-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
58 lines (47 loc) · 2.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
from keras.utils.np_utils import to_categorical
import random, shutil
from keras.models import Sequential
from keras.layers import Dropout, Conv2D, Flatten, Dense, MaxPooling2D, BatchNormalization
from keras.models import load_model
def generator(dir, gen=image.ImageDataGenerator(rescale=1. / 255), shuffle=True, batch_size=1, target_size=(24, 24),
class_mode='categorical'):
return gen.flow_from_directory(dir, batch_size=batch_size, shuffle=shuffle, color_mode='grayscale',
class_mode=class_mode, target_size=target_size)
BS = 32
TS = (24, 24)
train_batch = generator('data/train', shuffle=True, batch_size=BS, target_size=TS)
valid_batch = generator('data/valid', shuffle=True, batch_size=BS, target_size=TS)
SPE = len(train_batch.classes) // BS
VS = len(valid_batch.classes) // BS
print(SPE, VS)
# img,labels= next(train_batch)
# print(img.shape)
model = Sequential([
Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(24, 24, 1)),
MaxPooling2D(pool_size=(1, 1)),
Conv2D(32, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(1, 1)),
# 32 convolution filters used each of size 3x3
# again
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(1, 1)),
# 64 convolution filters used each of size 3x3
# choose the best features via pooling
# randomly turn neurons on and off to improve convergence
Dropout(0.25),
# flatten since too many dimensions, we only want a classification output
Flatten(),
# fully connected to get all relevant data
Dense(128, activation='relu'),
# one more dropout for convergence' sake :)
Dropout(0.5),
# output a softmax to squash the matrix into output probabilities
Dense(2, activation='softmax')
])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(train_batch, validation_data=valid_batch, epochs=15, steps_per_epoch=SPE, validation_steps=VS)
model.save('models/cnnCat2.h5', overwrite=True)