 𝑊, a bias vector 𝛽 and the activation of the previous layer. An example can be seen from Figure 10.\n", + "\n", + "Dense implements the operation of:\n", + "output = activation(dot(input, kernel) + bias) \n", + "\n", + "### Dropout\n", + "![image.png]()\n", + "\n", + "In fact, dropout is a regularization method. During the training process, the number of outputs of some layers is randomly ignored (exit, switch). This implementation will have the effect of making each layer be treated as a different layer with a different number of nodes and connectivity to the previous layer.\n", + "\n", + "In convolutional networks, dropout is usually applied in fully connected layers rather than convolutional layers.\n", + "\n", + "## 3. Build a Model using Keras\n", + "After setting your python environment, you should be able to import the keras package:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "TeN7ETGxZl2K", + "outputId": "bd4423b0-8407-401d-f5e3-467b925560ab", + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'2.4.0'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import tensorflow.keras\n", + "tensorflow.keras.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "QzmqxXDfZl2R" + }, + "source": [ + "## 4. Preparing the Data\n", + "\n", + "Before we start, we normalise the image pixel values ​​from [0, 255] to [0, 1] to make our network easier to train (a smaller centering value usually gives better results). We will also adjust the shape of each image from (28, 28) to (28, 28, 1) because Keras requires three-dimensional dimensions." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(60000, 28, 28)\n" + ] + } + ], + "source": [ + "from tensorflow.keras.datasets import mnist\n", + "from tensorflow.keras.utils import to_categorical\n", + "\n", + "(train_images, train_labels), (test_images, test_labels) = mnist.load_data()\n", + "\n", + "print (train_images.shape)\n", + "train_images = train_images.reshape((60000, 28, 28, 1))\n", + "train_images = train_images.astype('float32') / 255\n", + "\n", + "test_images = test_images.reshape((10000, 28, 28, 1))\n", + "test_images = test_images.astype('float32') / 255\n", + "\n", + "train_labels = to_categorical(train_labels)\n", + "test_labels = to_categorical(test_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Building the Model\n", + "\n", + "Each Keras model is either built using Sequential classes that represent a linear layer stack, or built using customizable functional Model classes. We will use a simpler sequential model because our CNN will be a linear layer stack.\n", + "\n", + "We start by instantiating a Sequential model:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "aMwboeTFZl2R", + "outputId": "d3b7d5bf-aa8b-4d28-bd87-fbd50499a177" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d (Conv2D) (None, 24, 24, 32) 832 \n", + "_________________________________________________________________\n", + "max_pooling2d (MaxPooling2D) (None, 12, 12, 32) 0 \n", + "=================================================================\n", + "Total params: 832\n", + "Trainable params: 832\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "from tensorflow.keras import layers\n", + "from tensorflow.keras import models\n", + "\n", + "model = models.Sequential()\n", + "model.add(layers.Conv2D(32, (5, 5), activation='relu', input_shape=(28, 28, 1)))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "pX8vtUQfZl2Z" + }, + "source": [ + "The Sequential constructor takes an array of Keras Layers. We’ll use 3 types of layers for our CNN: Convolutional, Max Pooling, and Softmax." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Z8FfKHO2Zl2a", + "outputId": "f2215a6e-3e86-4bb8-f721-5d8e3d34d8c0", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 24, 24, 32) 832 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 12, 12, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 8, 8, 64) 51264 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 4, 4, 64) 0 \n", + "=================================================================\n", + "Total params: 52,096\n", + "Trainable params: 52,096\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "\n", + "model = models.Sequential()\n", + "model.add(layers.Conv2D(32, (5, 5), activation='relu', input_shape=(28, 28, 1)))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.add(layers.Conv2D(64, (5, 5), activation='relu'))\n", + "model.add(layers.MaxPooling2D((2, 2)))\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* num_filters, filter_size, and pool_size are self-explanatory variables that set the hyperparameters for our CNN.\n", + "* The first layer in any Sequential model must specify the input_shape, so we do so on Conv2D. Once this input shape is specified, Keras will automatically infer the shapes of inputs for later layers.\n", + "* The output Softmax layer has 10 nodes, one for each class." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "KcbZwqatZl2d" + }, + "outputs": [], + "source": [ + "model.add(layers.Flatten())\n", + "model.add(layers.Dense(10, activation='softmax'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see a model summary of what has been coded so far, one can include the next line of code and in turn is displayed a summary table with all the values coded." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Ke3vcrIHZl2g", + "outputId": "2bbddc8c-e023-4357-a9be-e935e8a7309c", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "conv2d_1 (Conv2D) (None, 24, 24, 32) 832 \n", + "_________________________________________________________________\n", + "max_pooling2d_1 (MaxPooling2 (None, 12, 12, 32) 0 \n", + "_________________________________________________________________\n", + "conv2d_2 (Conv2D) (None, 8, 8, 64) 51264 \n", + "_________________________________________________________________\n", + "max_pooling2d_2 (MaxPooling2 (None, 4, 4, 64) 0 \n", + "_________________________________________________________________\n", + "flatten (Flatten) (None, 1024) 0 \n", + "_________________________________________________________________\n", + "dense (Dense) (None, 10) 10250 \n", + "=================================================================\n", + "Total params: 62,346\n", + "Trainable params: 62,346\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "oLThtCv4Zl2j", + "outputId": "8601dfbf-48fd-4020-f74f-f5c2d79398de" + }, + "source": [ + "## 6. Compiling and fitting the Model\n", + "\n", + "Before starting the training, we need to configure the training process. We identify 3 key factors in the compilation step:\n", + "\n", + "* The optimizer. We will keep a very good default value: an optimizer based on Adam gradient. Keras also provides many other optimizers.\n", + "* The loss function. Since we are using the Softmax output layer, we will use cross entropy loss. Keras distinguishes binary_crossentropy (2 classes) and categorical_crossentropy (> 2 classes), so we will use the latter. See all Keras losses.\n", + "* A list of metrics. Since this is a classification problem, we only need Keras to report accuracy metrics.\n", + "\n", + "Next is needed to specify some parameters before starting the fitting of the model. There are many possible parameters, but we will only provide these parameters:\n", + "* The training data (images and labels), commonly known as X and Y, respectively.\n", + "* The number of epochs (iterations over the entire dataset) to train for.\n", + "* The batach size (number of samples processed before the model is updated)\n", + "\n", + "Calling model.evaluate()evaluates the output of a given input, then calculates the indicator function specified in model.compile based on train_images and train_labels, and returns the calculated indicator value as output.\n", + "\n", + "We must pay attention to one thing: Keras expects the training target to be a 10-dimensional vector, because there are 10 nodes in our Softmax output layer.\n", + "\n", + "The compilation looks like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "X2OxJYvDZl2n", + "outputId": "1f347217-b935-4f5d-8af3-c5caa0399591" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "600/600 [==============================] - 49s 81ms/step - loss: 0.9142 - accuracy: 0.7685\n", + "Epoch 2/5\n", + "600/600 [==============================] - 47s 78ms/step - loss: 0.2650 - accuracy: 0.9224\n", + "Epoch 3/5\n", + "600/600 [==============================] - 47s 78ms/step - loss: 0.1885 - accuracy: 0.9444\n", + "Epoch 4/5\n", + "600/600 [==============================] - 46s 77ms/step - loss: 0.1497 - accuracy: 0.9563\n", + "Epoch 5/5\n", + "600/600 [==============================] - 48s 80ms/step - loss: 0.1258 - accuracy: 0.9628\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "batch_size = 100\n", + "epochs = 5\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(train_images, train_labels,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "pzSI4bwiZl2t" + }, + "source": [ + "## 7. Evaluating the Model\n", + "\n", + "Evaluating a model from Keras actually only involves calling the fucntionevaluate(). The model.evaluate function\n", + "\n", + "* The validation data (or test data), which is used during training to periodically measure the performance of the network based on data that has never been seen before\n", + "\n", + "The evaluation results are retrieved form the variables assigned to the function evaluate().\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "1WoTYHYhZl2u", + "outputId": "33fec5fa-adb8-4c63-c1fc-afa59b68e79b", + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "313/313 [==============================] - 3s 8ms/step - loss: 0.1027 - accuracy: 0.9692\n", + "Test loss: 0.10267603397369385\n", + "Test accuracy: 0.9692000150680542\n" + ] + } + ], + "source": [ + "test_loss, test_acc = model.evaluate(test_images, test_labels)\n", + "\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "KQkQsuZhZl2x" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "name": "Convolutional-neural-networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/tensorflow_v2/notebooks/3_NeuralNetworks/Densely_connected_networks_ipy.ipynb b/tensorflow_v2/notebooks/3_NeuralNetworks/Densely_connected_networks_ipy.ipynb new file mode 100644 index 00000000..db68d102 --- /dev/null +++ b/tensorflow_v2/notebooks/3_NeuralNetworks/Densely_connected_networks_ipy.ipynb @@ -0,0 +1,1417 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + }, + "colab": { + "name": "Densely-connected-networks.ipy", + "provenance": [], + "collapsed_sections": [] + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "M2Fkx7fkzpge", + "colab_type": "text" + }, + "source": [ + "## 1. Densely Connected Networks\n", + "Following my previous article on Convolutional Neural Networks this time i’ll be writing about another form of image classification which is Densely Connected Networks or in short DenseNet.\n", + "\n", + "![image.png]()\n", + "\n", + "The most basic neural network architecture in deep learning is a dense neural network composed of dense layers (also known as fully connected layers). In this layer, all inputs and outputs are connected to all neurons in each layer. DenseNet is a short for “Densely Connected Convolutional Networks”. The latest version now supports a more efficient DenseNet-Bottleneck-Compressed network. By using DenseNet-BC-190–40 model one can get the most advanced performance on CIFAR-10 and CIFAR-100 datasets. Its architecture can be schematically depicted as seen on above image.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A1SoY6BrFp_R", + "colab_type": "text" + }, + "source": [ + "## 2. Architecture\n", + "DenseNet is an extension to Wide Residual Networks (or ResNet). DenseNet got its name because the dependency graph between variables has become very dense. The last layer of such a chain is tightly connected to all previous layers. Dense connection is shown in Figure below.\n", + "\n", + "![image.png]()\n", + "\n", + "The main components of DenseNet are “dense blocks” and “transition layers”. The former defines the connection mode of inputs and outputs, while the latter controls the number of channels so as not to be too large.\n", + "\n", + "It has some improvements, such as:\n", + "1. Dense connectivity: Connect any layer to any other layer.\n", + "2. The growth rate parameter indicates the speed at which the number of features increases as the network becomes deeper.\n", + "3. Continuous function: BatchNorm-Relu-Conv, from the Wide ResNet paper, from the improvement of the ResNet paper.\n", + "\n", + "Bottlenecks-Compressed DenseNets provide more performance advantages, such as reducing the number of parameters with similar or better performance.\n", + "1. Consider the DenseNet-100–12 model (with nearly 7 million parameters), while the DenseNet-BC-100–12 model has only 800,000 parameters. Compared with the 4.10%\n", + "2. error of the original model, the BC model achieves an error of 4.51% The best original model DenseNet-100–24 (27.2 million parameters) achieves an error of 3.74%, while DenseNet-BC-190–40 (25.6 million parameters) achieves The 3.46% error is the latest technology level of CIFAR-10." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mChxP3gBGCSq", + "colab_type": "text" + }, + "source": [ + "## 3. Dense Blocks\n", + "\n", + "DenseNet uses ResNet’s modified “batch normalization, activation and convolution”. One can implement this convolution block structure as follows\n", + "\n", + "```\n", + "from d2l import tensorflow as d2l\n", + "import tensorflow as tf\n", + "\n", + "class ConvBlock(tf.keras.layers.Layer):\n", + " def __init__(self, num_channels):\n", + " super(ConvBlock, self).__init__()\n", + " self.bn = tf.keras.layers.BatchNormalization()\n", + " self.relu = tf.keras.layers.ReLU()\n", + " self.conv = tf.keras.layers.Conv2D(\n", + " filters=num_channels, kernel_size=(3, 3), padding='same')\n", + "\n", + " self.listLayers = [self.bn, self.relu, self.conv]\n", + "\n", + " def call(self, x):\n", + " y = x\n", + " for layer in self.listLayers.layers:\n", + " y = layer(y)\n", + " y = tf.keras.layers.concatenate([x,y], axis=-1)\n", + " return y\n", + "```\n", + "The dense block is composed of multiple convolutional blocks, and each convolutional block uses the same number of output channels. However, in forward propagation, we concatenate the input and output of each convolution block on the channel dimension:\n", + "\n", + "```\n", + "class DenseBlock(tf.keras.layers.Layer):\n", + " def __init__(self, num_convs, num_channels):\n", + " super(DenseBlock, self).__init__()\n", + " self.listLayers = []\n", + " for _ in range(num_convs):\n", + " self.listLayers.append(ConvBlock(num_channels))\n", + "\n", + " def call(self, x):\n", + " for layer in self.listLayers.layers:\n", + " x = layer(x)\n", + " return x\n", + "```\n", + "In the example below, we define a DenseBlock instance, which has 2 convolutional blocks, and each convolutional block has 10 output channels. When using an input with 3 channels, we will get an output of 3 + 2×10 = 23 channels. The growth rate can be defined as the number of channels in the convolution block, controls the growth in the number of output channels relative to the number of input channels.\n", + "\n", + "## 4. Transition Layers\n", + "Since each dense block increases the number of channels, adding too many channels will make the model too complex. The transition layer is used to control the complexity of the model. It reduces the number of channels by using a 1×1 convolutional layer, and halves the height and width of the average pooling layer with a step size of 2, which further reduces the complexity of the model.\n", + "\n", + "```\n", + "class TransitionBlock(tf.keras.layers.Layer):\n", + " def __init__(self, num_channels, **kwargs):\n", + " super(TransitionBlock, self).__init__(**kwargs)\n", + " self.batch_norm = tf.keras.layers.BatchNormalization()\n", + " self.relu = tf.keras.layers.ReLU()\n", + " self.conv = tf.keras.layers.Conv2D(num_channels, kernel_size=1)\n", + " self.avg_pool = tf.keras.layers.AvgPool2D(pool_size=2, strides=2)\n", + "\n", + " def call(self, x):\n", + " x = self.batch_norm(x)\n", + " x = self.relu(x)\n", + " x = self.conv(x)\n", + " return self.avg_pool(x)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q-1bWM1MGg30", + "colab_type": "text" + }, + "source": [ + "## 5. Build a DenseNet Model using Keras\n", + "After setting up the python environment, you should be able to import the keras package:" + ] + }, + { + "cell_type": "code", + "metadata": { + "scrolled": true, + "id": "aC_foy-xzpgf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "outputId": "aac936c6-bd43-46cc-d44c-e51f372272d7" + }, + "source": [ + "import keras\n", + "keras.__version__" + ], + "execution_count": 1, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + }, + "text/plain": [ + "'2.4.3'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 1 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YDmXSwKhzpgn", + "colab_type": "text" + }, + "source": [ + "## 6. Preparing the Data\n", + "First one needs to load the dataset from the MNIST library:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ZCajnu4hzpgo", + "colab_type": "code", + "colab": {} + }, + "source": [ + "from keras.datasets import mnist\n", + "\n", + "# obtenemos los datos para train y test \n", + "(x_train, y_train), (x_test, y_test) = mnist.load_data()" + ], + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "tpcHPaRhzpgr", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "63858351-00c0-4f89-f215-3cf29c3ee4c8" + }, + "source": [ + "print(x_train.ndim) " + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "3\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "LzBpH03Ozpgu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "2ccdf895-443a-4cdf-8241-a6ebf04a88ca" + }, + "source": [ + "print(x_train.shape)" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(60000, 28, 28)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "1usAMTejzpgx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "9ac70ac2-b676-4312-f9e2-ae43f95566d3" + }, + "source": [ + "print(x_train.dtype)" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "text": [ + "uint8\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "8TFyTX5Izpg1", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "e70c35f7-ac6b-4fb0-91bc-447d1d43c6e8" + }, + "source": [ + "len (y_train)" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "60000" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 6 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mAZ-l-_wHmmC", + "colab_type": "text" + }, + "source": [ + "to see one of the images on the dataset just loaded you can use matplotlib as follows and plot its contents as can be seen on the image below:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "m3KDGNSKzphJ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "outputId": "43490c15-b03a-40d6-c96f-57cdebf3d022" + }, + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.imshow(x_train[8], cmap=plt.cm.binary)\n", + "print(y_train[8])" + ], + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "text": [ + "1\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAL0klEQVR4nO3dXagc9R3G8eepMSgqGJslBo3GiiCh0ChLqPgWkfp2E/VCzIWkII0XCgpeVO2FXkqpbxdViDUYizUKvkWQVhsEEUHcSKrR2GokwcS8bBSjgpiov16cUY7x7OxmZ3Zn9ff9wLK789898zA5T2Z3Zvf8HREC8PP3i6YDABgPyg4kQdmBJCg7kARlB5KYNc6VzZ07NxYuXDjOVQKpbN26VXv37vVMY5XKbvsSSfdJOkzS3yLizrLHL1y4UJ1Op8oqAZRot9s9x4Z+GW/7MEl/lXSppEWSltteNOzPAzBaVd6zL5H0fkR8EBH7Ja2VtKyeWADqVqXsJ0j6cNr97cWyH7C90nbHdqfb7VZYHYAqRn40PiJWRUQ7ItqtVmvUqwPQQ5Wy75C0YNr9E4tlACZQlbK/Luk026fYni3paknr6okFoG5Dn3qLiK9t3yDpX5o69bY6It6uLRmAWlU6zx4Rz0t6vqYsAEaIj8sCSVB2IAnKDiRB2YEkKDuQBGUHkqDsQBKUHUiCsgNJUHYgCcoOJEHZgSQoO5AEZQeSoOxAEpQdSIKyA0lQdiAJyg4kQdmBJCg7kARlB5Kg7EASlB1IgrIDSVB2IAnKDiRB2YEkKDuQRKVZXDH5Dhw4UDr+6quvlo7feuutlZ6PyVGp7La3Svpc0jeSvo6Idh2hANSvjj37BRGxt4afA2CEeM8OJFG17CHpBdsbbK+c6QG2V9ru2O50u92KqwMwrKplPycizpR0qaTrbZ938AMiYlVEtCOi3Wq1Kq4OwLAqlT0idhTXeyQ9LWlJHaEA1G/osts+yvYx392WdJGkTXUFA1CvKkfj50l62vZ3P+cfEfHPWlKhNvv27SsdX7p0aen48ccfXzq+a9euSs/H+Axd9oj4QNJvaswCYIQ49QYkQdmBJCg7kARlB5Kg7EASfMUVpfqdWuPU208He3YgCcoOJEHZgSQoO5AEZQeSoOxAEpQdSIKyA0lQdiAJyg4kQdmBJCg7kARlB5Kg7EASlB1Igu+zo5Ivv/yy6QgYEHt2IAnKDiRB2YEkKDuQBGUHkqDsQBKUHUiC8+yoZMOGDaXjZ5111piSoJ++e3bbq23vsb1p2rLjbL9o+73ies5oYwKoapCX8Q9LuuSgZbdIWh8Rp0laX9wHMMH6lj0iXpb0yUGLl0laU9xeI+nymnMBqNmwB+jmRcTO4vYuSfN6PdD2Stsd251utzvk6gBUVflofESEpCgZXxUR7Yhot1qtqqsDMKRhy77b9nxJKq731BcJwCgMW/Z1klYUt1dIeraeOABGpe95dtuPSVoqaa7t7ZJul3SnpCdsXytpm6SrRhkSw5s1q/yf+Nhjjy0d//TTT0vHt2zZcsiZ0Iy+ZY+I5T2GLqw5C4AR4uOyQBKUHUiCsgNJUHYgCcoOJMFXXH/m+p1aO/fcc0vHn3vuuTrjoEHs2YEkKDuQBGUHkqDsQBKUHUiCsgNJUHYgCcoOJEHZgSQoO5AEZQeSoOxAEpQdSIKyA0lQdiAJvs+OSj7++OOmI2BA7NmBJCg7kARlB5Kg7EASlB1IgrIDSVB2IAnOs6OSdevWNR0BA+q7Z7e92vYe25umLbvD9g7bG4vLZaONCaCqQV7GPyzpkhmW3xMRi4vL8/XGAlC3vmWPiJclfTKGLABGqMoBuhtsv1m8zJ/T60G2V9ru2O50u90KqwNQxbBlf0DSqZIWS9op6a5eD4yIVRHRjoh2q9UacnUAqhqq7BGxOyK+iYhvJT0oaUm9sQDUbaiy254/7e4Vkjb1eiyAydD3PLvtxyQtlTTX9nZJt0taanuxpJC0VdJ1I8yIEbrgggtKx5mf/eejb9kjYvkMix8aQRYAI8THZYEkKDuQBGUHkqDsQBKUHUiCr7gmd9JJJ1V6/v79+0vHt23b1nPs5JNPrrRuHBr27EASlB1IgrIDSVB2IAnKDiRB2YEkKDuQBOfZk5s1q9qvQESUjn/11VeVfj7qw54dSIKyA0lQdiAJyg4kQdmBJCg7kARlB5LgPHtyy5YtKx0//fTTS8fffffd0vF7772359j9999f+lzUiz07kARlB5Kg7EASlB1IgrIDSVB2IAnKDiTBeXaUuvjii0vHP/roo9Lxu+++u844qKDvnt32Atsv2X7H9tu2byyWH2f7RdvvFddzRh8XwLAGeRn/taSbI2KRpN9Kut72Ikm3SFofEadJWl/cBzCh+pY9InZGxBvF7c8lbZZ0gqRlktYUD1sj6fJRhQRQ3SEdoLO9UNIZkl6TNC8idhZDuyTN6/GclbY7tjvdbrdCVABVDFx220dLelLSTRHx2fSxmPqrgzP+5cGIWBUR7Yhot1qtSmEBDG+gsts+XFNFfzQinioW77Y9vxifL2nPaCICqEPfU2+2LekhSZsjYvp5lHWSVki6s7h+diQJMdGmfj16mz179piSoJ9BzrOfLekaSW/Z3lgsu01TJX/C9rWStkm6ajQRAdShb9kj4hVJvf77vrDeOABGhY/LAklQdiAJyg4kQdmBJCg7kARfcUUl+/btKx1/5plneo5deeWVdcdBCfbsQBKUHUiCsgNJUHYgCcoOJEHZgSQoO5AE59lR6vHHHy8dP+KII0rHFy1aVGccVMCeHUiCsgNJUHYgCcoOJEHZgSQoO5AEZQeS4Dw7Sp1//vml45s3by4dP/LII+uMgwrYswNJUHYgCcoOJEHZgSQoO5AEZQeSoOxAEoPMz75A0iOS5kkKSasi4j7bd0j6g6Ru8dDbIuL5UQVFM9auXdt0BNRkkA/VfC3p5oh4w/YxkjbYfrEYuyci/jK6eADqMsj87Dsl7Sxuf257s6QTRh0MQL0O6T277YWSzpD0WrHoBttv2l5te06P56y03bHd6Xa7Mz0EwBgMXHbbR0t6UtJNEfGZpAcknSppsab2/HfN9LyIWBUR7Yhot1qtGiIDGMZAZbd9uKaK/mhEPCVJEbE7Ir6JiG8lPShpyehiAqiqb9ltW9JDkjZHxN3Tls+f9rArJG2qPx6AugxyNP5sSddIesv2xmLZbZKW216sqdNxWyVdN5KEAGoxyNH4VyR5hiHOqQM/IXyCDkiCsgNJUHYgCcoOJEHZgSQoO5AEZQeSoOxAEpQdSIKyA0lQdiAJyg4kQdmBJCg7kIQjYnwrs7uStk1bNFfS3rEFODSTmm1Sc0lkG1ad2U6OiBn//ttYy/6jldudiGg3FqDEpGab1FwS2YY1rmy8jAeSoOxAEk2XfVXD6y8zqdkmNZdEtmGNJVuj79kBjE/Te3YAY0LZgSQaKbvtS2z/1/b7tm9pIkMvtrfafsv2RtudhrOstr3H9qZpy46z/aLt94rrGefYayjbHbZ3FNtuo+3LGsq2wPZLtt+x/bbtG4vljW67klxj2W5jf89u+zBJ/5P0O0nbJb0uaXlEvDPWID3Y3iqpHRGNfwDD9nmSvpD0SET8ulj2Z0mfRMSdxX+UcyLijxOS7Q5JXzQ9jXcxW9H86dOMS7pc0u/V4LYryXWVxrDdmtizL5H0fkR8EBH7Ja2VtKyBHBMvIl6W9MlBi5dJWlPcXqOpX5ax65FtIkTEzoh4o7j9uaTvphlvdNuV5BqLJsp+gqQPp93frsma7z0kvWB7g+2VTYeZwbyI2Fnc3iVpXpNhZtB3Gu9xOmia8YnZdsNMf14VB+h+7JyIOFPSpZKuL16uTqSYeg82SedOB5rGe1xmmGb8e01uu2GnP6+qibLvkLRg2v0Ti2UTISJ2FNd7JD2tyZuKevd3M+gW13sazvO9SZrGe6ZpxjUB267J6c+bKPvrkk6zfYrt2ZKulrSugRw/Yvuo4sCJbB8l6SJN3lTU6yStKG6vkPRsg1l+YFKm8e41zbga3naNT38eEWO/SLpMU0fkt0j6UxMZeuT6laT/FJe3m84m6TFNvaw7oKljG9dK+qWk9ZLek/RvScdNULa/S3pL0puaKtb8hrKdo6mX6G9K2lhcLmt625XkGst24+OyQBIcoAOSoOxAEpQdSIKyA0lQdiAJyg4kQdmBJP4PCKah1KhMT5gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o3XZyexxHum4", + "colab_type": "text" + }, + "source": [ + "to view the matrix values of the same element selected previously one can use numpy as stated bellow and the result output is on image below the code" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6uuhvKOUzphN", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 493 + }, + "outputId": "e80d4380-d00f-4086-b565-5451eeac79bb" + }, + "source": [ + "import numpy\n", + "from numpy import linalg\n", + "numpy.set_printoptions(precision=2, suppress=True, linewidth=120)\n", + "print(numpy.matrix(x_train[8]))\n", + "\n" + ], + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 5 63 197 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 230 24 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 48 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 255 48 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 57 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 20 254 254 108 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 16 239 254 143 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 143 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 143 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 162 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 178 254 240 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 113 254 240 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 83 254 245 31 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 79 254 246 38 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 254 150 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 241 8 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 240 2 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 144 254 82 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 230 247 40 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 209 31 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "p9NE_biwzphR", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "outputId": "67ad3942-328f-417e-e1e0-d8695f5b1f5f" + }, + "source": [ + "plt.imshow(x_train[9], cmap=plt.cm.binary)\n", + "print(y_train[9])" + ], + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "text": [ + "4\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANsklEQVR4nO3dX6ic9Z3H8c/HfyC2YLI5hhDDpmtyURG0ZRChof7Dol4YGyTUC40aOF4oWvViQzVULxRd0pYF/yYazK41GmnFXMhuXVMNxVgyStb8kVVXEjVGc0LAWkHc6HcvzqMc45nfnMw88yfn+37BMDPPd555vmf0k2fm+T0zP0eEAEx/xwy6AQD9QdiBJAg7kARhB5Ig7EASx/VzY7NmzYr58+f3c5NAKrt379aBAwc8Wa2rsNu+WNK/SjpW0qMRcW/p8fPnz1ez2exmkwAKGo1Gy1rHb+NtHyvpAUmXSDpd0pW2T+/0+QD0Vjef2c+W9E5EvBsRX0h6StLietoCULduwj5X0vsT7n9QLfsW26O2m7abY2NjXWwOQDd6fjQ+IlZHRCMiGiMjI73eHIAWugn7XknzJtw/tVoGYAh1E/atkhba/oHtEyT9QtLGetoCULeOh94i4pDtGyX9p8aH3tZGxM7aOgNQq67G2SPieUnP19QLgB7idFkgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkujrlM3A0eKCCy7oav1NmzbV1El92LMDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKMsyOlW265pVjfsmVLsX711VfX2U5fdBV227slfSrpS0mHIqJRR1MA6lfHnv38iDhQw/MA6CE+swNJdBv2kPQn26/ZHp3sAbZHbTdtN8fGxrrcHIBOdRv2RRHxY0mXSLrB9k8Pf0BErI6IRkQ0RkZGutwcgE51FfaI2Ftd75f0rKSz62gKQP06Drvtk2x//+vbkn4maUddjQGoVzdH42dLetb218/zZET8Ry1dATVYsWJFy9rDDz9cXPf4448v1i+88MKOehqkjsMeEe9KOrPGXgD0EENvQBKEHUiCsANJEHYgCcIOJMFXXDFtvfrqqy1rX3zxRXHdRYsWFetLly7tqKdBYs8OJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kwzj7Nbd68uVi/++67i/X169cX6zNnzjzinurSrrft27e3rC1YsKC47qpVqzrqaZixZweSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJBhnn+ZGRyedlesbb731VrG+a9euYr3d9757qd05AgcPHmxZe/TRR4vrnnnm9PvhZPbsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+zT3IknnlisV1Nut/T555/X2c4R2bZtW7H+3nvvFeulv22Qf9egtN2z215re7/tHROWzbT9gu23q+sZvW0TQLem8jb+cUkXH7ZshaQXI2KhpBer+wCGWNuwR8RmSYefd7hY0rrq9jpJl9fcF4CadXqAbnZE7KtufyRpdqsH2h613bTdHBsb63BzALrV9dH4iAhJUaivjohGRDRGRka63RyADnUa9o9tz5Gk6np/fS0B6IVOw75R0rLq9jJJz9XTDoBeaTvObnu9pPMkzbL9gaRfS7pX0gbbyyXtkXT0TVY9jaxcubJlbceOHS1rkvTDH/6wWO/l97o/++yzYv2+++7rav1zzjmnZe2KK64orjsdtQ17RFzZonRhzb0A6CFOlwWSIOxAEoQdSIKwA0kQdiAJvuJ6FHj//feL9TVr1rSsHXdc+T/xAw88UKz38qzHW2+9tVjfsGFDsT537txi/ZVXXjninqYz9uxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATj7ENg+/btxfqSJUuK9dLPfd10003Fdc8999xivVurVq1qWXv88ce7eu7bb7+9q/WzYc8OJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kwzl6DQ4cOFetPPPFEsX7dddcV6+OT7rRWmpp4y5YtxXXvueeeYv22224r1g8ePHwawG975plnWtba/V3Lli0r1q+//vpiHd/Gnh1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkmCcvQZPPfVUsb58+fJivTROPhULFy5sWdu6dWtx3Xb1jRs3Fut79+4t1j/88MOWtVNOOaW47tq1a4t1HJm2e3bba23vt71jwrI7be+1va26XNrbNgF0aypv4x+XdPEky38XEWdVl+frbQtA3dqGPSI2SyqfEwlg6HVzgO5G229Ub/NntHqQ7VHbTdvN0m+lAeitTsP+kKTTJJ0laZ+k37R6YESsjohGRDR6OUkggLKOwh4RH0fElxHxlaQ1ks6uty0Adeso7LbnTLj7c0k7Wj0WwHBoO85ue72k8yTNsv2BpF9LOs/2WZJC0m5J0/6LxU8//XTL2rXXXltc94QTTijWTz755GL9ySefLNZnzGh5yKTtHOgvv/xysd5uHL6b79ofOHCguO68efOK9ZdeeqlYP+2004r1bNqGPSKunGTxYz3oBUAPcboskARhB5Ig7EAShB1IgrADSfAV1yl65JFHWtbaDRHdcccdxXq7n5Luxv3331+sj46OFuvtfoq6G1999VWxfv755xfrDK0dGfbsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+xTtHjx4pa1JUuWFNdtNw7fS+2+Rrpz586unr/dz2ifccYZHT/3qaee2vG6+C727EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOPsU3TzzTcPuoWWPvnkk5a1DRs2dLyuJC1YsKBYX7p0abGO4cGeHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJx9GnjwwQdb1h566KHiurNnzy7WN23a1FFPGD5t9+y259n+s+1dtnfavrlaPtP2C7bfrq5bTxIOYOCm8jb+kKTbIuJ0SedIusH26ZJWSHoxIhZKerG6D2BItQ17ROyLiNer259KelPSXEmLJa2rHrZO0uW9ahJA947oAJ3t+ZJ+JOmvkmZHxL6q9JGkST/82R613bTdHBsb66JVAN2Ycthtf0/SHyT9MiL+NrEWESEpJlsvIlZHRCMiGiMjI101C6BzUwq77eM1HvTfR8Qfq8Uf255T1edI2t+bFgHUoe3Qm21LekzSmxHx2wmljZKWSbq3un6uJx1Ce/bsKdbXrFnTsnbMMeV/z9tN2czPOU8fUxln/4mkqyRtt72tWvYrjYd8g+3lkvZI4ovNwBBrG/aI+IsktyhfWG87AHqF02WBJAg7kARhB5Ig7EAShB1Igq+4HgUuuuiiYr00Dn/VVVcV173rrrs66glHH/bsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+xHgWuuuaZYX7lyZcvaZZddVnM3OFqxZweSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJDw+mUt/NBqNaDabfdsekE2j0VCz2Zz016DZswNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEm3Dbnue7T/b3mV7p+2bq+V32t5re1t1ubT37QLo1FR+vOKQpNsi4nXb35f0mu0XqtrvImJV79oDUJepzM++T9K+6vantt+UNLfXjQGo1xF9Zrc9X9KPJP21WnSj7Tdsr7U9o8U6o7abtptjY2NdNQugc1MOu+3vSfqDpF9GxN8kPSTpNElnaXzP/5vJ1ouI1RHRiIjGyMhIDS0D6MSUwm77eI0H/fcR8UdJioiPI+LLiPhK0hpJZ/euTQDdmsrReEt6TNKbEfHbCcvnTHjYzyXtqL89AHWZytH4n0i6StJ229uqZb+SdKXtsySFpN2Sru9JhwBqMZWj8X+RNNn3Y5+vvx0AvcIZdEAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgST6OmWz7TFJeyYsmiXpQN8aODLD2tuw9iXRW6fq7O0fI2LS33/ra9i/s3G7GRGNgTVQMKy9DWtfEr11ql+98TYeSIKwA0kMOuyrB7z9kmHtbVj7kuitU33pbaCf2QH0z6D37AD6hLADSQwk7LYvtv0/tt+xvWIQPbRie7ft7dU01M0B97LW9n7bOyYsm2n7BdtvV9eTzrE3oN6GYhrvwjTjA33tBj39ed8/s9s+VtJbki6S9IGkrZKujIhdfW2kBdu7JTUiYuAnYNj+qaS/S/q3iDijWvYvkg5GxL3VP5QzIuKfh6S3OyX9fdDTeFezFc2ZOM24pMslXaMBvnaFvpaqD6/bIPbsZ0t6JyLejYgvJD0lafEA+hh6EbFZ0sHDFi+WtK66vU7j/7P0XYvehkJE7IuI16vbn0r6eprxgb52hb76YhBhnyvp/Qn3P9Bwzfcekv5k+zXbo4NuZhKzI2JfdfsjSbMH2cwk2k7j3U+HTTM+NK9dJ9Ofd4sDdN+1KCJ+LOkSSTdUb1eHUox/BhumsdMpTePdL5NMM/6NQb52nU5/3q1BhH2vpHkT7p9aLRsKEbG3ut4v6VkN31TUH389g251vX/A/XxjmKbxnmyacQ3BazfI6c8HEfatkhba/oHtEyT9QtLGAfTxHbZPqg6cyPZJkn6m4ZuKeqOkZdXtZZKeG2Av3zIs03i3mmZcA37tBj79eUT0/SLpUo0fkf9fSbcPoocWff2TpP+uLjsH3Zuk9Rp/W/d/Gj+2sVzSP0h6UdLbkv5L0swh6u3fJW2X9IbGgzVnQL0t0vhb9Dckbasulw76tSv01ZfXjdNlgSQ4QAckQdiBJAg7kARhB5Ig7EAShB1IgrADSfw/tKgqRzBLlCUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "greRHIvrzphU", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "outputId": "616c88eb-cfaf-4021-a772-efd3fbb1b279" + }, + "source": [ + "plt.imshow(x_train[10], cmap=plt.cm.binary)\n", + "print(y_train[10])" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "3\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANn0lEQVR4nO3df6hc9ZnH8c9nsw2CrZI0lxDjj9utAZWF1TKElcaStawY//C3okJ1JZCKRiupoHSDVUGQsFUWWarpKs2u3WghFX8gbjUUJH9YnOg1iYmr2eTGGqO5KiEJaNzYZ/+4x3I1d87czJmZM97n/YLLzJxnzvk+jH5y5p7vzP06IgRg+vuruhsA0B+EHUiCsANJEHYgCcIOJPHX/Rxszpw5MTw83M8hgVRGR0f14YcferJapbDbPl/Sv0qaIenfI+K+sucPDw+r2WxWGRJAiUaj0bLW8dt42zMk/ZukJZLOkHS17TM6PR6A3qryO/tCSdsjYkdEfCbpcUkXdactAN1WJezzJf1pwuN3i21fYnuZ7abt5tjYWIXhAFTR86vxEbE6IhoR0RgaGur1cABaqBL23ZJOmvD4xGIbgAFUJeyvSFpg+zu2Z0q6StLT3WkLQLd1PPUWEYdtL5f03xqfens0It7oWmcAuqrSPHtEPCfpuS71AqCH+LgskARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0n0dclm9MbWrVtb1p599tnSfR9++OHS+sKFC0vrZ511Vmm9zK233lpanzlzZsfHxpE4swNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEsyzfw20mwu/7bbbWtYOHjxYaewdO3aU1h9//PGOj91oNErr5557bsfHxpEqhd32qKQDkj6XdDgiyv/rAahNN87s/xARH3bhOAB6iN/ZgSSqhj0k/d72RtvLJnuC7WW2m7abY2NjFYcD0KmqYV8UEd+TtETSTbZ/8NUnRMTqiGhERGNoaKjicAA6VSnsEbG7uN0r6UlJ5V+RAlCbjsNu+1jb3/rivqTzJG3pVmMAuqvK1fi5kp60/cVx/isinu9KV/iSK664orR+5513tqxVnWfvpcsuu6y0/sQTT5TWzzvvvG62M+11HPaI2CHp77rYC4AeYuoNSIKwA0kQdiAJwg4kQdiBJPiK69fA7NmzS+t33313y9qKFStK9/3kk09K6yeffHJp/Z133imtl9m3b19p/fnny2dymXo7OpzZgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJ5tmngRtuuKFl7aGHHird9/XXXy+tH3fccR311A3Lly+vbezpiDM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBPPs0t3LlytL6vffeW1ofGRnpZjtH5dChQ7WNPR1xZgeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJJhnn+Yuv/zy0vqiRYtK6+3+NvvmzZuPuqepavcZgXXr1vVs7Omo7Znd9qO299reMmHbbNsv2H67uJ3V2zYBVDWVt/G/lnT+V7bdIWl9RCyQtL54DGCAtQ17RLwk6eOvbL5I0pri/hpJF3e5LwBd1ukFurkRsae4/76kua2eaHuZ7abt5tjYWIfDAaiq8tX4iAhJUVJfHRGNiGgMDQ1VHQ5AhzoN+we250lScbu3ey0B6IVOw/60pOuK+9dJeqo77QDolbbz7LbXSlosaY7tdyX9XNJ9kn5re6mkXZKu7GWT6Nxjjz1WWt+0aVNpvZfz6O2cc845tY09HbUNe0Rc3aL0wy73AqCH+LgskARhB5Ig7EAShB1IgrADSfAV16+BN998s7R+ySWXtKxt3769dN/Dhw931FM/XHjhhXW3MK1wZgeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJJhn/xrYtm1baX3nzp0ta4M8j97OAw88UFp/8MEH+9TJ9MCZHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJ79a6Ds++qStGrVqpa122+/vXTfTz/9tKOe+uG9996ru4VphTM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBPPs0cMstt7SsLViwoHTfffv2VRq73fflly9f3rK2f//+SmPj6LQ9s9t+1PZe21smbLvL9m7bI8XPBb1tE0BVU3kb/2tJ50+y/YGIOLP4ea67bQHotrZhj4iXJH3ch14A9FCVC3TLbW8q3ubPavUk28tsN203x8bGKgwHoIpOw/5LSd+VdKakPZJ+0eqJEbE6IhoR0RgaGupwOABVdRT2iPggIj6PiD9L+pWkhd1tC0C3dRR22/MmPLxE0pZWzwUwGNrOs9teK2mxpDm235X0c0mLbZ8pKSSNSvpxD3tEBUuWLOnp8SOitF62Pvw999xTuu/IyEhpfdeuXaX1U045pbSeTduwR8TVk2x+pAe9AOghPi4LJEHYgSQIO5AEYQeSIOxAEnzFFZV89tlnpfV202tlZs6cWVqfMWNGx8fOiDM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBPDsqWblyZc+OvXTp0tL6iSee2LOxpyPO7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBPPsU/TRRx+1rF1//fWl+1511VWl9Wuuuaajnvphz549pfXVq1f3bOxLL720Z8fOiDM7kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBPPsU3XzzzS1rzzzzTOm+b731Vml9/vz5leqnnnpqy9rGjRtL923X26pVq0rr+/fvL62XWbFiRWn9hBNO6PjYOFLbM7vtk2z/wfZW22/Y/kmxfbbtF2y/XdzO6n27ADo1lbfxhyX9NCLOkPT3km6yfYakOyStj4gFktYXjwEMqLZhj4g9EfFqcf+ApG2S5ku6SNKa4mlrJF3cqyYBVHdUF+hsD0s6S9IfJc2NiC8+OP2+pLkt9llmu2m7OTY2VqFVAFVMOey2vylpnaRbI+JLV2UiIiTFZPtFxOqIaEREY2hoqFKzADo3pbDb/obGg/6biPhdsfkD2/OK+jxJe3vTIoBuaDv1ZtuSHpG0LSLun1B6WtJ1ku4rbp/qSYcDomzqbefOnaX7vvzyy6X1xYsXl9aHh4dL66effnrL2oYNG0r3PXDgQGm9qtNOO61lrd1yzsccc0y320ltKvPs35f0I0mbbY8U236m8ZD/1vZSSbskXdmbFgF0Q9uwR8QGSW5R/mF32wHQK3xcFkiCsANJEHYgCcIOJEHYgST4iusUnX322R3VJOnaa68trd94442l9dHR0Ur1Xpo1q/zLjtu2betTJ2iHMzuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJME8exfcf//9pfVDhw6V1g8ePFhp/Ndee61lbe3atZWOffzxx5fWX3zxxUrHR/9wZgeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJDy+mEt/NBqNaDabfRsPyKbRaKjZbE7616A5swNJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEm3Dbvsk23+wvdX2G7Z/Umy/y/Zu2yPFzwW9bxdAp6byxysOS/ppRLxq+1uSNtp+oag9EBH/0rv2AHTLVNZn3yNpT3H/gO1tkub3ujEA3XVUv7PbHpZ0lqQ/FpuW295k+1Hbk64DZHuZ7abt5tjYWKVmAXRuymG3/U1J6yTdGhH7Jf1S0nclnanxM/8vJtsvIlZHRCMiGkNDQ11oGUAnphR229/QeNB/ExG/k6SI+CAiPo+IP0v6laSFvWsTQFVTuRpvSY9I2hYR90/YPm/C0y6RtKX77QHolqlcjf++pB9J2mx7pNj2M0lX2z5TUkgalfTjnnQIoCumcjV+g6TJvh/7XPfbAdArfIIOSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQRF+XbLY9JmnXhE1zJH3YtwaOzqD2Nqh9SfTWqW72dkpETPr33/oa9iMGt5sR0aitgRKD2tug9iXRW6f61Rtv44EkCDuQRN1hX13z+GUGtbdB7Uuit071pbdaf2cH0D91n9kB9AlhB5KoJey2z7f9P7a3276jjh5asT1qe3OxDHWz5l4etb3X9pYJ22bbfsH228XtpGvs1dTbQCzjXbLMeK2vXd3Ln/f9d3bbMyS9JekfJb0r6RVJV0fE1r420oLtUUmNiKj9Axi2fyDpoKT/iIi/LbatkvRxRNxX/EM5KyJuH5De7pJ0sO5lvIvViuZNXGZc0sWS/kk1vnYlfV2pPrxudZzZF0raHhE7IuIzSY9LuqiGPgZeRLwk6eOvbL5I0pri/hqN/8/Sdy16GwgRsSciXi3uH5D0xTLjtb52JX31RR1hny/pTxMev6vBWu89JP3e9kbby+puZhJzI2JPcf99SXPrbGYSbZfx7qevLDM+MK9dJ8ufV8UFuiMtiojvSVoi6abi7epAivHfwQZp7nRKy3j3yyTLjP9Fna9dp8ufV1VH2HdLOmnC4xOLbQMhInYXt3slPanBW4r6gy9W0C1u99bcz18M0jLeky0zrgF47epc/ryOsL8iaYHt79ieKekqSU/X0McRbB9bXDiR7WMlnafBW4r6aUnXFfevk/RUjb18yaAs491qmXHV/NrVvvx5RPT9R9IFGr8i/7+S/rmOHlr09TeSXi9+3qi7N0lrNf627v80fm1jqaRvS1ov6W1JL0qaPUC9/aekzZI2aTxY82rqbZHG36JvkjRS/FxQ92tX0ldfXjc+LgskwQU6IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUji/wFmMiW1uRejmAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "w_45d9WkzphZ", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 282 + }, + "outputId": "3d09147e-9bed-42ae-a954-136d54a1405c" + }, + "source": [ + "plt.imshow(x_test[11], cmap=plt.cm.binary)\n", + "print(y_test[11])" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "text": [ + "6\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAObElEQVR4nO3df6xU9ZnH8c+jlj+0mKDcEARXuhX8ERMpTAgB02hwiT8SQI2mxBDWYC7xR9IKf6zpSmqUGGO2NGo26OVHym66YpNWJWK0FpuYKhJGYBU1VWrAghcYogaJiV3ss3/cg7nCne+5zDkzZ+B5v5LJzJxnzpyHgQ9n5nznzNfcXQBOf2dU3QCAziDsQBCEHQiCsANBEHYgiLM6ubHRo0f7hAkTOrlJIJTdu3fr0KFDNlStUNjN7DpJj0s6U9Jqd3809fgJEyaoXq8X2SSAhFqt1rTW8tt4MztT0n9Kul7S5ZLmm9nlrT4fgPYq8pl9mqRd7v6xu/9d0npJc8tpC0DZioR9nKS/Dbq/N1v2HWbWa2Z1M6s3Go0CmwNQRNuPxrt7n7vX3L3W09PT7s0BaKJI2PdJunDQ/fHZMgBdqEjYt0qaaGY/MLMRkn4iaUM5bQEoW8tDb+5+1MzulfSKBobe1rr7e6V1BqBUhcbZ3f0lSS+V1AuANuLrskAQhB0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBNHRn5JGa77++utkfcaMGU1r27dvT647Z86cZP35559P1nHqYM8OBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0Ewzt4F8sbR77vvvmR9x44dTWtmQ87e+62pU6cm6zh9sGcHgiDsQBCEHQiCsANBEHYgCMIOBEHYgSAYZ+8CTzzxRLL+9NNPJ+uzZs1qWnvooYeS606fPj1Zx+mjUNjNbLekLyV9I+mou9fKaApA+crYs1/j7odKeB4AbcRndiCIomF3SX8ws7fNrHeoB5hZr5nVzazeaDQKbg5Aq4qG/Sp3nyLpekn3mNmPj3+Au/e5e83daz09PQU3B6BVhcLu7vuy64OSnpM0rYymAJSv5bCb2TlmNvLYbUmzJe0sqzEA5SpyNH6MpOey86XPkvQ/7v5yKV0F09/fX2j9a6+9tmmNcXQc03LY3f1jSVeW2AuANmLoDQiCsANBEHYgCMIOBEHYgSA4xbULHDlyJFkfMWJEsp4aegOOYc8OBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0Ewzt4Bn376abK+evXqZH3GjBnJ+pQpU066J8TDnh0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgmCcvQOWL19edQunpM2bNyfre/fubfm5r7wy/cPIkyZNavm5uxV7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgnH2Dti4cWOh9e+8886SOum8u+66q2kt73X5/PPPk/WvvvqqpZ4k6dxzz03WlyxZkqwvW7as5W1XJXfPbmZrzeygme0ctOw8M3vVzD7Krke1t00ARQ3nbfyvJV133LL7JW1y94mSNmX3AXSx3LC7++uSPjtu8VxJ67Lb6yTNK7kvACVr9QDdGHfvz27vlzSm2QPNrNfM6mZWbzQaLW4OQFGFj8a7u0vyRL3P3WvuXuvp6Sm6OQAtajXsB8xsrCRl1wfLawlAO7Qa9g2SFma3F0p6oZx2ALSLDbwLTzzA7BlJV0saLemApF9Iel7SbyX9k6Q9km5z9+MP4p2gVqt5vV4v2HL3yRvvvfjii5P1s85Kf93hk08+Oemehuvo0aPJ+rZt25L1efPSx2b379/ftJb3by/vY9/MmTOT9VTvea/puHHjkvU33ngjWb/ooouS9Xap1Wqq1+s2VC33SzXuPr9JaVahrgB0FF+XBYIg7EAQhB0IgrADQRB2IAhOcS1B3pTLBw4cSNYXL15cZjvfkTdddF9fX7L+8MMPF9p+aghrwYIFyXXvvvvuZH38+PEt9SRJc+bMSdbzTr/t7+9P1qsaekthzw4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQTDOXoLt27cXWn/ixIkldXKivOmin3rqqWTdbMizJb81a1b65McVK1Y0rV1xxRXJddsp77Tj0xF7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgnH2EuSdM95uH374YdPa+vXrCz13b29vsv74448n6yNGjCi0/apMnTo1WZ8yZUqHOikPe3YgCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIJx9hIcPnw4Wc+bmjivnufJJ59sWvviiy+S695+++3J+sqVK1vqqdsdOXIkWc+bRvtU/P5A7p7dzNaa2UEz2zlo2YNmts/MdmSXG9rbJoCihvM2/teSrhti+a/cfXJ2eanctgCULTfs7v66pM860AuANipygO5eM3sne5s/qtmDzKzXzOpmVm80GgU2B6CIVsO+UtIPJU2W1C/pl80e6O597l5z91pPT0+LmwNQVEthd/cD7v6Nu/9D0ipJ08ptC0DZWgq7mY0ddPcmSTubPRZAd8gdZzezZyRdLWm0me2V9AtJV5vZZEkuabek9k0wfgrI+231ovU8qfPp85676nPx2yn1Z1u9enVy3VtuuaXsdiqXG3Z3nz/E4jVt6AVAG/F1WSAIwg4EQdiBIAg7EARhB4LgFNfTQF9fX9Pam2++mVw3r/7II48k64sXp0ddzz///GS9nW6++eamtbPPPju57tKlS8tup3Ls2YEgCDsQBGEHgiDsQBCEHQiCsANBEHYgCMbZhyl1umR/f38HOzlRaix727ZtyXXnzJmTrC9btixZf+WVV5L1F198sWlt5MiRLa8rScuXL0/Wt2/f3rT2wAMPJNedPn16sn4qYs8OBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0Ewzj5MF1xwQdPapEmTkuvu2bMnWX/ttdeS9bxzxlPnZo8dO7ZpTZK2bt2arOeNdV922WXJemrK6LxzxvN+7jnvnPTUWHre9wdOR+zZgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIxtlLsGZNelLbG2+8MVnfuHFjsj579uxkfcmSJU1reePsebZs2ZKs5/2ufGp9d0+ue8kllxTa9k033ZSsR5O7ZzezC83sT2b2vpm9Z2Y/zZafZ2avmtlH2fWo9rcLoFXDeRt/VNJSd79c0nRJ95jZ5ZLul7TJ3SdK2pTdB9ClcsPu7v3uvi27/aWkDySNkzRX0rrsYeskzWtXkwCKO6kDdGY2QdKPJG2RNMbdj/342n5JY5qs02tmdTOrNxqNAq0CKGLYYTez70v6naSfufvhwTUfONIy5NEWd+9z95q713p6ego1C6B1wwq7mX1PA0H/jbv/Plt8wMzGZvWxkg62p0UAZcgdejMzk7RG0gfuvmJQaYOkhZIeza5faEuHp4Dx48cn6y+//HKyfs011yTrmzdvTtZvvfXWZD0lb/hr4K+/Pe64445k/bHHHkvWq5wO+lQ0nHH2mZIWSHrXzHZky36ugZD/1swWSdoj6bb2tAigDLlhd/c/S2r23/usctsB0C58XRYIgrADQRB2IAjCDgRB2IEgOMW1A/JOM33rrbeS9WeffTZZ37VrV9PaqlWrkusuWrQoWT/jjGL7g9TzX3rppYWeGyeHPTsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBGF55zOXqVareb1e79j2gGhqtZrq9fqQZ6myZweCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEgcsNuZhea2Z/M7H0ze8/Mfpotf9DM9pnZjuxyQ/vbBdCq4UwScVTSUnffZmYjJb1tZq9mtV+5+3+0rz0AZRnO/Oz9kvqz21+a2QeSxrW7MQDlOqnP7GY2QdKPJG3JFt1rZu+Y2VozG9VknV4zq5tZvdFoFGoWQOuGHXYz+76k30n6mbsflrRS0g8lTdbAnv+XQ63n7n3uXnP3Wk9PTwktA2jFsMJuZt/TQNB/4+6/lyR3P+Du37j7PyStkjStfW0CKGo4R+NN0hpJH7j7ikHLB09NepOkneW3B6AswzkaP1PSAknvmtmObNnPJc03s8mSXNJuSYvb0iGAUgznaPyfJQ31O9Qvld8OgHbhG3RAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEgzN07tzGzhqQ9gxaNlnSoYw2cnG7trVv7kuitVWX2dpG7D/n7bx0N+wkbN6u7e62yBhK6tbdu7Uuit1Z1qjfexgNBEHYgiKrD3lfx9lO6tbdu7Uuit1Z1pLdKP7MD6Jyq9+wAOoSwA0FUEnYzu87M/mJmu8zs/ip6aMbMdpvZu9k01PWKe1lrZgfNbOegZeeZ2atm9lF2PeQcexX11hXTeCemGa/0tat6+vOOf2Y3szMlfSjpXyTtlbRV0nx3f7+jjTRhZrsl1dy98i9gmNmPJR2R9F/ufkW27DFJn7n7o9l/lKPc/d+6pLcHJR2pehrvbLaisYOnGZc0T9K/qsLXLtHXberA61bFnn2apF3u/rG7/13SeklzK+ij67n765I+O27xXEnrstvrNPCPpeOa9NYV3L3f3bdlt7+UdGya8Upfu0RfHVFF2MdJ+tug+3vVXfO9u6Q/mNnbZtZbdTNDGOPu/dnt/ZLGVNnMEHKn8e6k46YZ75rXrpXpz4viAN2JrnL3KZKul3RP9na1K/nAZ7BuGjsd1jTenTLENOPfqvK1a3X686KqCPs+SRcOuj8+W9YV3H1fdn1Q0nPqvqmoDxybQTe7PlhxP9/qpmm8h5pmXF3w2lU5/XkVYd8qaaKZ/cDMRkj6iaQNFfRxAjM7JztwIjM7R9Jsdd9U1BskLcxuL5T0QoW9fEe3TOPdbJpxVfzaVT79ubt3/CLpBg0ckf+rpH+voocmff2zpP/NLu9V3ZukZzTwtu7/NHBsY5Gk8yVtkvSRpD9KOq+LevtvSe9KekcDwRpbUW9XaeAt+juSdmSXG6p+7RJ9deR14+uyQBAcoAOCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIP4fvWhjxHFTX+IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IppVG7Q-H1yX", + "colab_type": "text" + }, + "source": [ + "We also need to normalize the image pixel values ​​on the dataset from [0,255] to [0,1] to make our network easier to train (smaller centering values ​​usually lead to better results). Since Keras requires three-dimensional dimensions, we also adjust the shape of each image from (28, 28) to (28, 28, 1)." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Kap8tttJzphc", + "colab_type": "code", + "colab": {} + }, + "source": [ + "x_train = x_train.astype('float32')\n", + "x_test = x_test.astype('float32')\n", + "\n", + "x_train /= 255\n", + "x_test /= 255\n" + ], + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "0l1XPht3zphf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "outputId": "63c45411-05ed-4a69-c8c8-b3b58578e31c" + }, + "source": [ + "print(numpy.matrix(x_train[8]))" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.02 0.25 0.77 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 1. 0.9 0.09 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 1. 1. 0.19 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 1. 1. 0.19 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 1. 1. 0.22 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 1. 1. 0.42 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.06 0.94 1. 0.56 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.7 1. 0.56 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.7 1. 0.56 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.7 1. 0.64 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.7 1. 0.94 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.44 1. 0.94 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.33 1. 0.96 0.12 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.31 1. 0.96 0.15 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.84 1. 0.59 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.56 0.95 0.03 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.56 0.94 0.01 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.56 1. 0.32 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.9 0.97 0.16 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.66 0.82 0.12 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", + " 0. 0. 0. 0. 0. ]]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gX3BeSSvzphj", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "83c3d736-ac6e-4126-bbb3-570142ae340a" + }, + "source": [ + "\n", + "x_train = x_train.reshape(60000, 784)\n", + "x_test = x_test.reshape(10000, 784)\n", + "\n", + "\n", + "print(x_train.shape)\n", + "print(x_test.shape)" + ], + "execution_count": 14, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(60000, 784)\n", + "(10000, 784)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "YwE3ri33zphq", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "818f0400-7c37-40a4-c4ce-e203e5934722" + }, + "source": [ + "print(y_test[0])" + ], + "execution_count": 15, + "outputs": [ + { + "output_type": "stream", + "text": [ + "7\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "kahjmM-gzphu", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "c622dd80-a01c-459e-bc4b-83de382fb937" + }, + "source": [ + "print(y_train[0])" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "text": [ + "5\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "P9RbfbHFzphx", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "b928905b-469f-4170-85b3-516d8c771468" + }, + "source": [ + "print(y_train.shape)" + ], + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(60000,)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "iO3Fr5T8zphz", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "d543b0b4-3959-493e-f2f3-eb80d787b4ec" + }, + "source": [ + "print(x_test.shape)" + ], + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(10000, 784)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kOrbiuypH9Av", + "colab_type": "text" + }, + "source": [ + "encoding labels to categorical data, i.e., simply converting each value in a column to a number as follows :" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mYBIFLxfzph2", + "colab_type": "code", + "colab": {} + }, + "source": [ + "from keras.utils import to_categorical\n", + "\n", + "y_train = to_categorical(y_train, num_classes=10)\n", + "y_test = to_categorical(y_test, num_classes=10)" + ], + "execution_count": 19, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "KEGK2v2Tzph8", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "9ba4f5dd-7f8d-4e57-b20c-ed7f06d773a3" + }, + "source": [ + "print(y_test[0])" + ], + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "IUUZ52EZIBaO", + "colab_type": "code", + "colab": {} + }, + "source": [ + "" + ], + "execution_count": 20, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "wgygSQK-zpiA", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "23bb5837-7c21-4175-e5e9-9dc494d27ed6" + }, + "source": [ + "print(y_train[0])" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9uzPR4sPzpiF", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "7e43edf9-bb50-42ae-87c4-d1aba205bd02" + }, + "source": [ + "print(y_train.shape)" + ], + "execution_count": 22, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(60000, 10)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "2zh8nKwZzpiI", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "f8a832b9-effd-48fe-e97a-48e746cfd386" + }, + "source": [ + "print(y_test.shape)" + ], + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "text": [ + "(10000, 10)\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zsh193_tIC3w", + "colab_type": "text" + }, + "source": [ + "## 7. Building the Model\n", + "Each Keras model is either built using Sequential classes that represent a linear layer stack, or built using customizable functional Model classes. We will use a simpler sequential model because our CNN will be a linear layer stack.\n", + "We start by instantiating a Sequential model:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uZcNXEmrzpiL", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 221 + }, + "outputId": "f827ae39-4c3d-41f6-97f0-7796a120090b" + }, + "source": [ + "from keras.models import Sequential\n", + "from keras.layers import Dense\n", + "from keras.optimizers import SGD\n", + "\n", + "model = Sequential()\n", + "model.add(Dense(10, activation='sigmoid', input_shape=(784,)))\n", + "model.add(Dense(10, activation='softmax'))\n", + "\n", + "model.summary()" + ], + "execution_count": 24, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense (Dense) (None, 10) 7850 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 10) 110 \n", + "=================================================================\n", + "Total params: 7,960\n", + "Trainable params: 7,960\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wjecSCMqzpiO", + "colab_type": "text" + }, + "source": [ + "\n", + "## 8. Compiling and fitting the Model\n", + "Before starting the training, we need to configure the training process. We have identified 3 key factors in the compilation step:\n", + "* The optimizer. We will keep a very good default value: an optimizer based on Adam gradient. Keras also provides many other optimizers.\n", + "* The loss function. Since we are using the Softmax output layer, we will use cross entropy loss. Keras distinguishes binary_crossentropy (2 classes) and categorical_crossentropy (> 2 classes), so we will use the latter. See all Keras losses.\n", + "* A list of metrics. Since this is a classification problem, we only need Keras to report accuracy metrics.\n", + "\n", + "Next, you need to specify some parameters, and then start the model fitting. There are many possible parameters, but we will only provide these parameters:\n", + "* The training data (images and labels), commonly known as X and Y, respectively.\n", + "* The number of epochs (iterations over the entire dataset) to train for.\n", + "* The batch size (number of samples processed before the model is updated)\n", + "\n", + "Calling model.fit()performs the analysis of the given input, then calculates the indicator function specified in model.compile() based on train_images and train_labels, and returns the calculated indicator value as output.\n", + "\n", + "We must pay attention to one thing: Keras expects the training target to be a 10-dimensional vector, because there are 10 nodes in our hidden layers.\n", + "\n", + "The compilation looks like this:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-FTm728IzpiO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + }, + "outputId": "2e5a2eee-5552-48dc-f9c1-4d0265de5f87" + }, + "source": [ + "batch_size = 50\n", + "num_classes = 10\n", + "epochs=10\n", + "\n", + "model.compile(loss='categorical_crossentropy',\n", + " optimizer='sgd',\n", + " metrics=['accuracy'])\n", + "\n", + "model.fit(x_train, y_train,\n", + " batch_size=batch_size,\n", + " epochs=epochs,\n", + " verbose=1\n", + " )\n" + ], + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 2.0782 - accuracy: 0.4062\n", + "Epoch 2/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 1.6672 - accuracy: 0.6637\n", + "Epoch 3/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 1.3254 - accuracy: 0.7399\n", + "Epoch 4/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 1.0804 - accuracy: 0.7790\n", + "Epoch 5/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.9147 - accuracy: 0.8075\n", + "Epoch 6/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.7993 - accuracy: 0.8297\n", + "Epoch 7/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.7159 - accuracy: 0.8437\n", + "Epoch 8/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.6536 - accuracy: 0.8546\n", + "Epoch 9/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.6057 - accuracy: 0.8614\n", + "Epoch 10/10\n", + "1200/1200 [==============================] - 1s 1ms/step - loss: 0.5679 - accuracy: 0.8667\n" + ], + "name": "stdout" + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 25 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5c85q-NWIqA1", + "colab_type": "text" + }, + "source": [ + "## 9. Evaluating the Model\n", + "Evaluating a model from Keras actually only involves calling the fucntionevaluate(). The model.evaluate function\n", + "* The validation data (or test data), which is used during training to periodically measure the performance of the network based on data that has never been seen before\n", + "\n", + "The evaluation results are retrieved form the variables assigned to the function evaluate()." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "LJ9BiDuuIqpv", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + }, + "outputId": "6de4df1d-1939-4458-b46f-f7b54d00af30" + }, + "source": [ + "test_loss, test_acc = model.evaluate(x_test, y_test)\n", + "\n", + "print('Test loss:', test_loss)\n", + "print('Test accuracy:', test_acc)" + ], + "execution_count": 26, + "outputs": [ + { + "output_type": "stream", + "text": [ + "313/313 [==============================] - 0s 858us/step - loss: 0.5391 - accuracy: 0.8737\n", + "Test loss: 0.5390798449516296\n", + "Test accuracy: 0.8737000226974487\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HKG39fBJzpiW", + "colab_type": "text" + }, + "source": [ + "## 10. Predicting the Model\n", + "\n", + "Predicting a model from Keras actually only involves calling the functionmodel.predict().\n", + "* The validation data (or test data), which is used during training to periodically measure the performance of the network based on data that has never been seen before\n", + "\n", + "The prediction results are retrieved from the dataset assigned to the function predict()." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "VCY68_NlzpiX", + "colab_type": "code", + "colab": {} + }, + "source": [ + "predictions = model.predict(x_test)" + ], + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "coFGRCXbJL4w", + "colab_type": "text" + }, + "source": [ + "Remember the result data is encoded to categorial data and this means each element position on the vector represents the integer value at test. For instance, to view the predictions results for the 10th element in the dataset :" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HvYHs-Xizpia", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "5d42d4f7-6e72-46dd-ce57-317a764647ec" + }, + "source": [ + "print(predictions[10])" + ], + "execution_count": 28, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[0.78 0. 0.04 0.04 0. 0.07 0. 0.01 0.05 0. ]\n" + ], + "name": "stdout" + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r2XcgiqsJa4Q", + "colab_type": "text" + }, + "source": [ + "The predicted element with the higher probability, in the categorical dataset, corresponds to the predicted number, for the same 11th element, can be calculated as follows :" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "EYJW-JMvzpig", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "ac9af29a-cb6c-4ac1-8f0a-ac01d44c292d" + }, + "source": [ + "numpy.sum(predictions[10])" + ], + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1.0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 29 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hxPhBDVyJgyp", + "colab_type": "text" + }, + "source": [ + "To view the predicted value (number) one can call the argmax value or “maximum arguments”, the index of the maximum value of each element in the list:" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dVojR9O-zpil", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "811869e2-d12d-45c9-cd79-3a72f513d35b" + }, + "source": [ + "numpy.argmax(predictions[10])" + ], + "execution_count": 30, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 30 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_VV89hUpJjQx", + "colab_type": "text" + }, + "source": [ + "## 11. View the Confusion Matrix\n", + "The code below is taken directly from the SKLEARN website, which is a good way to view the confusion matrix. The function presented below prints and plots the confusion matrix. Normalization can be applied by setting “normalize = True”." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "nXgPTfVMzpip", + "colab_type": "code", + "colab": {} + }, + "source": [ + "# Look at confusion matrix \n", + "#Note, this code is taken straight from the SKLEARN website, an nice way of viewing confusion matrix.\n", + "def plot_confusion_matrix(cm, classes,\n", + " normalize=False,\n", + " title='Confusion matrix',\n", + " cmap=plt.cm.Blues):\n", + " \"\"\"\n", + " This function prints and plots the confusion matrix.\n", + " Normalization can be applied by setting `normalize=True`.\n", + " \"\"\"\n", + " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n", + " plt.title(title)\n", + " plt.colorbar()\n", + " tick_marks = numpy.arange(len(classes))\n", + " plt.xticks(tick_marks, classes, rotation=45)\n", + " plt.yticks(tick_marks, classes)\n", + "\n", + " if normalize:\n", + " cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n", + "\n", + " thresh = cm.max() / 2.\n", + " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", + " plt.text(j, i, cm[i, j],\n", + " horizontalalignment=\"center\",\n", + " color=\"white\" if cm[i, j] > thresh else \"black\")\n", + "\n", + " plt.tight_layout()\n", + " plt.ylabel('Actual class')\n", + " plt.xlabel('Predicted class')\n", + "\n" + ], + "execution_count": 31, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KEPxuxfcJu7X", + "colab_type": "text" + }, + "source": [ + "Next, is needed to “one hot encode” the categorical data so i can be easily understandable. One hot encoding is a way of represent categorical variables as binary vectors. This requires mapping the classification values to integer values. Then, each integer value is represented as a binary vector, which has all zero values ​​except for the integer index (the index marked with 1)." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ICQFgxEyzpis", + "colab_type": "code", + "colab": {} + }, + "source": [ + "from collections import Counter\n", + "from sklearn.metrics import confusion_matrix\n", + "import itertools\n", + "\n", + "# Predict the values from the validation dataset\n", + "Y_pred = model.predict(x_test)\n", + "# Convert predictions classes to one hot vectors \n", + "Y_pred_classes = numpy.argmax(Y_pred, axis = 1) \n", + "# Convert validation observations to one hot vectors\n", + "Y_true = numpy.argmax(y_test, axis = 1) \n" + ], + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cp0Rr_QeJ3SV", + "colab_type": "text" + }, + "source": [ + "and finally compute and plot the confusion matrix in a nice and readable graph chart type as follows :" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Rqo3f7F-J4Nf", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 311 + }, + "outputId": "22b3b775-d512-4b88-8602-5838df0e6e1d" + }, + "source": [ + "# compute the confusion matrix\n", + "confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) \n", + "# plot the confusion matrix\n", + "plot_confusion_matrix(confusion_mtx, classes = range(10))" + ], + "execution_count": 33, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAEmCAYAAADbUaM7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydZXgV1xaG352EBCdYgCS4RIF4gkuA4O5StEjltqWl3BpaoV5oaSm37hRa3N0tQFqseCgJLkECNLbvjzkJIU3IkRlyEvbLMw8ZW7Nmnznr7NmyPiGlRKFQKBTW4ZDXDigUCkV+RgVRhUKhsAEVRBUKhcIGVBBVKBQKG1BBVKFQKGxABVGFQqGwARVEHyGEEEWEEIuFENeFEHNtsDNACLFKT9/yCiFEEyHEkbz2Q5F/EWqcqP0hhOgPjAW8gZtADPCGlHKLjXYHAU8DDaWUKTY7aucIISRQW0p5PK99URRcVE3UzhBCjAU+At4EKgBVgE+BLjqYrwocfRQCqDkIIZzy2gdFAUBKqRY7WYBSwC2g1wOOcUELsmdNy0eAi2lfcyAOeB64CJwDhpr2TQaSgGTTNYYDk4AfMtmuBkjAybQ+BDiJVhs+BQzItH1LpvMaAruB66b/G2batwGYCmw12VkFlMvh3tL9fzGT/12B9sBR4Crwcqbjw4DtQILp2E8AZ9O+TaZ7STTdb59M9scD54Hv07eZzqlpukaQad0duAQ0z+tnQy32u6iaqH3RACgMzH/AMa8AEUAAUB8tkLyaaX9FtGDsgRYoZwohSkspJ6LVbudIKYtLKb98kCNCiGLADKCdlLIEWqCMyea4MsBS07FlgQ+ApUKIspkO6w8MBdwAZ+CFB1y6IloZeAATgP8BA4FgoAnwmhCiuunYVOA5oBxa2UUCTwBIKZuajqlvut85meyXQauVj8x8YSnlCbQA+4MQoijwNfCtlHLDA/xVPOKoIGpflAUuywe/bg8ApkgpL0opL6HVMAdl2p9s2p8spVyGVgvzstKfNMBfCFFESnlOSnkwm2M6AMeklN9LKVOklD8DfwGdMh3ztZTyqJTyDvAr2g9ATiSjtf8mA7+gBcjpUsqbpusfQvvxQEq5R0q5w3TdWOBzoJkZ9zRRSvmPyZ/7kFL+DzgO7AQqof1oKRQ5ooKofXEFKJdLW507cDrT+mnTtgwbWYLwbaC4pY5IKRPRXoFHA+eEEEuFEN5m+JPuk0em9fMW+HNFSplq+js9yF3ItP9O+vlCiDpCiCVCiPNCiBtoNe1yD7ANcElKeTeXY/4H+AMfSyn/yeVYxSOOCqL2xXbgH7R2wJw4i/Yqmk4V0zZrSASKZlqvmHmnlHKllLI1Wo3sL7Tgkps/6T7FW+mTJXyG5ldtKWVJ4GVA5HLOA4ejCCGKo7UzfwlMMjVXKBQ5ooKoHSGlvI7WDjhTCNFVCFFUCFFICNFOCPGO6bCfgVeFEOWFEOVMx/9g5SVjgKZCiCpCiFLAS+k7hBAVhBBdTG2j/6A1C6RlY2MZUEcI0V8I4SSE6AP4Akus9MkSSgA3gFumWvKYLPsvADUstDkdiJZSjkBr651ls5eKAo0KonaGlPJ9tDGir6L1DJ8BngIWmA55HYgG/gT2A3tN26y51mpgjsnWHu4PfA4mP86i9Vg3499BCinlFaAj2oiAK2g96x2llJet8clCXkDrtLqJVkuek2X/JOBbIUSCEKJ3bsaEEF2Atty7z7FAkBBigG4eKwocarC9QqFQ2ICqiSoUCoUNqCCqUCgUNqCCqEKhUNiACqIKhUJhA3aVgEG4lJCiaNncD7SCwBq5jcFW6E1+7bLMbaDpo8jp07FcvnxZ16JxLFlVypR/TRrLEXnn0kopZVs9fdAD+wqiRctSOHKCIba3/jLMELuKnElLy59h1MFBhdGsNAoP0d2mTLmDi1euI88yuBsz0y5rQnYVRBUKxaOEAJH/WxRVEFUoFHmDAET+r/WrIKpQKPKOAlATtds7eKK9L7s/6Eb0h914soPvffv+08mf2/OGUbaECwCuxZz5ZVwkO9/vyqa3OuFb2dXq665auYJ6fl74edfi3Xem2XQPmTlz5gxRrVoQWM+XoPp+fDJjer6wDTBqxDCquLsRHOCvi73RI4dR1bMCIYF1M7b9/ttcQgL8KV7Ykb17onW1/fJ/xxFY14ew4Pr07dWdhIQEm/yH/FfmmTHqGbccAQ6O5i92il0GUd/Krgxt5UXT/y4i/PkFtAuuQo2KJQDwKFuMyPru/H3pVsbx47rX58/YK4Q/v4ARH2/i3WERVl03NTWVZ//zJAsXL2ffn4eY+8vPHD50SJd7cnJyYto777Pvz0Ns3LKDz2fNzBe2AQYNHsLCJSt0szdw0BAWLF5+3zZfX39+mvMbjZs0zeEs6223jGzN7n372bXnD2rVrs1777xl0zUg/5V5OkY+41YhhPmLnWKXQdTL05XoY5e4k5RKappky6FzdAmvBsA7Q8J49ftoMs/59/F0ZcOBcwAcPXudquWL41aqsMXX3b1rFzVr1qJ6jRo4OzvTq09flixeqMs9VapUicCgIABKlCiBt7cPZ8/qky3OSNsAjZs0pUwZ/TLCNW7SlDKl77fn7eNDHS9rc0c/2Har1m1wctJarsLCI4iPt71s8luZp2PkM24xAu113tzFTrFLzw79fY2GPhUoU9yFIs6ORAVWxrNsMTqGVuHs1dvsP331vuP3n75Kl3AtpWVIrXJUKV8cj7LFLL7u2bPxeHpWzlj38PDU5QuXldOxscTE7CM0LDxf2S4IfPfN17SJ0neoYX4q84f1jJuHBbVQO66JGtqxJIRoi5af0RH4QkppVgPMkfjrfLDgTxa/FkXiPyn8GXsFl0KOjOten05T//2K8978P3lvaDg73u3Cgb+v8cepK6Ta6RjFW7du0a93D959/yNKliyZb2wXBN6Z9gZOTk707adfZjtV5jZixzVMczEsiAohHIGZQGs0hcXdQohFUkqzGmC+XXeMb9cdA2By/2AuJNyhY1gVdr6nJX33KFuMbe90oelLi7mQcIdRn96TZD/8aS9OXbhpsc/u7h7ExZ3JWI+Pj8PDw+MBZ1hGcnIy/Xr3oE+/AXTt1l03u0bbLgh8/903LF+2lKUr1iB0qtXkxzI3+hm3GDuuYZqLkT8DYcBxKeVJKWUSmuiY2drp5UtqbZqe5YrRObwqP244TrXhP+PzxFx8nphL/JVEGr64kAsJdyhV1JlCTtqtDG1Vhy2HL3DzTrLFDoeEhnL8+DFiT50iKSmJuXN+oUPHzhbbyQ4pJaMfH46Xtw/PPDdWF5sPw3ZBYNXKFXz0/rv8+ttCihYtmvsJZpBfy9zIZ9xyhGoTzQUPtKzs6cRxv3gZAEKIkUKIaCFENP/c63H/aVxL9nzYjXn/bc1zX2zn+u2kHC/k5VmK6A+6ETO9B20CPRn31Q6rHHZycuLD6Z/QqUMUAXV96NGrN75+flbZysq2rVv56cfv2bh+HeHBAYQHB7Bi+TK7tw3w2MB+NG/SgKNHjlCzmifffPVAteVcGTyoPy2aNeTY0SPUrlGZb7/+kkUL51O7RmV27thO964d6dzBunbL7Gw//+zT3Lx1k07t2xARGsh/nhxtk/+Q/8o8HSOfcYtJH2yfz9tEDctsL4ToCbQ1adUghBgEhEspn8rpHIfS1aRRc+evqrnzDx01d77g0Cg8hD17onUtGIcS7tIlcKTZx9/dPHmPlFL/Sfw2YmTHUjxQOdO6Jw9HAVKhUOQLBDja7yB6czHydX43UFsIUV0I4Qz0BRYZeD2FQpGfKCDjRA2riUopU4QQTwEr0YY4fSWlPGjU9RQKRT7Ejts6zcXQcaJSymVouuQKhUKRhYKRCi//34FCoci/6Ng7L4T4SghxUQhxINO2MkKI1UKIY6b/S5u2CyHEDCHEcSHEn0KIoEznDDYdf0wIMTi366ogqlAo8g5920S/AbKOjfsvsFZKWRtYa1oHaAfUNi0jgc9AC7rARCAcbaz7xPTAmxMqiCoUirzBklqoGTVRKeUm4GqWzV2Ab01/fwt0zbT9O6mxA3AVQlQCooDVUsqrUsprwGr+HZjvQyVlVigUeYdlbaLlhBCZk83OllLOzuWcClLKc6a/zwMVTH/nNBnIrElCmVFBVKFQ5B2W9c5ftmWwvZRSCiF0nwFiV0E0sEY5w1Q5S4fmOFHKZq7t/sQw2wBGzSoDdEvGkR1q5k/2pKSmGWbbyTE/tdA9lN75C0KISlLKc6bX9Yum7TlNBooHmmfZvuFBF8hPJa5QKAoSgochD7IISO9hHwwszLT9MVMvfQRw3fTavxJoI4QobepQamPaliN2VRNVKBSPEvrWRIUQP6PVIssJIeLQetmnAb8KIYYDp4F0oftlQHvgOHAbGAogpbwqhJiKNuMSYIqUMmtn1X2oIKpQKPIOHZuTpJT9ctgVmc2xEngyBztfAV+Ze10VRBUKRd6hZizlDdZIvs6aOIDTa98ieu7LGdtKlyzKks+eYv/CCSz57ClcSxQBwLVEEea8/zi75rzE5u9fwLdmpYxznh7Qgj3zXiF67st8+9YQXJzN/x0yUqrWu3Z1QgPrER4SSKOIUF1tGynfC8ZL+KamphIREkj3Lh11s3n37l0aNwgjLKg+QfX9mDp5ok324s6coX2bSEIC/AkNrMunn8y4b/+Mjz6gRGFHLl++bNN1wJ4kkykQ+UTzXRC1VvL1+8U76PLkzPu2vTC0NRt2HaFulyls2HWEF4a2AeDF4VH8cSSOsD5vMfy173lvXE8A3MuX4ol+zWg04B1Cer2Jo4MDvaKCDfXbEpavXsfO6H1s3bE794MtwCj5Xng45fLJjOl4+fjoatPFxYUVq9exa+8f7IyOYdXKFezcYV0ycNCSJb/59rtExxxg3aZtzJ71KX8d1soh7swZ1q1ZReXKVWz2264kk4XKbJ8nWCv5unXvCa5ev33fto7N6/HD4p0A/LB4J51a1APAu0ZFNu4+CsDR2AtUdS+DWxlN997J0ZEiLoVwdHSgSGFnzl26bqjf9oBR8r1gfLnExcWxYvlShg4boZtN0IaGFS9eHNC0llKSk20aLlaxUiUCAu9JMHt5e3PWpML53xfHMvXNt3UZjmZ3z6GqiT589JR8dStbgvOXbwBw/vIN3MpqgXL/0Xi6tKwPQIhfVapUKoNHBVfOXrrOR9+t5ejyqZxa/QY3bt1h7Y6/Hrrf2SGEoFP7KBqGh/DlF7lN4rAfjC6Xcc8/yxtvvYODg/6PempqKuHBAVRxd6Nlq9aEhesjmXw6NpY/Y2IICQtnyeKFuLt7ULdefV1s25dksvbcmrvYK4YF0ewyqtg76WPa3/t6NaVKFGXHL/9lTN9m/HEkjtTUNFxLFKFj87r4dJxIjTavUKyIM33b69v+aC1r1m9m+649LFi8jNmffcqWzZvy2qU8Z9nSJbiVdyMo2LwmF0txdHRk554YjsfGEb17FwcP2P6o37p1i4H9ejHtvQ9wcnLi/Xem8cqEyTp4a39oEksqiD6Ib8hl4r416Cn5evHKTSqW07TCK5YryaWrmszyzcS7jJr0AxF9pzH8te8oV7o4p+Kv0DLcm9izV7h87RYpKWksWPcHEfWrP3S/syPdlpubG526dCV69y7dbBuJkeWyfdtWlixZhFetajw2oC8b1q9j6GMDdbGdGVdXV5o1b8GqVba1GycnJzOwb0969+1Pl67dOXXyBLGxp2gYGohfnRrEx8fRJCKEC+fPW30Nu5JMFgLhYP5irxgWRHPIqGIzekq+Lt24n4GdtFewgZ3CWbLhTwBKFS9CISdthsTQbg3Zsvc4NxPvcub8VcLqVqdI4UIAtAjz4sipCw/d76wkJiZy8+bNjL/XrlmNr58xPel6Y2S5TH3jLU7ExnHkeCzf/fgLzVu05OvvftDF9qVLl0hISADgzp07rF2zGi8vb6vtSSl5ctQIvLx9ePqZ5wDw86/LqTPnOXj0JAePnsTDw5PNO6KpULGi1dexL8nkglETzfNxokKIkWj5/KhcJffex8ySr6mpqQweMswsyddv3xpCk+DalHMtzvEVU5k6axnvfb2aH94exuCuDfj73FUGvqiNr/WuUZH/TRmElJLDJ84xevKPAOw+cJr5a/ax/afxpKSm8cdfcXz521befL6XYX6bw8ULF+jbqzsAKSkp9O7bjzZR+r0EPDawH5s3buDy5cvUrObJaxMmM2TYcF1sG1kuRnL+3DkeHzaY1NRU0mQaPXr2pn0H64dQbd+2lZ9/+gE//7o0DNM6mCZOeZ2otu31chmwv/K25+BoLoZJJgMIIaoBS6SUZlWLgoND5Nad0bkfaAUqAUn2FISHOL+RHxOQGCGZ7FimuiweNcXs42/88tgjJ5msUCgUOSNMSz5HBVGFQpEnCOy7rdNcjBzi9DOwHfASQsSZsqgoFApFBqpj6QE8IKOKQqFQAAWjTV69zisUijxDBVGFQqGwFtWxpFAoFNYjEIbkNHjYqCCqUCjyDPU6r1AoFLaQ/2OofQVRiXGzOS5sn5H7QVZS57lFhtkGOPCufhnZs2Kkwq6jgUkjjJz1YzSpacbNQHOyWhQzDxCqJqpQKBQ2oYKoQqFQ2IAKogqFQmElBWXapwqiCoUi78j/MTR/aCwZKSd79+5dWjSOoFFYIOFBdXlz6qT79r849hncTdnvzWV4ixqsebk5q19qzsdDgnBxulfMk3v4c/i9ezkiBzaqyqqXmrN8fDN+e7YRtSsWt8nvJ0ePoFFYIA1DAxjUrxe3bt2yyPd0xowcRjXPCoQG1s3Y9tiAvjQIDaRBaCC+darTIDTQKttZ0VPCN6dnZeqkCUSEBNAwLIguHaI4d/asbravXr1K5/ZtCPDzonP7Nly7ds1i23fv3qVlkwgahQcREVwv4/OUUjJ14qsE1/MhLNCfWZ9+bLHtzJw5c4aoVi0IrOdLUH0/Ppkx3SZ7NiHU3PmHRrqcbEBgEDdv3qRJg1BaRrbC28fXZjlZFxcXFq9YQ/HixUlOTiaqZVNat2lLaHgEe/dEk5Bg2ReiQqnCDG1Wncg31vNPchqfDg2mU7AH83aeoV7lUpQqWui+4xfsieeHracBaO1fgde6+fPYZ7lL7+bk91vvfEDJklrQf/nF55n92UzGjhtv0T0ADBg0hFFjnuLxYYMztn334y8Zf7/04vOULFXKYrtZSZfwXbp8NR6enjSOCKVjx874+PpaZS+nZ+WZsS/w2iQtd+VnMz9m2ptTmf7JZ7rY/uH7b2nWIpLnx43n/Xff5oP33mbqG5b9GLi4uLBo+b3Ps21kU1pHteXIX38RFx/H7piDODg4cOniRYvsZncP0955n8Ag7R4ahgcT2aq11eVtK/YcHM0lX9REjZSTzSp9m5yiSd+mpqYy4eXxTHnjbYttOjk4ULiQI44OgiLOjly4fhcHAS939ePNhfdrfN+6m5LxdxEXJyTmDX/Jye/0ACql5M7dO1aXS+MmTSldOnuZZCklv/82l169bc8xo7eEb07PSnq5gCahYk255GR76eJFDBj4GAADBj7GkkWW+/+vzzM5BYHgq//NYvxLr2bM7Cnv5max7cxUqlSJwKB79+Dt7cPZs3mo9qk0lh4+RsjJpqam0jg8iFpVKtKiZStCwsKZ/dlM2nXoRMVKlSyydeH6XWavPc6OKa2Jfr0NN+6ksPmvSwxpWp3VB85z8cY//zrnsSbV2Dwhkpe7+DJxnvmKkdn5DfDEyGHUrubOsSNHGPWE/hn9t27ZjJtbBWrVrm2zLSMlfDM/KwCTJ7yKd82q/PrLTzYraGa2fenihYznpELFily6aJ7uVla0zzOY2lUr0SIykpCwcE6dOsnv836leaNwenbpwInjx2zyO+s9xMTsIzRMH6lnaygIr/NG5hOtLIRYL4Q4JIQ4KIR4xlabRsnJOjo6smXnXg4d/5u90bvZumUTC36fZ1UAKlWkEK3rVaTRpDWEvrqKoi6O9AjzpEOgO99sPJXtOd9tjqXJlLW8tfAQ/4mqY7Xfhw5qAfjT2V9x5GQcdby9+X3eHIvvITfmzvmZXr376m5XTzI/K+m10IlTXuevE6fp3bc/sz+bqavtdGz5wmuf5x4OHjvNHtPnmfTPP7gULsyGrTt5bOgInho9wmq/M3Pr1i369e7Bu+9/9K97eFhYEkAfySAKpADPSyl9gQjgSSGE1Q0vD0NO1tXVlSbNmrN54wZOnjxOoF8d6nrV4Pbt2wT4mRfcGnuV48yV21y9lURKmmTFH+d4rr0XVcsXY9OESLZOakWRQo5smhD5r3MX7Y2nTT3LlRzT/V6zamXGNkdHR3r06sOiBb9bbO9BpKSksGjhfHr06qOLPSMkfLM+K1np07c/C60sl+xsl3erwPlz5wBNwK5cedteuV1dXWnStDlrV6/E3cOTTl26AdCpS1cOHthvk23Q7qFf7x706TeArt3+XT4PExVEH4CU8pyUcq/p75vAYcCqb4eRcrKXs0jfrl+7hoDAII7FnmX/kZPsP3KSokWLEnPwqFn24q/dIahaaQoX0ubfNapTni/WnSTklVU0mrSGRpPWcCc5laZT1gJQrXyxjHMj/SoQeynRar9r16nDiRPHAa3Mli1ZTO061sv4Zsf6tWuo4+WNh6enLvb0lvDN7lkBOJ7pNXjpkkXU8fLSzXb7jp348YfvAPjxh+/o0Mly/7N+nhvWraF2HS86dOrM5o0bANiyeSM1a5n/ppLTPYx+fDhe3j4889xYm2zpQUEIog+ld96k+hkI7Mxm3z3J5Bx62I2Ukz1//hyjHx9KWmoqaWlpdOvRi7btrZ+rHnM6gWUx51g2vimpqZKDcdf5advpHI8f0rQ6jb3KkZwquX47mbHf77Pa76h2HWgb2YybN28gpcS/bj0+mPGpVfcxZFB/Nm/awJXLl6lTozKvvDaJwUOHM2/uHF1f5fWW8M3pWfnum684dvQoDg4OVK5ShekfW9Yz/yDbY18Yz+ABffn+m6+oXKUq32YaxWAu58+fY8zjw0hNS0WmpdG1e0/atu9IRMPGjBw6iM8+mU6xYsWY8ennFtvOzLatW/npx+/x969LeHAAAJNff5O27fSVZjYb+42NZmOoZDKAEKI4sBF4Q0r5wHeooOAQuWnbLkP8MDDnA/7jlhhnHKMTkBj3FKsEJNljZAISl0LGZCAxQjLZpUJt6THA/HGqpz7sYJeSyYb2zgshCgG/AT/mFkAVCsUjhs6D7YUQz5k6sQ8IIX4WQhQWQlQXQuwUQhwXQswRQjibjnUxrR837a9m7W0Y2TsvgC+Bw1LKD4y6jkKhyJ8IQAjzlwfaEsID+A8QIqX0BxyBvsDbwIdSylrANSBddXg4cM20/UPTcVZhZE20ETAIaCmEiDEtedTwolAo7A+Bg4P5ixk4AUWEEE5AUeAc0BKYZ9r/LdDV9HcX0zqm/ZHCyt4rIyWTt1Agmo0VCoVRWBi3ygkhojOtz5ZSzgaQUsYLId4D/gbuAKuAPUCClDJ9WmAc90YIeQBnTOemCCGuA2UBixNw5Iu58wqFogBixmt6Fi7n1LEkhCiNVrusDiQAc4G2trpoDiqIKhSKPEGAua/p5tAKOCWlvAQghPgdrUnRVQjhZKqNegLpc4rjgcpAnOn1vxRwxZoL57u58wqFouCgV8cS2mt8hBCiqKltMxI4BKwHepqOGQykZ4dZZFrHtH+dtHK8p6qJKhSKPEOvmUhSyp1CiHnAXrQp5/uA2cBS4BchxOumbV+aTvkS+F4IcRy4itaTbxUqiCoUirzB8jbRByKlnAhMzLL5JBCWzbF3gV56XFcFUYVCkSdo40Tz/wAeuwuiRk0VdDLwwzJyWiZAzSfmGmb7zGx9sjFlR3KKcVMznRyN+zyNnCIMxvpu1DRuY6zad2IRc7G7IKpQKB4dCkAMVUFUoVDkEULXIU55hgqiCoUiTygobaL5bpzo0SNHCA8JzFgqlC3FJzM+0sW23nKyRsgxj2pdh81T27JpSls+HxWBi5MDTXzcWDuxDesntWHJSy2p7qYJnnmWLcpvLzRnw+QoFrzYgkqli1h9H40bhBEWVJ+g+n5MnZy1A9Rye80bR9AwLJCwoLq8YSqX2NhTtGjSgPp+dRgysC9JSUk2XQcgISGB/n16EeDvQ2BdX3bu2G61LSNlpLOz/cbUSdSu7plhf+XyZVb7no6R3x9r0HGcaJ6R72qidby82BmtJS5OTU2lZjVPOpvkE2xFbzlZveWYK7oW4fFWtWn86gruJqfyxZgGdAuvwrMdfBn08WaOnbvJ0Ba1GNvRl6e/2sXk3gH8ui2WOdtiaeztxqs96vHkF//Ki23WfaxYvS7jPlo2a0ybqHaER0RYbCvd3pJM5dLGVC4zZ3zIk08/Q8/efXn26TF8982XjBg5xqprpDNu7LO0joripzlzSUpK4vbt21bbMlJGOjvbAE89/SzPjH3BOoezwcjvjzWommges37dWmrUqEmVqlV1sae3nKwhcsyODhR2TpdjduJ8wh0kkhJFND37kkUKcT7hDgB13Euy+bCmPLnlr4u0C7ROuyjrfaQkJ9v08P/LnqlcNm5cT9fu2uSSfgMes0k6GeD69ets2bKJIUO17GfOzs64urpabc9IGekH2TYKvb8/1lAQaqL5OojO/fUXevUxRnVSLzlZPeWYzyfc4dMVfxHzbkcOfNiZG7eT2XDwAs99vZufn23KH+91olfDqkxfdhiAg2cS6BisaSF1CPKgRJFClC7mbPV9hAcHUMXdjZatWhMWbnu5NAoPoqapXGrUqEmpUq44OWkvRx4enpw7e9ama8SeOkW5cuUZNWIYEaFBjBk1gsRE8zSsLEVPGenMfD5rJuHB9RkzchjXrln25pIbRn5/zELnpMx5hZFJmQsLIXYJIf4wZZu2Xds4E0lJSSxbspjuPXSZdHAfesrJ6irHXLQQbQM9CB6/lLpjF1HUxZGeEVUZ1caLfh9tov4Li/l5yymm9tXa5Sb+GkMDLzfWTWxDQy83zl69bbU0haOjIzv3xHA8No7o3bs4eOCAVXYy29u6cy+Hj//NnujdHD3yl032siMlNYWYfXsZMWo0O3bvpTezC4gAACAASURBVFixYrz3zjTdrwPGyEiPGDmG/YePs333PipUrMTL45/XzbaR3x9z0TMpc15iZE30H6CllLI+EAC0FUJY14iWDStXLCcgMIgKFSroZRIwTk5WDznmZr4V+PtyIldu/kNKqmTp3njCapfDr7Ire09eBWDBrjOE1ioLwIWEuwyduZWWk1fx5u+a1O6NO8k230ez5i1YtWqFTXYy22vSrDm7du7g+vUEUlK01I/x8XFUcne3ybaHhycenp6Emd4munXvSUyMeUKAlqC3jHQ6FSpUwNHREQcHB4YOe5zo3bt1s23U98cylO78A5Eat0yrhUyLbhMf5s7R/1VEbzlZveWY467eJrhGWYo4a2JkTX3cOHr2BiWLFKJGBa2NsblfBY6dvQFAmeLOGb/gz3Tw4actp6y6j0tZ7mPtmtV4eVkvxZxdudTx9qZp0+Ys+F1LQv7zj9/RoWMXq68BULFiRTw9K3P0yBFAawP08fGxyWZ26C0jnU66lj3A4oXz8fXz1822Ed8faygINVFDe+eFEI5o2aVrATOllJZ3DWdDYmIi69au5uNPZ+lhLgO95WT1lmPee/Iqi6PPsHZiG1JSJfv/vsZ3G09w9tptvn6yEWkSricm8czXmmJqIy83Xu1ZDylh+9FLjP9hj3X3ce4cjw8bTGpqKmkyjR49e9O+g/X3kV4uqZnKpV37jnj7+DJ0UH+mTp5A/foBPDZkmNXXSOf9D2cwdPBAkpOSqFa9Bp9/8ZXVtoyUkc7O9uZNG/nzjxiEEFStWo0ZM/V53o36/lhMARlsb7hkMoAQwhWYDzwtpTyQZd893fkqVYKPHI81ygdD7AIkGThHHNTc+ezIz3PnjcSomNQoIpS9Oksml6jsLQOe/cLs47e80OTRk0xOR0qZgJYc9V/p+qWUs6WUIVLKkHLlyj8MdxQKhZ2g2kQfgBCivKkGihCiCNAa0L8LVqFQ5FtUm+iDqQR8a2oXdQB+lVIuMfB6CoUin2HPNUxzMVIy+U/AuonECoWi4GPnNUxzyXdz5xUKRcFAPIpJmYUQDkBxKeUNg/xRKBSPEAUghubesSSE+EkIUVIIUQw4ABwSQowz3jWFQlHQcRDC7MVeMad33tdU8+wKLAeqA4MM9UqhUDwSPCq984WEEIXQgugnUspkIUQ+Ho6sUCjsASGME6Z8mJhTE/0ciAWKAZuEEFUB1SaqUChspiAMts+1JiqlnAHMyLTptBCihRHO5FfNlUIGTkEEY6dmVh45xzDbRvptbUo/czC6dmTkVOvbSamG2E0zyOd8+HX/F+Z0LD1j6lgSQogvhRB7gZYPwTeFQlGAEZiGOZn5z14x53V+mKljqQ1QGq1TyZjMtgqF4pHCQZi/2CvmdCylu98e+F5KeVDkx3duhUJhX9h5W6e5mBNE9wghVqENbXpJCFECMDb3m0KheCQoADHUrNf54cB/gVAp5W3AGRhqqFcPYNSIYVRxdyM4QL8s3+norTufGaP1vvUol+w07Rt7a5r2m6a05ZPhYRmdLj0iqrJhchQbp0Sx9OVI/Cpbp6Kp9+eZnX57OjM+fJ/iLg5cvnzZ5usY+awAeNeuTmhgPcJDAmkUEWqzvUDfWjQJC6B5g2Aim2hyKcMf60/zBsE0bxBMoG8tmjcItvk6liB4RAbbSynTgFNAHSFEU8APsF531kYGDR7CwiX66PtkJV13ft+fh9i4ZQefz5rJ4UOHdLGdrve9M3of23ZGU6RoUV31vm0tl3RN+9ZTVtN0wgocHQQ9IqryyYhwHp+1jaYTVnDmym36NqoGwN+XbtHl7XU0m7CSDxYf5P3B1uXK1fvzHDBoCAsWL//X9rgzZ1i7ZjWVq1TR5TpGPivpLF+9jp3R+9i6Qx9tpQXL1rBh+x7WbtYEJr787ic2bN/Dhu176NilGx06P3z9+YIw2N6c3vkRwCZgJTDZ9P8kY93KmcZNmlKmjDH63HrrzueEEXrfepRLVk372/+kkJSSxskLmlTWxoPnMySYd5+4wvXbmuhd9IkruJcukmd+Z7WXnX77+HFjef2tt3Vrg3tYz8rDQErJwt/n0V1noT1zKAjjRM15nX8GCAVOSylboKW3SzDUKztAL9357Mhzve9syE7TfsHuMzg5COpXKw1Ap5DKuJcp+q9zBzSpwdr95x+2y2azZNFC3N3dqVuvviH2jXhWhBB0ah9Fw/AQvvxiti72enZpR8vGYXz71f/u27d96xbKu7lRs1Ztm69jmU/amFxzF3vFnI6lu1LKu6ZfAxcp5V9CCC9zL2BKyhwNxEsprVc3e4joqTuflXS97ymvv6WrXVvJrGl//XYSX45pSM+Iqoz8fDuv9w3E2cmBDQfPk5ZlkHsjbzcGNKlBx7fW5pHnD+b27du8985bLFy60hD7Rj0ra9ZvxsPDg4sXL9KpXRu8vLxp3KSp1faWrt5AJXcPLl28SM/Obaldx5uGjZsA8PvcX+jeK29+1PUMjSYljS8AfzRl4WHAEWAOUA1t5mVvKeU10wij6Wijjm4DQ6SUe625rjk10TiTcwuA1UKIhcBpC67xDHDYGufyAqN059OxD73vf5Odpn1orXJEn7hCp2nriHp9DduPXuLEhZsZ5/h6luLDIaEM+ngz1xKT8tD7nDl58gSxsadoEBqAb53qxMfF0TgimAvnba85G/mseHh4AODm5kanLl2J3r3LJnuV3DV75d3caN+pK3v3aO2sKSkpLF20gG49etnmsJXo/Do/HVghpfQG6qPFnf8Ca6WUtYG1pnWAdkBt0zIS+MzaezCnY6mblDJBSjkJeA34Ei0ZSa4IITyBDmi/DnaP3rrz2WEvet9ZyU7T/ti5G5Qr4QKAs5MDT7fz4Zv1JwDwKFOUb55sxJP/25HRZmqP+PvXJTbuAoeOnuLQ0VN4eHqyZcceKlSsaJNdI5+VxMREbt68mfH32jWrbdKcz2pvw7rV+Pj6AbBx/Vpq1fHC3cPTdsctROud12ewvRCiFNAULT4hpUwyCWR2Ab41HfYt92JXF+A7qbEDcBVCVLLmPnIMokKIMlkXYD+wBShupv2PgBd5wLhSIcRIIUS0ECL60uVLuRp8bGA/mjdpwNEjR6hZzZNvvvrSTFdyJ113fuP6dYQHBxAeHMCK5ct0s5+u992lq/41XFvLJbOm/aYpbRFC8N3GEzzZ1putr7dj45QoVv1xli1/XQTghc5+lC7uwjuDglk/qQ2rJ7TOE7+zMmRQf1o2a8ixo0eoU6My336t3/ORGSOflYsXLtCqeRPCgwNo2jCctu3a0ybqX0K5ZnPp4gU6tm5Gs4gg2jRrSOuo9kS2jgJg/rw5edKhBGQMttepJloduAR8LYTYJ4T4wpQDuYKU8pzpmPNA+iugB3Am0/lxpm2W30ZOyRCEEKfQ2hUye5++LqWUNR5oWIiOQHsp5RNCiObAC7m1iQYHh8itO6MtcN8+MDKhBBiblEUlIPk3KgHJv4lsEk7M3j26FkzZGn6y/dSfzD7+h4EBp4HMg3xnSylnAwghQoAdQCMp5U4hxHS0bHNPSykzhmQKIa5JKUsLIZYA06SUW0zb1wLjpZQWB6AcO5aklNUtNZaFRkBnIUR7oDBQUgjxg5RyoI12FQpFAcHCCsJlKWVOA5LjgDgp5U7T+jy09s8LQohKUspzptf1i6b98UDlTOd7mrZZjDnjRLuZ2hvS112FELm2iUopX5JSekopqwF9gXUqgCoUinT0bBOVUp4HzmQaORQJHAIWAYNN2wYDC01/LwIeM2WniwCuZ3rttwhzhjhNlFLOz+RsghBiIlpvvUKhUFiNzk1VTwM/CiGcgZNo09MdgF+FEMPRRhX1Nh27DG1403G0IU5WT2U3J4hmV1u1SCVUSrkB2GDJOQqFomAjBDjqGESllDFAdq/7kdkcK4En9biuOeNEo4UQHwghapqWD4A9elxcoVA82jwSc+fRqshJaKP+fwHuolMEVygUjzYFYe68ORpLidwb5a9QKBS6Ycex0WwsattUKBQKvRDYd55Qc1FBVKFQ5A123tZpLnYVRNOApBRjlEecncxp/rUOo9trbt5JNsz26Vm9cz/ISnp8YVvSjAcxZ6h1SaDNweAJaNy8m2KY7RKFjflKG1VjtOe2TnPJscSFEB+jTfPMFinlfwzxSKFQPDIYV7V5eDzoZyv/TWJXKBT5BkEBr4lKKb/NaZ9CoVDogR0nrDebXBtQhBDlgfGAL1oiEQCklC0N9EuhUBRw0uVB8jvmNEn8iJYhujqaUF0soI/8oJncvXuXFo0jaBQWSHhQXd6cOgmA2Z/NJMCvDqWKOHJFBxncdFJTU4kICaR7F/3VTPSyffzYEVo0CslYaniU5fOZM1g0fx5NwupToZQLMXutn1g2euQwqnpWICST9PDvv80lJMCf4oUd2bvHstaeYs6OvNS6FrP61GVWn7p4V9BS0nbyr8CsPnX5tLc/QyPuJdXpFViJ//Wrx+d96xLkWSons/8i7swZ2reJJCTAn9DAunz6yYz79s/46ANKFHa0WTZZbwns48eO0LJRSMZS0/R5pvPZxx9SoaQzV67Y/pwnJCTQv08vAvx9CKzry84d2222aS16JSDJS8zpyisrpfxSCPGMlHIjsFEI8VCDqIuLC4tXrKF48eIkJycT1bIprdu0JbxBQ6Lad6BjG30rxZ/MmI6Xjw83b9zQ1a6etmvV9mL9Vi2QpaamUs+rGu07deHOndt8/eOvvPCMbZPKBg4awqgxT/H4sMEZ23x9/flpzm/856nRFtsb2agqe85c563Vx3FyELg4OVDPvQQR1Vx5au4BUtIkpUw9y5VLF6ZpzbKMmbOfssUK8UZHb0b+8ifmpBB1cnLizbffJSAwiJs3b9KkQSgtI1vh7eNL3JkzrFuzisqVbZdNTpfABq38a1bztEkCu1ZtL9Zl+jzrmz5PgPi4M2xYuwZPHfwGGDf2WVpHRfHTnLkkJSVx+/ZtXexaQwFoEjWrJpo+vuacEKKDECIQMEazOAeEEBQvrtVckpOTSU5JRghB/YBAqlatpuu14uLiWLF8KUOHjdDVrpG2N21YR7XqNahcpSp1vHyoVdtsHcEcadykKWWySA97+/hQx8ty20WdHfGvVIJVf2nKBSlpksSkVNr7uTF33zlSTNHxumnoT0S10mw6cYWUNMmFm0mcvfEPddzME1OoWKkSAYH3pIy9vL05G6+lifzvi2OZ+qZ+ssnp6C2BvTnT5wkw4aUXmDD1TV38vn79Olu2bGLI0OEAODs74+rqmstZxqClwhNmL/aKOUH0dVM+0eeBF9D0kp4z1KtsSE1NpXF4ELWqVKRFy1aEGCBlDDDu+Wd54613cHDQf/CFUbYX/PYr3XvmkcSDGVQs4cL1u8k816I6M3r68Z9m1XBxcsCjVGH8KpXgg26+TOvsTe3yxQAoW8yZy7fuCd9duZVE2WKFLL7u6dhY/oyJISQsnCWLF+Lu7mGIbLLeEtjzf/uVbqbPc/nSRVSs5IFfXX38jj11inLlyjNqxDAiQoMYM2oEiYmJuti2BgcLFnvFHKG6JVLK61LKA1LKFlLKYCnlInOMCyFihRD7hRAxQgibhkw5OjqyZedeDh3/m73Ruzl08IAt5rJl2dIluJV3Iyg4ON/YTkpKYuWyJXTq1kNXu3ri4CCoVa4Yyw5e5D/zDnI3JY1egZVwcBCUcHFi7PxDfLXjDP9tXUu3a966dYuB/Xox7b0PcHJy4v13pvHKhMm62U8nXQK7u05qmUlJSawyfZ63b99m+ntvM/6VibrYBkhJTSFm315GjBrNjt17KVasGO+9M003+5bySGRxEkJ8LYT4KutiwTVaSCkDHpDW3yJcXV1p0qw5a1bpryO+fdtWlixZhFetajw2oC8b1q9j6GP6JOM3yvba1SuoWz8QNzf7kmDOzJVbSVxOTOLIRa3Gs/XEVWqVK8aVW0lsO3UVgKMXE5FSUrKwE1cSkyhX3Dnj/LLFnbmSaP6sreTkZAb27Unvvv3p0rU7p0yyyQ1DA/GrU4P4+DiaRIToIpustwR25s8z9tQJ/j4dS8tGIYT41+ZsfBytm4Rz8YL1fnt4eOLh6UmY6U2uW/eexMTs08V3SxEWvMrn99f5JcBS07IWKAk8VI3cy5cukZCQAMCdO3dYv3aNVW1zuTH1jbc4ERvHkeOxfPfjLzRv0ZKvv/vBrm3Pn5uHao1mcu1OMpduJeFRShshV9+zFH9fu8P22GvUcy8JgHupwjg5Cm7cTWFnbAJNa5bFyUFQoYQzHqVcOHrRvEdOSsmTo0bg5e3D089orU5+/nU5deY8B4+e5ODRk3h4eLJ5R7TNssmgvwT2/Llz6Gb6PH396nLoZDzRB44RfeAY7h6erN68E7cK1vtdsWJFPD0rc/TIEUBrz/Xx8dHFd2t4JGqiUsrfMi0/oqXXN7dWKYFVQog9QoiR2R2QWTL5yqXsJZPPnz9Hx7aRNAwNoEXjcFpEtqJt+47MmvkxPjWrEB8fR8PQAJ4a87iZbhUMEhMT2bh+LR063ZO8Wrp4AfW9qxO9awf9e3Whd9cOVtkePKg/LUzSw7VN0sOLFs6ndo3K7Nyxne5dO9K5g/kyvp9vOc24yJp80sufGmWL8uves6z+6zIVS7ows7c/41vV5IN1JwH4+9odtpy8wqw+dZnSwYtPN582q2cetBr/zz/9wMYN62kYFkTDsCBWrtBP9jozektgJyYmsinL52kE7384g6GDBxIWVJ8///iDceNfNvR6D6IgDHHKUTI5xxM0IailUspcG7CEEB5SynghhBuwGk2+dFNOxwcGh8iNW41JWmFkAhKjMTIBSTEX43LQ9PrKuJFwRiYgMXoAeH5MQNIoIpS9e6J1LRiPOnXl6E/n536giQmta+/Rq1lQT8yZsXST+xORnEebwZQrUsp40/8XhRDzgTAgxyCqUCgeIey8hmku5mS2L2GNYSFEMcBBSnnT9HcbYIo1thQKRcFEkP+jqDm982vN2ZYNFYAtQog/gF1oTQArLHdRoVAURPTUnc9LHpRPtDBQFCgnhCgNGT8ZJQGP3AxLKU8C+o9sVigUBQZ7Do7m8qDX+VHAs4A7mkRy+u3eAD4x2C+FQvEIUNDziU4HpgshnpZSfvwQfVIoFI8A6a/z+R1zxv2kCSEyMhQIIUoLIZ4w0CeFQvEoYMFAe3uusJoTRB+XUiakr0gprwGP1qh2hUJhCAVh2qc5I3MdhRBCmkblCyEcAedczlEoFIoHUlBe580JoiuAOUKIz03ro0zbdCe/FmpKqjEyz+mUKGJ5GjhzMdL3X4eFGma71tO/G2b71ExjM2IVN3CWmFEdNUZZdbTjGqa5mPNpjgdGAmNM66uB/xnmkUKheCTQ1D7z2gvbMScBSZqUcpaUsqeUsidwCFC99QqFwjYsGGhvz2+oZr1XmCRB+qFlcDoFGPcupVAoHhnsucPIXB40Y6kOWuDsB1wG5qBlfWrxkHxTKBQFmEfhdf4voCXQUUrZ2DTgPvXhuHU/Y0YOp3rlioQF1cvYtv/PP2jZrBHhwfXp1b0zN3RU5tRL1jgn+d75v80lNLAuJYs4WSw9nBOjRgyjirsbwQH+utjLrsz//COGFk0b0jAsiKYNw4jebV3awjEjh1HNswKhmeSY35g6idrVPWkQGkiD0EBWLjc/B+jIyFpsmNia9RNa8enwMFycHFjwQjNWvxrJ6lcj2fd2e74e0yDj+Kl96rNtahRrX2tF3crWibTpXd5ZmfnxdEIC6xIS4G+TFHN2rFq5gnp+Xvh51+LdPJQGgYIxxOlBQbQ7cA5YL4T4nxAiEqM66XJhwKDBzF90/5fqqTEjmTL1TXbu+YNOnbsy/YP3dLteuqyxraTL90bHHGDdpm3MnvUpfx0+hI+fPz/OmUejxk118FZj0OAhLFyi36CJ7Mr8tZfH89Irr7Ft115emTCJ117+r5W2h7Bg8fJ/bX/q6WfZvnsf23fvI6pde7NsVXQtzPCWtWj75lpaTFmDo4OgS2hlur63kdavr6X162vZc/Iqy/Zpip8t/StSw604DV9bybgf9jJtQKBV96B3eWfm4MEDfP3VF2zaupMd0TEsX7aUE8eP62I7NTWVZ//zJAsXL2ffn4eY+8vPHD50SBfb1qD3YHshhKMQYp8QYolpvboQYqcQ4rgQYo4Qwtm03cW0fty0v5q195BjEJVSLpBS9gW8gfVo8+jdhBCfCSHaWHtBa2jcpCmls8j3Hj92lEZNtCDUMrI1Cxfo00yrp6xxTvK93t4+1Kmjr7xJ4yZNKVNGPyXr7MpcCMFNU43/xvXrVKpUSTfbtuDoIChcyBFHB0ERZ0cuJNzJ2Fe8sBONvMqzPOYsAG3rV2LujtMA7D11lZJFCuFWsrDF19S7vDNz5K/DhIaFUbRoUZycnGjStKluz/fuXbuoWbMW1WvUwNnZmV59+rJk8UJdbFuKwBC1z2eAw5nW3wY+NCWRvwYMN20fDlwzbf/QdJxVmNM7nyil/ElK2QnwBPZhZlJmI/H29cv48Of/Po/4uDO62DVK1jizfG9+Zdp7H/LqS+PxrlmVV156kUlT39TV/uezZhIeXJ8xI4dx7do1s845n3CXWauPEf1We/54pwM37ySz8fDFjP3tAtzZ8tdFbpmyyVd0LcLZq/eC7LmEO1QqbXkQNRJfX3+2bdnClStXuH37NitXLNft+T57Nh5Pz8oZ6x4ensTHx+ti22KE9sNs7pKrOSE8gQ5osu4I7aSWwDzTId8C6dorXUzrmPZHCisH2VoUKaSU16SUs6WUkeYcL4RwFULME0L8JYQ4LIRokPtZ5vHp51/wxeef0aRBKLdu3qSQs+2TqIySNc4s31uyZEldbT9Mvpw9i2nvvs9fJ04z7Z33eXK0frN/R4wcw/7Dx9m+ex8VKlbi5fHPm3VeqaKFiKpfifBXlhPw4lKKujjRI/xekOgaWpkFu/UJQA8Lbx8fxr7wIp07RNG1Uzvq1auPg6NjXrtlCMKCBS0tZ3SmJatu20fAi0D6DJKyQIKUMl2PJY57aTw9gDMApv3XTcdbjNHCQ9OBFVJKb7TcoodzOd5svLy8Wbh0JZu376Znn77UqFHTZptGyBpnle/Nz/z0w3d0Nt1Dtx692BOtnx5WhQoVcHR0xMHBgaHDHid6t3n6TE283fj7ciJXbiWRkiZZti+ekBrad6FMMWcCqpVmzf57EsPnE+7gXqZIxnol1yKcu3ZXt/vQi8FDh7N1RzSr1m7EtXRpateuo4tdd3cP4jLVauPj4/DwyDU9sCEIwFEIsxfgspQyJNMyO8OWEB2Bi1LKPQ/7PgwLokKIUkBT4EsAKWVS5kQmtnLpovbKlpaWxrtvvcGwEdmKiVqE3rLG2cn35mcqVnJny6aNAGxcv46atWrrZvv8uXMZfy9eOB9fP/N6veOv3ia4RlmKFNJqao293Th2/iYAHYM9WLP/PP+k3JvauvKPc/SKqApAUPUy3LyTzMUb9hdEL5qe7zN//82iBfPp3be/LnZDQkM5fvwYsadOkZSUxNw5v9ChY2ddbFuDjh1LjYDOQohY4Be01/jpgKsQIn0opyeQ3nYRD1TWfBBOQCngijX3YNwkXqgOXAK+FkLUR0vs/IyUMjHzQaYq+UiAypWrZGto6KD+bN68kSuXL+NVswovvzqRxMREZs/6FIDOXbsxaPBQA2/FOtLle/3869IwTOtgmjjldf755x/GjX2Gy5cu0bNbJ+rVq88CG3t6HxvYj80bN3D58mVqVvPktQmTGTJseO4n5kB2Zf7xp58z/oXnSElJoXDhwsyYOcsq20MG9Wfzpg1cuXyZOjUq88prk9i8aSN//hGDEIKqVauZbXtf7DWW7I1j1auRpKSmceBMAj9sPgVAl5DKfLLyyH3Hrz1wnsi6Fdn+ehR3klJ57lvrhpjpXd5ZGdC3J1evXMGpUCE+mP4Jrq7WDcXKipOTEx9O/4ROHaJITU1l8JBh+Pr56WLbcsxr6zQHKeVLwEsAQojmwAtSygFCiLlAT7TAOhhI70VbZFrfbtq/Lj3JkqVYLJlstmEhQoAdQCMp5U4hxHTghpTytZzOCQoOkZu2GSOZ7ORoXMuF0QlI8qvvRmYtz88JSNLSjPnOATgYND+yUXgIe3SWTK7pW1+++aP544H7BnmaJZmcKYh2FELUQAugZdA6xQdKKf8xyR99DwQCV4G+JkkjizGyJhoHxEkpd5rW5wHWDSxUKBQFEiN+aKWUG4ANpr9Pokm1Zz3mLtBLj+sZVsWRUp4Hzggh0gdERqIlL1EoFArA4t55u8TImijA08CPplkCJwH7a7hUKBR5gyjgQnV6IKWMAXJtw1AoFI8e6TOW8jtG10QVCoUiR1RNVKFQKGzAnpMtm4sKogqFIk/QXufzfxRVQVShUOQZBeBtXgVRhUKRVwiEqonqj6NBjSTJKcbNzDFu/onxGJkx3KjZM2DsrKJKQ380zDbAua8HGGY7yaDn3Khvj6qJKhQKhZWoNlGFQqGwBQtkP+wZFUQVCkWeoYKoQqFQ2EBB6FjKl7OuEhIS6N+nFwH+PgTW9WXnju1W24o7c4YOUZGEBvoTFnRP1hhg1qefEFzfl7Cgurz2suWyUnfv3qVF4wgahQUSHlSXN6dOAmD2ZzMJ8KtDqSKOXLl82Wrf0zlz5gxRrVoQWM+XoPp+fDJjus02R48cRlXPCoRkkjX+/be5hAT4U7ywo91KPWdGr3IZ1caLbW91YNtbHRgdpeXT6RJWhW1vdeDKt/0JqH5PsK65f0XWT2nL1jc7sH5KW5r4VrD4enfv3qVxgzDCguoTVN+PqZMnWuV3ZnvZPYfpvDj2GdzLPXzZGoE22N7cxV7JlzXRcWOfpXVUFD/NmUtSUhK3b9+22paTkxNvTHuXgMAgbt68SdOGobSMbMXFixdYtmQR23btw8XFbxOhoAAAIABJREFUJSOTviW4uLiweMUaihcvTnJyMlEtm9K6TVvCGzQkqn0HOrZpabXfWe9h2jvvExik3UPD8GAiW7XGx9fXapsDBw1h1JineHzY4Ixtvr7+/DTnN/7z1Gg93AY06eHRTzzFiGGP6WYzHT3KxcezFINb1CJy4gqSUtKYN64FK/fFczgugcemb+LDYfcLD165+Q/9PtjI+YQ7+HiWYt64lvg9M98iv11cXFixel3Gc9OyWWPaRLUjPCLCIjuZ7WX3HIaGR7B3TzQJCeaJAhqBPevJm0u+q4lev36dLVs2MWSolkXc2dnZpqzf2coan43ny9mzeO6FF3FxcQGgvJubxbaFEBQvXhzQtJaSU5IRQlA/IJCqVatZ7XNWKlWqRGDQvXvw9vbh7FnbFBwbN2lKmSyyxt4+PtTxsm+p58zoUS513EsRfeIyd5JSSU2TbP3rIp1Cq3D07A2Om2RIMrP/9DXOmySbD8ddp4izI85Oln3Nsj43KcnJNs0xz+k5TE1NZcLL45nyhtVqwTYjLPhnr+S7IBp76hTlypVn1IhhRIQGMWbUCBITE3M/0QxOnzbJGoeGc/z4MbZt3UKLJg1o17oFe6LNE07LSmpqKo3Dg6hVpSItWrYyXDL5dGwsMTH7CM3H0sxGYG25HI5LoEEdN0oXd6aIsyOt67vjUaaoWed2Dq3MH7FXrRq7mZqaSnhwAFXc3WjZqjVh4bZ9ntk9h7M/m0m7Dp2oWKmSTbatpaC8zhspVOclhIjJtNwQQjxrq92U1BRi9u1lxKjR7Ni9l2LFivHeO9Ns9vfWrVsM6teLae9qssYpKSlcu3qVdZu2MfXNtxkysC/WSKk4OjqyZedeDh3/m73Ruzl08IDNvubErVu36Ne7B+++/1G+lmbWG1vK5ejZG0xfeojfX2zJvHEtOfD3NVLNkPfw9ijFpD6BPPe1dXI3jo6O7NwTw/HYOKJ37+LgAduem6zP4dYtm1jw+zxGPfGUTXZtw5J6qP1GUSMz2x+RUgZIKQOAYOA2YFnjUDZ4eHji4elJmKlG0a17T2Ji9tlkMzk5mYH9etK7T/8MSWB3Dw86d+2GEIKQ0DCEg4NNnUCurq40adacNatW2uRrTiQnJ9Ovdw/69BtA1275W5pZT/Qolx82nqDFhBV0eGM1CYlJnDh/44HHu5cuwvfPNGXM59uJvXjLqmum4+rqSrPmLVi1yjYhw8z2mjRrzuaNGzh58jiBfnWo61WD27dvE+Cnjyyz2Vig9GnPTacP63U+EjghpTxtq6GKFSvi6VmZo0c0Fcf169bi4+NjtT0pJU+OHoGXlw9PZZI17tipC5s2bgDg2LGjJCclUbZcOYtsX750iYQETSX6zp07rF+7Rvc2RdDuYfTjw/Hy9uGZ58bqbj+/ole5lCuptYt7li1Kx5DKzN0em+OxJYsWYs4LLZj8aww7j12y6nqXsjw3a9esxsvL2ypbkP1zGBAYxLHYs+w/cpL9R05StGhRYg4etfoa1qLkQcynL/Bzdjvuk0yukr1kclbe/3AGQwcPJDkpiWrVa/D5F19Z7diObVv5xSRr3Chc64SYMPl1Bg0exhOjhhMeXA9nZ2dmffG1xY3758+fY/TjQ0lLTSUtLY1uPXrRtn1HZs38mOkfvMuFC+dpGBpA67bt+OSz/1l9D9u2buWnH7/H378u4cEBAEx+/U3atmtvtc3BmWSNa9eozKuvTaJ0mTL/b++8w6Ooujj8HhJCtSCE3luoAiGEHjpKr4qgFAvYUeQTxYoNI9gFFEQ/4FOxgvQOUqWEXpQq0psgNRCSnO+PmcQFgmyZIYX7Ps8+2Z2d+d27s5szt8w9P/r368uxo0fp2L41t99elcnT0pbVsydOnZdxfaPIlTML8QmJPDt2FafOXaRV9cK806MGeW7Kwnf9G7LxzxN0HrqA3s3CKJHvJga0r8SA9tZtWx2HzOfYqQtel3fo4EF6P9CThIQEEjWRTp3vpmWr1j7V+RK9q/wOUxtrTDQth0fvcM0yObkAy1/pAFBRVQ//277h1SN06XL/JnCuRXyCe5/T7QQkvs7u+kJ6tO91G5OA5Eoa1I1krcOWyeUrV9P/Tlzg9f61y+TyyjL5enM9WqItgDXXCqAGg+EGJH1eZy/hegTRrlylK28wGG5sMkJ33tWJJRHJATQDJrhZjsFgSJ+YiaVroKpngdxulmEwGNIxaTk6ekm6XDtvMBjSP1YLM/1HURNEDQZD6pDGb6L3FhNEDQZDqpEBYqgJogaDIRXJAFHUBFGDwZBKpO3EIt5igqjBYEg1zJioAXA/1+FFl5bygbs/4oT49LmkdO/orq5pA4S/Mts17VWDmrmi68bZTuv3f3pLukvKbDAYMg4i4vXjGjpFRGSBiGwRkc0i8pS9/TYRmSMi2+2/ueztIiIfi8gOEdkgIuH+fgYTRA0GQ6rhYD7ReKC/qlYAagGPi0gF4HlgnqqWAebZr8HK6VHGfvQBPvX3M5ggajAYUg2nln2q6kFVXWM/Pw38BhQC2gFj7d3GAu3t5+2AcWqxHLhVRPzySUl3QXTb1q3UjKiW/MiX+xaGffyh33pXs0zeuGE9TRrUpVZEFe7u1JZTp/49m3lKPNrnQUoUyU9k+O3J2zZuWE/jBnWpWb0Kd3X0T9fteu/bu5eWzZsQUbUSNar9o/3iwAGE316BWhFV6Xp3x+REv2ml3gCP9nmA4oXzUcPD6hng0+GfUK1yeSKqVuKlgQP81Hb2+yyeJzsTnqiV/Fj5SmO61ylKuQI3Mf6RSCY8UYvvH6tJ5cKWpUnOLMEM716NCU/WZvJTdegQXtCHurt3XvzGlwhqRdE8IhLj8eiToqxIcaAasALIp6oH7bcOAUke1oWAvR6H7bO3+Uy6C6Jlw8JYEbOWFTFrWbYihmzZs9O2XQe/9ZIsk1et3cS8hcv4fOQIfv9tC0882ofX3hzM8pj1tGnbno8+eNdn7Xu792Ti5OmXbHvi0T68/sZgVqy2dd/3XdftegcHBzP4naHErNvE/EXLGPWZpd24cVNWrtnA8ph1lC5TlveG+u5t5Wa9Ae7t3oufp8y4ZNvCXxYwbcpklsesI2bdJvr2+4+f2s5+n7uPnaPjsOV0HLaczsOXc/5iAvO2HKH/nWUYMX8XHYctZ9jcnfS/07Lt6FarCDuPnKHjJ7/Sc/QqBrQMI3OQd1Mzbp6XQPDRY+mYqkZ4PEZdoSeSE/gJeFpVL7miqZU82fHZznQXRD1ZMH8eJUuWomixYn5rXM0yeeeObdStFwVAo8bNmPyz74mo6tWPItdltsM7tm+jbn1Lt3GTZkzyQ9fteqeovX8/TZo1JzjYuqGjRmRNDuzbl6bqDSmf89GjPqP/s88l21/n9cP++mraTn2ftUrlZs/xcxz4+zyqkCNLEAA5swZz5LSVFV+BHFms8589JJiTsReJ9zKptpvnxV8EZz2WRCQzVgD9WlWTvojDSd10++8Re/t+oIjH4YXtbT6TroPoD99/y11d7nFMz9MyuVz5ikybMgmAnyf8yP59e69xtHeUq1CRqbbuRId03az3n7tt7cushv839r80u+POwLSvw/kGK9AtXbqYhvVqcUfThn7bX6eEU99ny9vzM339IQCip23l2RZlmTcgimdblOXDWdsB+PrXPZTMm4OFzzdgUt/aDJ76O4EYU7h5XrzFqTFRsabvvwB+U9X3Pd6aDPS0n/cEJnls72HP0tcCTnp0+33C7Xyi/ezbDTaJyHgRyeqUdlxcHNOnTqFjp7sc0bvcMnnEyNF8PupTourU4PSZ02QOCXGknBEjRzN65KfUr12DM6cD13Wz3mfOnOG+rncR/e77l1gND40eTHBwMF26+m9zcb3ON5Bsf71g8a+89fYQenTr4pf9dUo48X1mDhIalQ9l1ibL/OGemoWJnraVJkMW8c70rbzRsSIA9crm4fcDp2kQvZCOn/zKS23KJ7dY/cHN8+I1ziUUrQt0Bxp72LS3BKKBZiKyHWhqvwaYDuwCdgCfA4/5+xFcu9leRAoBfYEKqhorIt9jGdaNcUJ/1swZVK0WTr58+a698zVIyTK5bFg5Jk217I23b9/GrBnT/03Ca8LCyjFpmofuTP913az3xYsXue+eztx9Tzfatf/HavircWOYMWMaU2fM8dm473rUOyUKFSpM2/Ydk+2vM2XKxLFjxwgNDQ1Y24nvs37ZPGw5cIq/zsQB0C68IIOnWm62Mzce5vUOVhDtEF6Q0Yv+AGDP8Vj2nYilZGgONu7zbxLOzfPiLU4t+1TVJVw91DZJYX8FHneibLe788FANhEJBrJjGdY5wg/fOdOVv5pl8tEj1tBJYmIiQ6Pf4sHeKU4E+swlum+/xQMP+afrZr1VlccffoiwcuV50kN7zuyZfPj+u3z3489kz549zdX7arRu245FCy1DtO3bthF3MY48PtpfXw0nvs+WVf7pygMcOXWBGiVyAVCr1G38+dc5AA6ePE+tUlaO89w5QyiRJzt7j8f6XXc3z4u3ZBLvH2kV11qiqrpfRN4F9gCxwGxVvWK9mz+WyWfPnmX+vDl8MuKzgOt5NcvknTt28PnIEQC0bdeB+3rc77P2/d27sXjxQv46doywUkV54aVXOXv2LKM+s3Xbd6B7T9913a73r8uWMt7WrhNpab/6+psMeOZpLly4QLtWdwDW5NJHw3y7R9nNegP08rB6LluyCC++PIgevR7g0T4PUqNaZUJCQhg5eoxfrWg3vs9smYOoUzo3gyb+lrzt1YlbGNi6HEGZhLj4RF6duBmAT+fvYnDnivzctzYiwvuztvP3uYtelePmeQmINBwcvcU1y2R7edVPQBfgb+AH4EdV/epqx6RXy2S3f3duDlO5WXc36+3m2nm3xwUjX5vrmrZba+fr167BGoctkytXCdcJs5d6vX/Z/NnTpGWym935psAfqnpUVS9imdXVcbE8g8GQnvDh9qa0nO3JzSC6B6glItnt2w+aYC3FMhgMBsC4ff4rqrpCRH4E1mAlB1gLXLHCwGAw3MCk5ejoJW5bJr8KvOpmGQaDIb1iMtsbDAZDQKTlsU5vMUHUYDCkCml9rNNbTBA1GAypRwaIoiaIGgyGVCNTBujPmyBqMBhSjfQfQk0QNRgMqUUav4neW9JcEHVrxV2wlxnA/cH17GEu/tDOXIh3TTt7iP9p2q5FkIvLPuNctHoGWPN6c9e0w/pPcUX30L6TruhmhLZomguiBoPhxiAps316xwRRg8GQamSAGGqCqMFgSD0yQks0XXgsPdLnAYoVzkeEh93r8ePHad2iObdXKEvrFs05ceKEI2V98tEHVK9SiYiqlel5XzfOnz/vt1ZK9X7h+WepVrk8kdWrcM9d/tkOu629Y/tWGteNSH6UKpSbkcMta+PRnw2nbvVKREVW4fWXn/dLPyXr4Q3r19Eoqg51IsOJqhNJzKqVfmlfzuxZM7m9YhgVy5Vm6BDf3Uk9OX/+PI3q1aJuZDVqhldm8BuDLnl/wDNPUTDPzSkf7GM59WpHEhlehfAqFXnjNf9WTj/YsCRznm/I7Ocb8HGPcLIEZ2JI1yrMGBDFzOca8On91S8Zt25VtQBzBzZkzvMN+bhHtYA/hzf46PaZJkkXQfS+FOxe3xsaTcPGjdmwZRsNGzf2y773cvbv38+I4Z+wZPkqYtZtJCEhgR++/9ZvvZTq3bhJM1at3cjK1espXaYM7w55O81ply4TxvylMcxfGsOcRSvIli07Ldu0Y8miX5g5fQrzl61m0cr1PNr3Gb/0U7IefvmF5xj44sssW7mGF18ZxMsv+BegPUlISODpvo8zacoM1m7Ywg/fjue3LVv81suSJQtTZs5l6cq1LFmxhrmzZ7FqxXIA1qyO4e+/nbmQZ8mShZlz5rNyzXpWxKxj9qyZrFi+3CeNfLdk5f6oErR+bxHNoxcSlEloE16Q1ydspsWQRdz5zkIOnIilZ1QJAIqH5uDxZmXo+OFSmkX/wmsTNjvyWa5JBkjjlC6CaL36Udx2md3rtCmTufc+y8Tv3vt6MnXypJQO9Zn4+HhiY2OJj4/nXOw5ChQo6LdWSvVu6mE7HFmzFvv3++XS6qq2J4t/mU/xEiUpUrQYY78YyZP9nk222A0Ndc56WEQ4fcryCjp18iQFChQIrOLAqpUrKVWqNCVKliQkJIS7utyT7MzpDyJCzpw5Acsn6mL8RUSEhIQEXnnhOV5/652A65xSOfEXL/qVcT4ok5A1cxBBmYRsIUEcPnnhkrsxsmQOSk5A3bV2UcYt3s2pWCtTfpLfk9tkgBiaPoJoShw5cjj5Hy1//vwcOXI4YM1ChQrxdL/+hJUqRsmiBbnl5lto2sy921HGjfkvzQO0HXZbe+JP39OhcxcAdu7YzoplS7izUV3at2jC2tUxAesnEf3uB7w08DnKlSrGiwMHMOiNwQFrHjiwn8KF/7EWL1SocMAXloSEBOrVDKd00fw0atyUiMiajPp0OC1atSG/A4Hfs5ya1atStGBeGjdtRmTNmtc+yIPDJ88zasFOfh3UlFVvNON07EUWbz0KwNBuVYh5szml8+VkzKLdAJQIzUmJvDn46am6TOxXjwbl3DerE7FWLHn7SKu4bZn8lG2XvFlEnnaxHEe8YU6cOMHUKZPZsm0XO//cz9mzZxn/9VXdTAJiSPRbBAcHc08AtsNua8fFxTF7+lTadOgE2Ba7J04wY/4SXnkjmt69ujlmpfHFqM+IHvoev+/8k+gh7/H4I70d0XWaoKAglqxYw5Yde1gTs4qlSxbx84QfefixJxwvZ8XqdezYvY+YVSvZvGmTT8ffnC0zzSvlp95r84h8eQ7ZQoLpEFEIgGe/WU/ky7PZcfgMbcKtnlZwkFA8NAddPllG37Grib6nCjdnuw7zzhmgKepaEBWRSkBvIBKoArQWkdJO6efNm4+DBw8CcPDgQb+7lp4smDeXYsWLExoaSubMmWnXvgPLly8LWPdy/jduDDOmT+PLsV85bgzmpPa8OTOpXKUaefNattQFCxamVdv2iAjhETXIJJn4669jTlSbb74al2yf3KHTXayOCXxiqWDBQuzbtzf59f79+yhUqFDAugC33nor9Rs0ZPHCX9i1awfVKpalclhJzp07R9WKZR0pI6mcBg0bMXv2TJ+OqxeWh73Hz3H8bBzxicrMDQepXuKfIZREhclr9tOiitV6Pvh3LHM3HSY+Udl7PJY/jp6heGgOxz7H1cgAMdTVlmh5YIWqnlPVeGAh0PEax3hNy9Zt+PqrsQB8/dVYWrVpG7Bm4aJFWbViBefOnUNV+WXBfMqVKx+wriezZ83kw/eG8v1Pk/y2Hb5e2hN/+I4Od3VJft2idVuWLvoFgJ3bt3HxYhy5cztjsZu/QEGWLFoIwMIF8ylVukzAmhE1arBjx3Z2//EHcXFx/PDdt7Rq7f/v5NjRo8l3PMTGxrJg3lyqVgtn++4DbNy6i41bd5E9e3bWbd4WUL2PXlbOvLlzCAsr55PGgROxVCuWi6yZrdn3umXzsOPQaYrl+ed30axSfnYePgPA7A2HqFXasmPOlSOEEqE52XPsXECfwxsygseSm+31TcBbIpIbyzK5JeDXIFpPD7vXMiWL8NLLg+j/7PN079aFcf/9kiJFi/G/b74LuMKRkTVp37ETdSKrExwcTJWq1fz2hb9avd8dEs2FuAu0adk8ucyPh/tu/eymNli21IsWzOPdj0Ykb+vavRdPP9abqJpVCQkJ4ePPvnDMeviTESN57j/9iI+PJ2vWrH7X25Pg4GA++GgYbVrdQUJCAj17PUCFihX91jt06CCP9L6fxIQEEhMT6dDpLu5s2Trgel5RzsGD9H6gJwkJCSRqIp06303LVr6Vs+7Pv5m+/gDTno0iITGRzftO8c2yPYx/ojY5swYjAr/tP8WL328EYOHvR4kqF8rcgQ1JSFQGT9ritR2z/6TtW5e8xTXLZAAReRB4DDgLbAYuqOrTl+3j6Ttf/fftu12qiyuywHVYO+8i6XXtfHCQe52ouPhE17QBQoLdq7tra+e/fYYLh7c7+l9ULTxC5y9Z4fX+t+UIvuEsk1HVL1S1uqpGASeAK/o5qjpKVSNUNSJPHvdnBA0Gg8FJXJ1+E5G8qnpERIpijYfWcrM8g8GQvkjLY53e4vY9DD/ZY6IXgcdV1b91iAaDIUOSEcZE3bZMru+mvsFgSL9YN9undi0Cx2RxMhgMqYcJogaDweA/pjtvMBgMAZARJpbSbQISg8GQ/nFy2aeI3CkiW0Vkh4gEnkvRS0wQNRgMqYdDUVREgoDhQAugAtBVRCq4VW1PTBA1GAyphoOZ7SOBHaq6S1XjgG+Bdq5/ANLYmOjaNauP5ciS6U8vd88DOJNC6Ppqu61vtDOOttv6vmgXc7rwtWtWz8oeIr5ksMkqIp75N0ap6ij7eSFgr8d7+wDfkrD6SZoKoqrq9bpPEYlxax2tm9pu6xvtjKPttr7bdb8WqupORvLrjOnOGwyGjMB+oIjH68L2NtcxQdRgMGQEVgFlRKSEiIQA9wCTr0fBaao77yOjrr1LmtR2W99oZxxtt/Xdrvt1Q1XjReQJYBYQBHypqtfFstTVfKIGg8GQ0THdeYPBYAgAE0QNBoMhAEwQNXiFOG1Leh0QEdfsKkUkf3o8JwbnSVdBVETCRKS2iGS2l3k5re+KKZCIlBaRCBHJ4oJ2RRFpYCe/dlq7noh0B1BVdTpoiEgbEXnKSU0P7XbAOyISuJf2ldp3ABO59JYap7RriUh3+2+Iw9pl7N9hJrd+6zci6SaIikhHYBLwJvAF8LiI3OyQdlkAVU1w+sclIq2BCcBQYExSWQ5ptwDGA/2AcSKS3yHdTCKSExgJDBSRRyA5kDrymxGR5sAbwBYn9C7TbgC8A0xS1SMOaze3tQsA/R3Wbos1Y94U+A8OrhISkfbAj8BA4H3gYTdb6jcS6SKIikhmoAvwoKo2wQqmRYDnAg2kdpBbJyLfgLOBVETqYAXPnqraCMusz5HsMiLSEPgIeEhV2wNxQCUntFU1UVXPAGOxLlh1RKRf0nuB6tvn5X9AH1WdIyK3iEgxEcl+rWO9pDow2tYuKCLNRKSmiNwSiKiINAVGAPcCZYDyIhLlQH2xexKPA91UtSdwCqgqInlFJKsD2g8DXVW1E7ABuB94RkRuCrDqNzzpIoja3Iz1wwWrKzUVyAx087ebaV+JnwCeBuJE5CtwvEX6jqqutZ+/CtzmULf+MPCwqq60W6A1gSdEZKSIdHao6x2PdbEaC0SKyPsi8rZYBPLb+QvLd6uA/Q/+M/ApVkvdibp7+kD/CDyA9T0PF5FcAegGAT3s+w9zAFuBiuDImHE8kA0oZzcMGgI9gA+BlwJsNcYDOYH8AKr6JbAba+28b4b2hitR1XTxAJphrUCob78OAroBX2Hf7+qnbkGsH1gerH+4rxyscxBws8fzwsBaINTeltuhcl4EXrKf98LKYBPqgG4p4Hn7eX/gHDDcoTpXAXZhJYrojXVBfwBreOK2ALUrYwW4b4H77W0lgc+AOxyoeyb7753AIaCyQ+ekM7AaWA68bG9rDIwBqgSo/Yj9v9IdeMt+/jDwhRN1v5Ef6akluhiYDXQXkShVTVDVb7CCYBV/RVX1gKqeUdVjWD+qbEktUhEJF5FyAWgnqOop+6UAfwPHVfWoiNwLvCki2fzV9yjnLVV9034+BqvV7sSkRywQJiK9sf4Jo4GiIvJwoMKquh6rFRStqp+rNYTwJZALKBqg9kasMcWaQAl72y6sC5nXSW7+RT/R/jsTawyztQOtc1T1R6zx0MVYF1tUdT5wE4GPj44HZgCNgGyqep+qjgTyOTW3cKOSbpZ9qup5EfkaUKzJjnLABSAfcNChMv6yA8RQEfkd65+ukUPa8cAZEdkrIm8DzYFeqhobiK6IiNpNDft1J6xzciCgCmNdYERkL/AyluX1FBFpBOwIVNvW34LHxJJd91Cc+T5nYA2fDBKRpPSK1bAuBE6yHmtib4iqJgQqpqonRGQ+cLeIxAFZsS4EGwLUPQl8LSLjky4CItIDuA0IuN43NKndFPb1AYRgBbZvsbo51Vwoox8OdtNsTbHrvhPYA5RxuM5ZgAeBzUAlB3WLANU9Xmdy4XwLVld+C1DRYe1wYDDwnpPf52VlfA8Ud1DvVqAvsBBrLXhAXfmrlJF0vl05JzfSI92unbcnflQdmC2+TDcX1j9Ff1UN6Op/Ff1ewCp1ODmCfQdDM2Cnqm51UtvWv6TF67Q20AA4pKq/u1GGG7h5Tmz9m7DG+09dc2fftYsBmVXVkV7FjUy6DaJuIiJZVfW8S9qu/uMZDIbriwmiBoPBEADpaXbeYDAY0hwmiBoMBkMAmCBqMBgMAWCCqMFgMASACaIZBBFJEJF1IrJJRH4IJJmHiIwRkc7289EiUuFf9m1oJxTxtYzdIt55jotILxEZ5msZBsP1wATRjEOsqlZV1UpYGZ0e8XxTRPxanaaqD6m1suhqNAR8DqIGQ0bBBNGMyWKgtN1KXCwik4EtIhIkIkNFZJWIbEhaA2+v+x4mIltFZC6QnMhYRH4RkQj7+Z0iskZE1ovIPBEpjhWs+9mt4PoiEioiP9llrBKRuvaxuUVktohsFpHRWKuUruDyMlJ4v42IrBCRtSIyV0Ty2dsb2HVYZ793k4gUEJFFHi30+k6eZIMB0tHaeYN32C3OFsBMe1M41jLQP0SkD3BSVWuIlY5vqYjMxlpTHgZUwFp3vwX48jLdUOBzIMrWuk1Vj4vIZ8AZVX3X3u8b4ANVXSIiRbGWLZbHWse+RFVfF5FWWEtUL6/7FWWk8BGXALVUVUXkIWAAVoap/2Ct718qVkLp80AfYJaqvmWvcHMqX6nBkIwJohmHbCKyzn6+GDuZMrBSVf+wtzcHbk8a7wRuwcrRGgWMVyuBxgE7AcaTviwBAAABqUlEQVTl1AIWJWmp6vGr1KMpUEH+Sa95sx3UooCO9rHTROSEn2UUBr4TkQJYuQiSPttS4H07Sc0EVd0nIquAL+0lsT+r6roU9AyGgDDd+YxD0phoVVV9UlXj7O1nPfYR4EmP/Uqo6myH65EJq6WYVEYhtbLkO8UnwDBVrYyVujArgKpGAw9hJTZeKiLlVHURVvDej5XwuYeD9TAYABNEbzRmAY/aLTNEpKxYGdMXAV3sMdMCpJz+bzkQJSIl7GOTutqnsfJdJjEbeDLphYhUtZ8uwkqineQNlVKG+auV4cktWEERoKdHOaVUdaOqvgOswsoQXww4rKqfA6OxhjYMBkcxQfTGYjTWeOcaEdmEZUQXjGW3st1+bxzw6+UHqupRrDHGCSKyHvjOfmsK0CFpYgkrhVuEPXG1hX/uEngNK0BuxurW7/GhDE8GAT+IyGrgmMf2p+3Jow1Y1iMzsO4cWC8ia7E8uj669ikyGHzDJCAxGAyGADAtUYPBYAgAE0QNBoMhAEwQNRgMhgAwQdRgMBgCwARRg8FgCAATRA0GgyEATBA1GAyGAPg/jUoMGq4iAisAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [], + "needs_background": "light" + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8AHw3nnTKBga", + "colab_type": "text" + }, + "source": [ + "## 12. References\n", + "[1] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708)." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Y0CMk2YQ6_OV", + "colab_type": "code", + "colab": {} + }, + "source": [ + "" + ], + "execution_count": 33, + "outputs": [] + } + ] +} \ No newline at end of file From c17977a149d83b5a20c685ff67812834a83a89b6 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Sun, 6 Sep 2020 19:59:09 +0200 Subject: [PATCH 12/13] Update README.md --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 1bba79c4..8aaaea24 100644 --- a/README.md +++ b/README.md @@ -29,6 +29,8 @@ It is suitable for beginners who want to find clear and concise examples about T - **Simple Neural Network (low-level)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/neural_network_raw.ipynb)). Raw implementation of a simple neural network to classify MNIST digits dataset. - **Convolutional Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/convolutional_network.ipynb)). Use TensorFlow 2.0 'layers' and 'model' API to build a convolutional neural network to classify MNIST digits dataset. - **Convolutional Neural Network (low-level)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb)). Raw implementation of a convolutional neural network to classify MNIST digits dataset. +- **Short Tutorial with code on Convolutional Neural Network (low-level)** ([notebook](https://github.com/aeonSolutions/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/Convolutional_neural_networks.ipynb)). Short Tutorial on how to implement a convolutional neural network to classify MNIST digits dataset. +- **Densely Connected Networks (low-level)** ([notebook](https://github.com/aeonSolutions/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/Densely_connected_networks_ipy.ipynb)). Short Tutorial on how to implement a DesNet to classify MNIST digits dataset. - **Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/recurrent_network.ipynb)). Build a recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0 'layers' and 'model' API. - **Bi-directional Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset, using TensorFlow 2.0 'layers' and 'model' API. - **Dynamic Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/dynamic_rnn.ipynb)). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of variable length, using TensorFlow 2.0 'layers' and 'model' API. From d0ca36c85f3742107c4bda87cb972c81ffb80f21 Mon Sep 17 00:00:00 2001 From: Miguel Silva Date: Sun, 6 Sep 2020 19:59:59 +0200 Subject: [PATCH 13/13] Update README.md --- README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/README.md b/README.md index 8aaaea24..848c1e11 100644 --- a/README.md +++ b/README.md @@ -4,8 +4,6 @@ This tutorial was designed for easily diving into TensorFlow, through examples. It is suitable for beginners who want to find clear and concise examples about TensorFlow. Besides the traditional 'raw' TensorFlow implementations, you can also find the latest TensorFlow API practices (such as `layers`, `estimator`, `dataset`, ...). -**Update (05/16/2020):** Moving all default examples to TF2. For TF v1 examples: [check here](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v1). - ## Tutorial index #### 0 - Prerequisite