generated from azh2/SocialVulnR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSocial_Vuln_R_Script.R
779 lines (689 loc) · 23.2 KB
/
Social_Vuln_R_Script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
## R
readlines <- function(...) {
lapply(list(...), readline)
}
input = readlines(
"Please Input Your Census API Key (Get a Free Census Api Key Here: <https://api.census.gov/data/key_signup.html>): ",
"Enter the State(s) you would like to use separated by a comma (i.e. Oregon, Washington) or enter USA if you want to calculate SVI for all 50 states: ",
"What Year would you like to calculate? (2009-2019 Are Available): ",
"Where would you like to save these files? Please type or copy and paste a complete file path: "
)
#**Install and load required packages**
API.key = input[[1]]
States = as.list(unlist(strsplit(input[[2]], split=",")))
Year = as.integer(input[[3]])
dir.create(paste0(gsub("\\\\", "/", input[[4]]), "/Social_Vulnerability"))
setwd(paste0(gsub("\\\\", "/", input[[4]]), "/Social_Vulnerability"))
ReqPkgs <-
c(
'knitr',
'sp',
'sf',
'spdep',
'tidycensus',
'dplyr',
'tidyr',
'mapview',
'RColorBrewer',
'leaflet',
'leafpop',
'ggplot2',
'data.table'
)
ReqPkgs <- as.list(ReqPkgs)
package.check <- lapply(
ReqPkgs,
FUN = function(x) {
if (!require(x, character.only = TRUE)) {
install.packages(x, dependencies = TRUE)
library(x, character.only = TRUE)
}
}
)
options(tigris_use_cache = TRUE)
### TidyCensus
#For this section you will use the `tidycensus` package to read in data from the American Community Survey, including geometry.
#Get a Free Census Api Key Here: <https://api.census.gov/data/key_signup.html>
tidycensus::census_api_key(key = API.key,
install = TRUE,
overwrite = TRUE)
readRenviron("~/.Renviron")
### List Counties in State
#Now were making a simple character vector to store the names of all the counties we'll be using to pull in the census data since no option exists to pull out blockgroup level data for the whole state.
'%notin%' <- Negate('%in%')
US.States <-
as.list(
c(
'West Virginia',
'Florida',
'Illinois',
'Minnesota',
'Maryland',
'Rhode Island',
'Idaho',
'New Hampshire',
'North Carolina',
'Vermont',
'Connecticut',
'Delaware',
'New Mexico',
'California',
'New Jersey',
'Wisconsin',
'Oregon',
'Nebraska',
'Pennsylvania',
'Washington',
'Louisiana',
'Georgia',
'Alabama',
'Utah',
'Ohio',
'Texas',
'Colorado',
'South Carolina',
'Oklahoma',
'Tennessee',
'Wyoming',
'Hawaii',
'North Dakota',
'Kentucky',
'Maine',
'New York',
'Nevada',
'Alaska',
'Michigan',
'Arkansas',
'Mississippi',
'Missouri',
'Montana',
'Kansas',
'Indiana',
'South Dakota',
'Massachusetts',
'Virginia',
'District of Columbia',
'Iowa',
'Arizona'
)
)
Counties <- c()
if (States[[1]] == "USA") {
States <- US.States
} else if (States %notin% US.States) {
print("Please check state name(s) and try again, see the list of acceptable state names below:")
print(as.character(US.States))
} else {
States <- States
}
for (i in seq(1, length(States))) {
State <- as.character(States[[i]])
Counties[[i]] <- tigris::list_counties(state = State)
names(Counties[[i]]) <- State
}
### List Variables To Be Pulled In
#Now were making a simple character vector to store the names of all the variables we'll be pulling in at the blockgroup and tract level, these were selected through a long process of trial an error
#Blockgroup Level Variables
varsBG <-
c(
'B25003_001',
'B25003_003',
'B25070_007',
'B25070_008',
'B25070_009',
'B25070_010',
'B25071_001',
'B11007_001',
'B11007_003',
'B25034_001',
'B25034_008',
'B25034_009',
'B25034_010',
'B25034_011',
'B01003_001',
'B19301_001',
'B25033_001',
'B25033_006',
'B25033_007',
'B25033_012',
'B25033_013',
'B25044_001',
'B25044_003',
'B25044_010',
'B23025_003',
'B23025_005',
'B25014_001',
'B25014_005',
'B25014_006',
'B25014_007',
'B25014_011',
'B25014_012',
'B25014_013',
'B25024_001',
'B25024_007',
'B25024_008',
'B25024_009',
'B09021_022',
'B09021_001',
'B01001_020',
'B01001_021',
'B01001_022',
'B01001_023',
'B01001_024',
'B01001_025',
'B01001_044',
'B01001_045',
'B01001_046',
'B01001_047',
'B01001_048',
'B01001_049',
'B99163_001',
'B99163_005',
'B01001_003',
'B01001_004',
'B01001_005',
'B01001_006',
'B01001_027',
'B01001_028',
'B01001_029',
'B01001_030',
'B03002_003',
'B02001_004',
'B02001_001',
'B02001_003',
'B03003_003',
'B02001_006',
'B02001_007',
'B02001_008',
'B03002_003',
'B03002_001',
'B02001_001',
'B25002_001',
'B25002_003',
'B15003_001',
'B15003_016',
'B15003_017',
'B15003_018',
'B15003_019',
'B15003_020',
'B15003_021',
'B15003_022',
'B15003_023',
'B15003_024',
'B15003_025',
'B02001_005',
'B03003_001',
'B25070_001',
'B17020_001',
'C17002_001',
'C17002_002',
'C17002_003',
'C17002_004',
'B23008_008',
'B23008_021',
'B23008_002',
'B23008_015',
'B23008_008',
'B23008_021',
'B23008_002',
'B23008_015'
)
#Tract Level Variables
varsCT <-
c(
'B01003_001',
'B18101_025',
'B18101_026',
'B18101_006',
'B18101_007',
'C18130_009',
'C18130_010',
'C18130_016',
'C18130_017',
'B26001_001',
'B11004_012',
'B11004_018',
'B09008_001',
'B09008_010',
'B09008_011',
'B09008_012',
'B17023_001',
'B17023_016',
'B17023_017',
'B17023_018',
'B22002_001'
)
### Pulling in Block Group Level
#This chunk of code is pulling in all the blockgroup level variables described previously
print("Bringing in blockgroup data...")
CBG18_1 <- c()
for (i in seq(1, length(States))) {
CBG18_1[[i]] <- tidycensus::get_acs(
#get_decentennial() pulls in data from the decentennial census 1990-2010
geography = 'block group',
#other options include us, region, division, state, county subdivision, census tract, block, place, alaska native regional corporation, american indian area/alaska native area/hawaiian home land, american indian area/alaska native area (reservation or statistical entity only), american indian area (off-reservation trust land only)/hawaiian home land, metropolitan statistical area/micropolitan statistical area, combined statistical area, new england city and town area, combined new england city and town area, urban area, congressional district, school district (elementary, secondary or unified), public use microdata area, zip code tabulation area, and state legislative district (upper or lower chamber).
state = names(Counties[[i]])[1],
county = as.character(unlist(Counties[[i]][1])),
#The county list created in the previous step
survey = 'acs5',
#could include the ACS 1, 3 or 5 year surveys
year = Year,
#2009 through 2018 are available. Defaults to 2018
variables = varsBG,
#The variable list created in the previous step, use tidycensus::load_variables to see what variables are available for the survey and or geography, there may be alternatives or others you want to add!
geometry = FALSE,
#if TRUE, uses the tigris package to return an sf tibble with simple feature geometry in the 'geometry' column. We use Tigris later to pull the geometry in.
output = 'wide',
show_call = FALSE
)
}
CBG18_1 <- do.call("rbind", CBG18_1)
#Separate Place Names#
CBG18_1 <-
tidyr::separate(
data = CBG18_1,
col = "NAME",
into = c("BLOCK_GROUP", "CENSUS_TRACT", "COUNTY", "STATE"),
sep = ",",
remove = FALSE
)
names(CT18_1)[names(CT18_1) == "B01003_001E"] <- "B01003_001T"
CBG18_1$TRACT_GEOID <- substring(CBG18_1$GEOID, 1, 11)
#print(dim(CBG18_1)) #The dimensions should match this for Oregon: 2,634 x 187
### Pulling in Tract Level Variables
#This chunk of code is pulling in all the tract level variables described previously
print("Bringing in tract data...")
CT18_1 <- c()
for (i in seq(1, length(States))) {
CT18_1[[i]] <- tidycensus::get_acs(
#get_decentennial() pulls in data from the decentennial census 1990-2010
geography = 'Tract',
#other options include us, region, division, state, county subdivision, census tract, block, place, alaska native regional corporation, american indian area/alaska native area/hawaiian home land, american indian area/alaska native area (reservation or statistical entity only), american indian area (off-reservation trust land only)/hawaiian home land, metropolitan statistical area/micropolitan statistical area, combined statistical area, new england city and town area, combined new england city and town area, urban area, congressional district, school district (elementary, secondary or unified), public use microdata area, zip code tabulation area, and state legislative district (upper or lower chamber).
state = names(Counties[[i]])[1],
county = as.character(unlist(Counties[[i]][1])),
#The county list created in the previous step
survey = 'acs5',
#could include the ACS 1, 3 or 5 year surveys
year = Year,
#2009 through 2018 are available. Defaults to 2018
variables = varsCT,
#The variable list created in the previous step, use tidycensus::load_variables to see what variables are available for the survey and or geography, there may be alternatives or others you want to add!
geometry = FALSE,
#if TRUE, uses the tigris package to return an sf tibble with simple feature geometry in the 'geometry' column. We use Tigris later to pull the geometry in.
output = 'wide',
show_call = FALSE
)
}
CT18_1 <- do.call("rbind", CT18_1)
#Separate Place Names
CT18_1 <-
tidyr::separate(
data = CT18_1,
col = "NAME",
into = c("CENSUS_TRACT", "COUNTY", "STATE"),
sep = ","
)
CT18_1$TRACT_GEOID <- CT18_1$GEOID
### Join Tables
#This chunk uses dplyr to join the tract level variables to the block
#groups, the variables remain consistent across the block group, this
#is not ideal and if you find some way to represent these variables
#more accurately at the block group level, please feel free to change
#them.
JndTbls <-
dplyr::left_join(x = CBG18_1, y = CT18_1, by = "TRACT_GEOID")
### Now to calculate each of the statistics
#SOCIOECONOMIC STATUS:
JndTbls$TOTPOP <- JndTbls$B01003_001E #TOTAL_POPULATION -
JndTbls$POV <-
(JndTbls$C17002_002E + JndTbls$C17002_003E) / JndTbls$C17002_001E #PER_POVERTY
JndTbls$UNEMP <-
JndTbls$B23025_005E / JndTbls$B23025_003E #PER_UNEMPLOYED
JndTbls$PCI <- JndTbls$B19301_001E #PER_CAPITA_INCOME
#LANGUAGE AND EDUCATION:
JndTbls$NOHSDP <-
1 - ((
JndTbls$B15003_016E + JndTbls$B15003_017E + JndTbls$B15003_018E + JndTbls$B15003_019E +
JndTbls$B15003_020E + JndTbls$B15003_021E + JndTbls$B15003_022E + JndTbls$B15003_023E +
JndTbls$B15003_024E + JndTbls$B15003_025E
) / JndTbls$B15003_001E
) #PER_LESS_HS_GRAD
JndTbls$LIMENG <-
JndTbls$B99163_005E / JndTbls$B99163_001E #PER_POOR_ENGLISH
#DEMOGRAPHICS:
JndTbls$AGE65 <-
JndTbls$B09021_022E / JndTbls$B09021_001E #PER_OVER_65
JndTbls$AGE17 <-
(
JndTbls$B01001_003E + JndTbls$B01001_004E + JndTbls$B01001_005E + JndTbls$B01001_006E +
JndTbls$B01001_027E + JndTbls$B01001_028E + JndTbls$B01001_029E + JndTbls$B01001_030E
) / JndTbls$B01003_001E #PER_UNDER_17
JndTbls$DISABL <-
(
JndTbls$B18101_026E + JndTbls$B18101_007E + JndTbls$C18130_010E + JndTbls$C18130_017E
) / (
JndTbls$B18101_025E + JndTbls$B18101_006E + JndTbls$C18130_009E + JndTbls$C18130_016E
) #PER_DISABLED
JndTbls$SNGPNT <-
(JndTbls$B23008_008E+JndTbls$B23008_021E)/(JndTbls$B23008_002E+JndTbls$B23008_015E) #PER_SINGL_PRNT
#OR JndTbls$SNGPNT <- (JndTbls$B09008_010E + JndTbls$B09008_011E + JndTbls$B09008_012E) / JndTbls$B09008_001E See Notes in Read Me.
#HOUSING AND TRANSPORTATION:
JndTbls$MUNIT <-
(JndTbls$B25024_007E + JndTbls$B25024_008E + JndTbls$B25024_009E) / JndTbls$B25024_001E #PER_MULTI_DWELL
JndTbls$MOBILE <-
(
JndTbls$B25033_006E + JndTbls$B25033_007E + JndTbls$B25033_012E + JndTbls$B25033_013E
) / JndTbls$B25033_001E #PER_MOBILE_DWEL
JndTbls$CROWD <-
(
JndTbls$B25014_005E + JndTbls$B25014_006E + JndTbls$B25014_007E + JndTbls$B25014_011E +
JndTbls$B25014_012E + JndTbls$B25014_013E
) / JndTbls$B25014_001E #PER_CROWD_DWELL
JndTbls$NOVEH <-
(JndTbls$B25044_003E + JndTbls$B25044_010E) / JndTbls$B25044_001E #PER_NO_VEH_AVAIL
JndTbls$GROUPQ <-
JndTbls$B26001_001E / JndTbls$B01003_001T #PER_GROUP_DWELL
#RACIAL AND ETHNIC MAKEUP:
JndTbls$MINORITY <- 1 - (JndTbls$B03002_003E / JndTbls$B03002_001E)
JndTbls$NTVAMRCN <- JndTbls$B02001_004E / JndTbls$B02001_001E
JndTbls$ASIAN <- JndTbls$B02001_005E / JndTbls$B02001_001E
JndTbls$BLACK <- JndTbls$B02001_003E / JndTbls$B02001_001E
JndTbls$HISPLATX <- JndTbls$B03003_003E / JndTbls$B03003_001E
JndTbls$PACISL <- JndTbls$B02001_006E / JndTbls$B02001_001E
JndTbls$OTHRRACE <- JndTbls$B02001_007E / JndTbls$B02001_001E
JndTbls$MULTRACE <- JndTbls$B02001_008E / JndTbls$B02001_001E
JndTbls$WHITE <- JndTbls$B03002_003E / JndTbls$B03002_001E
#OPTIONAL VARIABLES:
JndTbls$HOMESOCCPD <- 1 - JndTbls$B25002_003E / JndTbls$B25002_001E
JndTbls$RENTER <- JndTbls$B25003_003E / JndTbls$B25003_001E
JndTbls$RENTBURDEN <-
(
JndTbls$B25070_007E + JndTbls$B25070_008E + JndTbls$B25070_009E + JndTbls$B25070_010E
) / JndTbls$B25070_001E
JndTbls$RENTASPERINCOME <- (JndTbls$B25071_001E / 100)
JndTbls$OVR65ALONE <- JndTbls$B11007_003E / JndTbls$B11007_001E
JndTbls$BLTBFR1969 <-
(
JndTbls$B25034_008E + JndTbls$B25034_009E + JndTbls$B25034_010E + JndTbls$B25034_011E
) / JndTbls$B25034_001E
JndTbls$SVRPOV <- JndTbls$C17002_002E / JndTbls$C17002_001E
JndTbls$MODPOV <- JndTbls$C17002_004E / JndTbls$C17002_001E
JndTbls$SINGLMTHRPVRTY <-
(JndTbls$B17023_016E + JndTbls$B17023_017E + JndTbls$B17023_018E) / JndTbls$B17023_001E
#RANKING#
#These functions rank each of the variables, variables with matching values across ranks are given the max score, this is the default in excel where the original formulae were derived
a <-
JndTbls$RNKPOV <-
rank(x = -JndTbls$POV,
na.last = "keep",
ties.method = "max")
b <-
JndTbls$RNKUNEMP <-
rank(x = -JndTbls$UNEMP,
na.last = "keep",
ties.method = "max")
c <-
JndTbls$RNKPCI <-
rank(x = JndTbls$PCI,
na.last = "keep",
ties.method = "max") #Note that we are not taking the inverse here because the higher the Per Capita Income, the greater the Adaptive Capacity of a given blockgroup
d <-
JndTbls$RNKNOHSDP <-
rank(x = -JndTbls$NOHSDP,
na.last = "keep",
ties.method = "max")
e <-
JndTbls$RNKLIMENG <-
rank(x = -JndTbls$LIMENG,
na.last = "keep",
ties.method = "max")
f <-
JndTbls$RNKAGE65 <-
rank(x = -JndTbls$AGE65,
na.last = "keep",
ties.method = "max")
g <-
JndTbls$RNKAGE17 <-
rank(x = -JndTbls$AGE17,
na.last = "keep",
ties.method = "max")
h <-
JndTbls$RNKDISABL <-
rank(x = -JndTbls$DISABL,
na.last = "keep",
ties.method = "max")
i <-
JndTbls$RNKSNGPNT <-
rank(x = -JndTbls$SNGPNT,
na.last = "keep",
ties.method = "max")
j <-
JndTbls$RNKMUNIT <-
rank(x = -JndTbls$MUNIT,
na.last = "keep",
ties.method = "max")
k <-
JndTbls$RNKMOBILE <-
rank(x = -JndTbls$MOBILE,
na.last = "keep",
ties.method = "max")
l <-
JndTbls$RNKCROWD <-
rank(x = -JndTbls$CROWD,
na.last = "keep",
ties.method = "max")
m <-
JndTbls$RNKNOVEH <-
rank(x = -JndTbls$NOVEH,
na.last = "keep",
ties.method = "max")
n <-
JndTbls$RNKGROUPQ <-
rank(x = -JndTbls$GROUPQ,
na.last = "keep",
ties.method = "max")
#Sum The Ranks
JndTbls$SUMRANK = a + b + c + d + e + f + g + h + i + j + k + l + m + n
#Derive the Adaptive Capacity Index
JndTbls$ADPTVCAPACITY <- dplyr::percent_rank(JndTbls$SUMRANK)
#**This Finds How Much Each Variable Contributed to The Final Percent Rank (Optional)**
# This Determines the Percentage Contribution to Final Rank
JndTbls$GEOID <-
JndTbls$GEOID.x #Geoid.s was created in the previous join and needs to be renamed before joining it to the geometry
geoid <- which(colnames(JndTbls) == "GEOID")
a <- which(colnames(JndTbls) == "RNKPOV")
z <- which(colnames(JndTbls) == "RNKGROUPQ")
cols <- as.vector(names(JndTbls[a:z]))
Func <- function(x) {
round((abs(x) / abs(JndTbls$SUMRANK)), 2) * 100
}
RnkPerc <-
dplyr::mutate_at(.tbl = JndTbls,
.vars = cols,
.funs = Func)
RnkPerc <- RnkPerc[c(geoid, a:z)]
JndTbls <- dplyr::right_join(JndTbls, RnkPerc, by = "GEOID")
#### **Now to Bring in Geometry From Tigris**
JndTbls$GEOID <- JndTbls$GEOID.x #Geoid.x was created in the previous join and needs to be renamed before joining it to the geometry
JndTblsSP <- c()
for(i in seq(1, length(States))) {
State <- names(Counties[[i]])[1]
County.Selection <- as.character(unlist(Counties[[i]][1]))
JndTblsSP[[i]] <- tigris::block_groups(state = State, county = County.Selection, cb = TRUE) #we are using simplified geometry here, this can be changed by setting cb = FALSE, but takes a little bit longer to download
}
JndTblsSP <- do.call("rbind", unlist(lapply(JndTblsSP, as_Spatial), recursive = FALSE))
JndTblsSP <- sp::merge(x = JndTblsSP, JndTbls, by = 'GEOID')
#### Now Let's Map Our Results!
suppressPackageStartupMessages(require(leaflet))
suppressPackageStartupMessages(require(dplyr))
suppressPackageStartupMessages(require(leaflet.esri))
pop <- paste0(
"<h3>",
"<b>",
JndTblsSP$COUNTY.x,
"</b>",
"</h3>",
"<b>",
JndTblsSP$CENSUS_TRACT.x,
"</b>",
"<br>",
"<b>",
"TOTAL POPULATION: ",
prettyNum(JndTblsSP$TOTPOP, big.mark = ","),
" +/- ",
JndTblsSP$B01003_001M,
"</b>",
"<br>",
"<b>",
"ADAPTIVE CAPACITY: ",
round(100 * (JndTblsSP$ADPTVCAPACITY), 1),
"%",
"</b>",
"<br>",
"<b><h4>SOCIOECONOMIC STATUS:<b></h4>",
"<b>PCT LIVING IN POVERTY: </b>",
round(100 * (JndTblsSP$POV), 1),
"%",
"<br>",
"<b>PCT 16+ UNEMPLOYED: </b>",
round(100 * (JndTblsSP$UNEMP), 1),
"%",
"<br>",
"<b>PER CAPITA INCOME: </b>",
"$",
prettyNum(JndTblsSP$PCI, big.mark = ","),
"<br>",
"<b><h4>LANGUAGE AND EDUCATION:<b></h4>",
"<b>PCT OF POP 25+ LESS THAN 12th GRADE: </b>",
round(100 * (JndTblsSP$NOHSDP), 1),
"%",
"<br>",
"<b>PCT NO ENGLISH: </b>",
round(100 * (JndTblsSP$LIMENG), 1),
"%",
"<br>",
"<b><h4>DEMOGRAPHICS:</h4><b>",
"<b>PCT UNDER AGE OF 17: </b>",
round(100 * (JndTblsSP$AGE17), 1),
"%",
"<br>",
"<b>PCT 65+: </b>",
round(100 * (JndTblsSP$AGE65), 1),
"%",
"<br>",
"<b>PCT DISABLED: </b>",
round(100 * (JndTblsSP$DISABL), 1),
"%",
"<br>",
"<b>PCT CHLDRN LVNG IN SNGL PARENT HSHLDS: </b>",
round(100 * (JndTblsSP$SNGPNT), 1),
"%",
"<br>",
"<b><h4>HOUSING AND TRANSPORTATION:</h4><b>",
"<b>PCT LIVING IN MULTI-UNIT STRUCTURE: </b>",
round(100 * (JndTblsSP$MUNIT), 1),
"%",
"<br>",
"<b>PCT MOBILE DWELLING: </b>",
round(100 * (JndTblsSP$MOBILE), 1),
"%",
"<br>",
"<b>PCT LIVING IN CROWDED DWELLING: </b>",
round(100 * (JndTblsSP$CROWD), 1),
"%",
"<br>",
"<b>PCT WITH NO VEHICLE ACCESS: </b>",
round(100 * (JndTblsSP$NOVEH), 1),
"%",
"<br>",
"<b>PCT LIVING IN GROUP QUARTERS: </b>",
round(100 * (JndTblsSP$GROUPQ), 1),
"%",
"<br>",
"<b><h4>RACIAL AND ETHNIC MAKEUP:<b></h4>",
"<b>PCT MINORITY: </b>",
round(100 * (JndTblsSP$MINORITY), 1),
"%"
) #Here we're creating a popup for our interactive map, include whatever variables you want here!
BRBG <- RColorBrewer::brewer.pal(n = 11, name = "BrBG")
pal <- leaflet::colorQuantile(
palette = BRBG,
domain = JndTblsSP$ADPTVCAPACITY,
n = 11,
reverse = FALSE
) #Creating a Color Pallete, Feel free to choose whatever one you want, see the package Viridis for some cool options
myMap <- leaflet(data = JndTblsSP) %>% addTiles() %>% addPolygons(
color = "#444444",
weight = 1,
smoothFactor = 0.5,
opacity = 0.5,
fillOpacity = 0.5,
fillColor = ~ pal(ADPTVCAPACITY),
highlightOptions = highlightOptions(
color = "white",
weight = 2,
bringToFront = TRUE
),
popup = pop,
popupOptions = popupOptions(maxHeight = 250, maxWidth = 250,)
) %>% addLegend(
"bottomright",
pal = pal,
values = JndTblsSP$ADPTVCAPACITY,
title = "Adaptive Capacity Score",
labFormat = labelFormat(prefix = ""),
opacity = 0.75
)
mapview::mapshot(myMap, url = paste0(getwd(), "/social_vulnerability_map.html"))
print(
paste0(
"Your Leaflet Web Map can be viewed at: ",
getwd(),
"/social_vulnerability_map.html"
)
)
#### **Use This Function to Export The Shapefile (or csv) to a Folder of Your Choice!**
#Export to Shapefile
rgdal::writeOGR(
obj = JndTblsSP,
dsn = getwd(),
driver = "ESRI Shapefile",
layer = "AdaptiveCapacityR",
morphToESRI = FALSE,
overwrite_layer = TRUE
)
print(
paste0(
"Your Social Vulnerability Shapefile can be viewed at: ",
getwd(),
"/AdaptiveCapacityR.shp"
)
)
#Or CSV (The benefit of this is that it preserves the field names, I found it better to export the geometry (blockgroup_Geom) alone and then join the data by GEOID in ArcGIS)
write.csv(x = JndTbls,
file = paste0(getwd(), "/AdaptiveCapacityR.csv"))
print(
paste0(
"Your Social Vulnerability CSV can be viewed at: ",
getwd(),
"/AdaptiveCapacityR.csv"
)
)
## Licensing/Disclaimer:
#THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
#OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
#IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
#CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
#TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#THIS SOFTWARE HAS NOT BEEN PEER-REVIEWED AND IS SUBJECT TO REVISION. THE
#AUTHOR NOR THE NATURE CONSERVANCY MAKE ANY WARRANTY AS TO THE CURRENCY,
#COMPLETENESS, ACCURACY OR UTILITY OF THIS SOFTWARE. IT IS STRONGLY
#RECOMMENDED THAT CAREFUL ATTENTION BE PAID TO THE DOCUMENTATION
#ASSOCIATED WITH THIS SOFTWARE. THE AUTHOR NOR THE NATURE CONSERVANCY
#SHALL BE HELD LIABLE FOR IMPROPER OR INCORRECT USE OF THIS SOFTWARE OR
#ANY DATA PRODUCED HEREIN. ALL PARTIES UTILIZING THIS SOFTWARE MUST BE
#INFORMED OF THESE RESTRICTIONS. THE NATURE CONSERVANCY AND AUTHOR SHALL
#BE ACKNOWLEDGED IN ANY REPORTS OR OTHER PRODUCTS DERIVED FROM THIS
#SOFTWARE.