-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gpt2.cs
217 lines (189 loc) · 8.7 KB
/
test_gpt2.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
using System;
using System.Diagnostics;
using static kernel32;
using static math;
using static time;
using static std;
#if test_gpt2_cuda
using static train_gpt2_cuda;
using static train_gpt2_cuda.GPT2;
#else
using static train_gpt2;
using static train_gpt2.GPT2;
#endif
unsafe class test_gpt2 {
// poor man's tensor checker
static bool check_tensor(float* a, float* b, int n, string label) {
int print_upto = 3;
bool ok = true;
float maxdiff = 0.0f;
float tol = 2e-2f;
printf("%s\n", label);
for (int i = 0; i < n; i++) {
// look at the diffence at position i of these two tensors
float diff = fabsf(a[i] - b[i]);
// keep track of the overall error
ok = ok && (diff <= tol);
if (diff > maxdiff) { maxdiff = diff; }
// for the first few elements of each tensor, pretty print
// the actual numbers, so we can do a visual, qualitative proof/assessment
if (i < print_upto) {
if (diff <= tol) {
if (i < print_upto) { Console.BackgroundColor = ConsoleColor.Green; printf("OK"); }
} else {
if (i < print_upto) { Console.BackgroundColor = ConsoleColor.Red; printf("NOT OK"); }
}
Console.ResetColor();
printf(" [%f %f]\n", a[i], b[i]);
}
}
// print the final result for this tensor
if (ok) {
Console.BackgroundColor = ConsoleColor.Green;
printf("TENSOR OK");
Console.ResetColor();
printf(", maxdiff = %e\n", maxdiff);
} else {
Console.BackgroundColor = ConsoleColor.Red;
printf("TENSOR NOT OK");
Console.ResetColor();
printf(", maxdiff = %e\n", maxdiff);
}
Console.ResetColor();
return ok;
}
#if test_gpt2 || test_gpt2_cuda
static unsafe void Main(string[] args) {
// build the GPT-2 model from a checkpoint
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
int C = model.config.channels;
int V = model.config.vocab_size;
int maxT = model.config.max_seq_len;
int L = model.config.num_layers;
// load additional information that we will use for debugging and error checking
IntPtr state_file = fopen("gpt2_124M_debug_state.bin", "rb");
int[] state_header = new int[256];
fread(state_header, state_file);
if (state_header[0] != 20240327) { throw new Exception("Bad magic state file"); }
if (state_header[1] != 1) { throw new Exception("Bad version in state file"); }
int B = state_header[2]; // batch size, e.g. 4
int T = state_header[3]; // time / sequence length (e.g. 64, up to maxT)
printf("[State]\n");
printf("batch_size: %d\n", B);
printf("seq_len: %d\n", T);
ParameterTensors expected_grads;
float* expected_grads_memory = malloc_and_point_parameters(&expected_grads, model.param_sizes);
// inputs and expected outputs, only used for error checking
int* x = (int*) malloc(B * T * sizeof(int));
int* y = (int*) malloc(B * T * sizeof(int));
float* expected_logits = (float*) malloc(B * T * V * sizeof(float));
float* expected_loss = (float*) malloc(1 * sizeof(float));
// read reference information from Python
fread(x, sizeof(int), B*T, state_file);
fread(y, sizeof(int), B*T, state_file);
fread(expected_logits, sizeof(float), B*T*V, state_file);
fread(expected_loss, sizeof(float), 1, state_file);
fread(expected_grads_memory, sizeof(float), model.num_parameters, state_file);
fclose(state_file);
// overall OK signal for the test
bool allok = true;
// expected losses are as follows, from Python
float[] expected_losses = new float[10] {
5.270007133483887f,
4.059706687927246f,
3.3751230239868164f,
2.8007826805114746f,
2.315382242202759f,
1.8490285873413086f,
1.3946564197540283f,
0.9991465210914612f,
0.6240804195404053f,
0.37651097774505615f
};
for (int step = 0; step < 10; step++) {
timespec start, end;
clock_gettime(CLOCK_MONOTONIC, &start);
gpt2_forward(&model, x, y, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
if (step == 0) {
// error checking at step 0 for reference activations/gradients
// at this point, target should be equal to expected_logits, let's compare
int logits_ok = 1;
for (int i=0; i<B*T*V; i++) {
if(i < 3) {
printf("%f %f\n", expected_logits[i], model.acts.logits[i]);
}
if (fabsf(expected_logits[i] - model.acts.logits[i]) >= 1e-2) {
printf("MISMATCH AT INDEX %d: ", i);
printf("%f %f\n", expected_logits[i],model.acts.logits[i]);
logits_ok = 0;
break;
}
}
if(logits_ok == 0) { printf("NOT "); }
printf("OK (LOGITS)\n");
allok = allok && logits_ok == 1;
// compare the achieved loss
if (fabsf(model.mean_loss - *expected_loss) >= 1e-2) {
printf("LOSS MISMATCH: %f %f\n", model.mean_loss, *expected_loss);
allok = false;
} else {
printf("LOSS OK: %f %f\n", model.mean_loss, *expected_loss);
}
// finally check all the gradients
bool[] gradoks = new bool[16];
ParameterTensors grads = model.grads;
gradoks[0] = check_tensor(grads.wte, expected_grads.wte, V*C, "dwte");
gradoks[1] = check_tensor(grads.wpe, expected_grads.wpe, maxT*C, "dwpe");
gradoks[2] = check_tensor(grads.ln1w, expected_grads.ln1w, L*C, "dln1w");
gradoks[3] = check_tensor(grads.ln1b, expected_grads.ln1b, L*C, "dln1b");
gradoks[4] = check_tensor(grads.qkvw, expected_grads.qkvw, L*3*C*C, "dqkvw");
gradoks[5] = check_tensor(grads.qkvb, expected_grads.qkvb, L*3*C, "dqkvb");
gradoks[6] = check_tensor(grads.attprojw, expected_grads.attprojw, L*C*C, "dattprojw");
gradoks[7] = check_tensor(grads.attprojb, expected_grads.attprojb, L*C, "dattprojb");
gradoks[8] = check_tensor(grads.ln2w, expected_grads.ln2w, L*C, "dln2w");
gradoks[9] = check_tensor(grads.ln2b, expected_grads.ln2b, L*C, "dln2b");
gradoks[10] = check_tensor(grads.fcw, expected_grads.fcw, L*4*C*C, "dfcw");
gradoks[11] = check_tensor(grads.fcb, expected_grads.fcb, L*4*C, "dfcb");
gradoks[12] = check_tensor(grads.fcprojw, expected_grads.fcprojw, L*C*4*C, "dfcprojw");
gradoks[13] = check_tensor(grads.fcprojb, expected_grads.fcprojb, L*C, "dfcprojb");
gradoks[14] = check_tensor(grads.lnfw, expected_grads.lnfw, C, "dlnfw");
gradoks[15] = check_tensor(grads.lnfb, expected_grads.lnfb, C, "dlnfb");
for (int i = 0; i < 16; i++) {
allok = allok && gradoks[i];
}
}
gpt2_update(&model, 1e-4f, 0.9f, 0.999f, 1e-8f, 0.01f, step+1);
// compare the losses
float expected_loss2 = expected_losses[step];
float actual_loss = model.mean_loss;
bool step_loss_ok = fabsf(expected_loss2 - actual_loss) < 1e-2;
allok = allok && step_loss_ok;
// print the timing information at the end
printf("step %d: loss %f (took %f ms) OK = %d\n", step, model.mean_loss, time_elapsed_s * 1000, step_loss_ok);
}
if (allok) {
Console.BackgroundColor = ConsoleColor.Green;
} else {
Console.BackgroundColor = ConsoleColor.Red;
}
Console.Write("overall okay: {0}", allok);
Console.ResetColor();
// free everything
free(x);
free(y);
free(expected_logits);
free(expected_loss);
free(expected_grads_memory);
gpt2_free(&model);
Console.WriteLine();
printf("Press [Enter] to continue...");
Console.Out.Flush();
Console.ReadKey();
}
#endif
}