-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathzqjtools.cpp
566 lines (536 loc) · 12.5 KB
/
zqjtools.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
//#include "stdafx.h"
#include "zqjtools.hpp"
//显示进程当前使用内存和历史峰值使用内存;
void az::showMemoryInfo(void)
{
HANDLE handle = GetCurrentProcess();
PROCESS_MEMORY_COUNTERS pmc;
GetProcessMemoryInfo(handle, &pmc, sizeof(pmc));
cout << "********************************\n\n"
<< "内存使用:\n\n"
<< "当前内存:"<<pmc.WorkingSetSize / 1000000 << "MB\n\n"
<< "峰值内存:"<< pmc.PeakWorkingSetSize / 1000000 << "MB\n\n"
<< "********************************"<< endl;
}
//对数组随机排序
void az::random_sort(int* x, int size) //对数组随机排序
{
for (int i = size; i >= 2; i--)
{
int index = rand() % i;
int temp = x[index];
x[index] = x[i - 1];
x[i - 1] = temp;
}
}
//获取当前时间,返回毫秒
long az::getTime()
{
return clock();
}
#ifdef USE_OPENCV
//图像大小转换
cv::Mat az::imgto64(cv::Mat *img)
{
cv::Mat temp(64, 64, CV_32S);
cv::Size s20(64, 64);
cv::resize(*img, temp, s20);
return temp;
}
cv::Mat az::imgto(cv::Mat *img, int w, int h)
{
cv::Mat temp(h, w, CV_32S);
cv::Size s20(w, h);
cv::resize(*img, temp, s20);
return temp;
}
#endif
az::ZLJG::ZLJG()
{
size_now = 0;
}
void az::ZLJG::push(std::string ss)
{
if (size_now < 5)
{
s[size_now] = ss;
size_now++;
}
else
{
s[0] = s[1];
s[1] = s[2];
s[2] = s[3];
s[3] = s[4];
s[4] = ss;
}
}
std::string az::ZLJG::get()
{
if (size_now != 5)
{
return "处理中...";
}
std::vector<std::string> strtemp;
for (int i = 0; i < 5; i++)
{
strtemp.push_back(s[i]);
}
//获取每个元素的出现次数
std::vector<int> a_per;
for (int r = 0; r < strtemp.size(); r++)
{
std::string stp = strtemp[r];
int count = 0;
for (int c = 0; c < strtemp.size(); c++)
{
if (stp == strtemp[c])
{
count++;
}
}
a_per.push_back(count);
}
//找出出现次数最大的元素的ID
int id;
int itemp = a_per[0];
id = 0;
for (int i = 0; i < a_per.size(); i++)
{
if (a_per[i] >= itemp)
{
itemp = a_per[i];
id = i;
}
}
return strtemp[id];
}
std::string az::ZLJG::doit(std::string str)
{
push(str);
return get();
}
//获取文件夹下所有文件(包括子文件夹下的文件)的绝对路径,结果存到vector<string>& files中
//速度很快,一万多个文件也是秒获;也很健壮,文件夹命名中含有点“.”也能通过。
void az::getAllFilesPath(string path, vector<string>& files)
{
//文件句柄
long hFile = 0;
//文件信息
struct _finddata_t fileinfo;
string p;
if ((hFile = _findfirst(p.assign(path).append("\\*").c_str(), &fileinfo)) != -1)
{
do
{
//如果是目录,迭代之
//如果不是,加入列表
if ((fileinfo.attrib & _A_SUBDIR))
{
if (strcmp(fileinfo.name, ".") != 0 && strcmp(fileinfo.name, "..") != 0)
getAllFilesPath(p.assign(path).append("\\").append(fileinfo.name), files);
}
else
{
files.push_back(p.assign(path).append("\\").append(fileinfo.name));
}
} while (_findnext(hFile, &fileinfo) == 0);
_findclose(hFile);
}
}
//大津法求阈值,输入灰度图,默认灰阶256
int az::get_th_useOtsu(cv::Mat *img, int gray_scale, bool mask)
{
#define GrayScale gray_scale //frame灰度级
if (img->channels() != 1)
{
return 0;
}
int nr = img->rows;
int nc = img->cols;
int *pixelCount = new int[GrayScale];
float *pixelPro = new float[GrayScale];
for (int i = 0; i < GrayScale; i++)
{
pixelCount[i] = 0;
pixelPro[i] = 0;
}
int i, j, pixelSum = 0, threshold = 0;
//统计每个灰度级中像素的个数
if (mask)
{
for (i = 0; i < nr; i++)
{
uchar* data = img->ptr<uchar>(i);
for (j = 0; j < nc; j++)
{
int data_v = (int)*data++;
if (data_v > 3)
{
pixelCount[data_v]++;
pixelSum++;
}
}
}
}
else
{
for (i = 0; i < nr; i++)
{
uchar* data = img->ptr<uchar>(i);
for (j = 0; j < nc; j++)
{
pixelCount[(int)*data++]++;
pixelSum++;
}
}
}
//计算每个灰度级的像素数目占整幅图像的比例
for (i = 0; i < GrayScale; i++)
{
pixelPro[i] = (float)pixelCount[i] / pixelSum;
}
//遍历灰度级,寻找合适的threshold
float w0, w1, u0tmp, u1tmp, u0, u1, deltaTmp, deltaMax = 0;
for (i = 0; i < GrayScale; i++)
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = deltaTmp = 0;
for (j = 0; j < GrayScale; j++)
{
if (j <= i) //背景部分
{
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0;
u1 = u1tmp / w1;
deltaTmp = (float)(w0 *w1* pow((u0 - u1), 2));
if (deltaTmp > deltaMax)
{
deltaMax = deltaTmp;
threshold = i;
}
}
delete[] pixelCount;
delete[] pixelPro;
return threshold;
}
//根据HSV空间,筛选某一通道在某范围的像素,默认h通道,返回一个二值图像
cv::Mat az::sel_fromhsv(cv::Mat* img, int min, int max, char flg)
{
if (img->channels() != 3)
return *img;
cv::Mat pic;
cv::Mat res(img->size(), CV_8UC1);
img->copyTo(pic); //用来转换空间
cv::cvtColor(pic, pic, CV_BGR2HSV);
std::vector<cv::Mat> picsplit;
split(pic, picsplit);
int nr = img->rows;
int nc = img->cols;
if (flg == 'h')
{
for (int i = 0; i < nr; i++)
{
uchar* data_p = pic.ptr<uchar>(i);
uchar* data_r = res.ptr<uchar>(i);
for (int j = 0; j < nc; j++)
{
int dp = *data_p;
if (dp >= min&&dp <= max)
*data_r = 255;
else
*data_r = 0;
data_p += 3;
data_r++;
}
}
}
if (flg == 's')
{
for (int i = 0; i < nr; i++)
{
uchar* data_p = pic.ptr<uchar>(i)+1;
uchar* data_r = res.ptr<uchar>(i);
for (int j = 0; j < nc; j++)
{
int dp = *data_p;
if (dp >= min&&dp <= max)
*data_r = 255;
else
*data_r = 0;
data_p += 3;
data_r++;
}
}
}
if (flg == 'v')
{
for (int i = 0; i < nr; i++)
{
uchar* data_p = pic.ptr<uchar>(i)+2;
uchar* data_r = res.ptr<uchar>(i);
for (int j = 0; j < nc; j++)
{
int dp = *data_p;
if (dp >= min&&dp <= max)
*data_r = 255;
else
*data_r = 0;
data_p += 3;
data_r++;
}
}
}
//不返回二值图像,返回彩色图像
//把res当做mask,重新遍历出一副图像
cv::Mat res3C(img->size(), CV_8UC3);
for (int i = 0; i < nr; i++)
{
uchar* data_p = img->ptr<uchar>(i);
uchar* data_r = res.ptr<uchar>(i);
uchar* data_r3 = res3C.ptr<uchar>(i);
for (int j = 0; j < nc; j++)
{
if (*data_r == 255)
{
*data_r3 = *data_p;
*(data_r3 + 1) = *(data_p + 1);
*(data_r3 + 2) = *(data_p + 2);
}
else
{
*data_r3 = 0;
*(data_r3 + 1) = 0;
*(data_r3 + 2) = 0;
}
data_p += 3;
data_r3 += 3;
data_r++;
}
}
return res3C;
return res;
}
//判断一个点是否在一个图像内
bool az::p_isinimg(CvPoint p, cv::Mat* m)
{
if (p.x >= 0 && p.x < m->size().width &&
p.y >= 0 && p.y < m->size().height)
return true;
else
return false;
}
//很据一个点,求附近的连通区域,返回一个区域
std::vector<CvPoint> az::connectedregion(cv::Mat& im, CvPoint p)
{
cv::Mat m;
im.copyTo(m);
std::vector<CvPoint> ps;
CvPoint *pss = new CvPoint[310000]; //存连通区域像素
int p_ = 1; //记录指针位置
int numb = 1; //新加入的像素的个数
pss[0] = p;
while (1)
{
int k = numb; //轮廓长度
numb = 0; //归零
for (int i = p_ - 1; i >= p_ - k; i--) //求新加入的点
{
p = pss[i];
CvPoint p1;
p1 = CvPoint(p.x, p.y + 1);
if (az::p_isinimg(p1, &m))
{
//std::cout << p1.x << " " << p1.y << std::endl;
if (m.at<uchar>(p1) >=100)
{
pss[p_ + numb] = p1;
numb++;
m.at<uchar>(p1) = 0;
}
}
p1 = CvPoint(p.x, p.y - 1);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x - 1, p.y + 1);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x - 1, p.y);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x - 1, p.y - 1);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x + 1, p.y + 1);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x + 1, p.y - 1);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
p1 = CvPoint(p.x + 1, p.y);
if (az::p_isinimg(p1, &m))
if (m.at<uchar>(p1) >=100) { pss[p_ + numb] = p1; numb++; m.at<uchar>(p1) = 0; }
}
p_ = p_ + numb; //指针往后移
if (numb == 0) break; //没有新加入的点了跳出
}
for (int i = 0; i < p_; i++)
{
ps.push_back(pss[i]);
}
delete[] pss;
return ps;
}
//求二值图像的连通区域,结果保存到vs
void az::findconnectedregions(cv::Mat* im, std::vector<std::vector<CvPoint>> &vs)
{
std::vector<CvPoint> ptem;
cv::Mat m;
im->copyTo(m);
int h = m.size().height;
int w = m.size().width;
for (int i = 0; i < h; i++)
{
uchar* data = m.ptr<uchar>(i);
for (int j = 0; j < w; j++)
{
if (*data++ >= 100)
{
ptem = az::connectedregion(m, CvPoint(j, i));
vs.push_back(ptem);
for (int k = 0; k < ptem.size(); k++) //把该区域置换成白色
{
m.at<uchar>(ptem[k]) = 0;
}
}
}
}
}
//多个连通区域用多个点表示,伪中心点(序号中心点),或真中心点(面积中心点)
void az::regions2points(std::vector<std::vector<cv::Point>> src_rs, std::vector<cv::Point> &dst_ps)
{
#define ZHENZHONGXINDIAN
#ifdef WEIZHONGXINDIAN
int size = src_rs.size();
int size_;
for (int i = 0; i < size;i++)
{
size_ = src_rs[i].size();
dst_ps.push_back(src_rs[i][(int)(size_ / 2)]);
}
#endif
#ifdef ZHENZHONGXINDIAN
int size = src_rs.size();
int size_;
int xx = 0, yy = 0;
for (int i = 0; i < size; i++)
{
xx = 0, yy = 0;
size_ = src_rs[i].size();
for (int j = 0; j < size_; j++)
{
xx += src_rs[i][j].x;
yy += src_rs[i][j].y;
}
xx /= size_;
yy /= size_;
dst_ps.push_back(cv::Point(xx, yy));
}
#endif
}
//根据一点向四周遍历连通区域(八连通),属于深度遍历
void az::pot_erg(cv::Mat *pic, cv::Point p, std::vector<cv::Point> &dst_ps)
{
cv::Point p_;
int r = pic->rows, c = pic->cols;
if (pic->at<uchar>(p)>200)
{
dst_ps.push_back(p);
pic->at<uchar>(p) = 0;
p_.x = p.x - 1, p_.y = p.y - 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x - 1, p_.y = p.y;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x - 1, p_.y = p.y + 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x, p_.y = p.y - 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x, p_.y = p.y + 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x + 1, p_.y = p.y - 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x + 1, p_.y = p.y;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
p_.x = p.x + 1, p_.y = p.y + 1;
if (p_.x >= 0 && p_.x < c && p_.y >= 0 && p_.y < r) pot_erg(pic, p_, dst_ps);
}
return;
}
//输入一张二值图像,求连通区域
void az::findLTQY(cv::Mat* pic, std::vector<std::vector<cv::Point>> &pss)
{
cv::Mat temp;
pic->copyTo(temp);
std::vector<cv::Point> tem_ps;
int r = temp.rows, c = temp.cols;
for (int i = 0; i < r; i++)
{
uchar* data = temp.ptr<uchar>(i);
for (int j = 0; j < c; j++)
{
if (*data++ > 200)
{
tem_ps.clear();
pot_erg(&temp, cv::Point(j, i), tem_ps);
pss.push_back(tem_ps);
}
}
}
return;
}
//二值图像去噪【连通区域法】,比如黑色背景的,去掉白色前景中黑色小连通区域
void az::quxiaodong(cv::Mat *pic, int max_th)
{
std::vector<std::vector<CvPoint>> vs;
az::findconnectedregions(pic, vs);
for (int i = 0; i < vs.size(); i++)
{
if (vs[i].size() < max_th)
{
for (int j = 0; j < vs[i].size(); j++)
{
pic->at<uchar>(vs[i][j]) = 255;
}
}
}
return;
}
/**
* @brief split a string by delim
*
* @param str string to be splited
* @param c delimiter, const char*, just like " .,/", white space, dot, comma, splash
*
* @return a string vector saved all the splited world
*/
vector<string> split(string& str, const char* c)
{
char *cstr, *p;
vector<string> res;
cstr = new char[str.size() + 1];
strcpy(cstr, str.c_str());
p = strtok(cstr, c);
while (p != NULL)
{
res.push_back(p);
p = strtok(NULL, c);
}
return res;
}