-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
98 lines (74 loc) · 3.18 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from time import time
from datetime import timedelta
from fastNLP.io.loader import JsonLoader
from fastNLP.io.data_bundle import DataBundle
from fastNLP.io.pipe.pipe import Pipe
from fastNLP.core.const import Const
class MatchSumLoader(JsonLoader):
def __init__(self, candidate_num, encoder, max_len=180):
fields = {'text_id': 'text_id',
'candidate_id': 'candidate_id',
'summary_id': 'summary_id'
}
super(MatchSumLoader, self).__init__(fields=fields)
self.candidate_num = candidate_num
self.max_len = max_len
self.encoder = encoder
if encoder == 'bert':
self.sep_id = [102] # '[SEP]' (BERT)
elif encoder == 'kobert':
self.sep_id = [3] # '[SEP]' (monologg/kobert)
else:
self.sep_id = [2] # '</s>' (RoBERTa)
def _load(self, path):
dataset = super(MatchSumLoader, self)._load(path)
return dataset
def load(self, paths):
def get_seq_len(instance):
return len(instance['text_id'])
def sample(instance, candidate_num):
candidate_id = instance['candidate_id'][:candidate_num]
return candidate_id
def truncate_candidate_id(instance, max_len):
candidate_id = []
for i in range(len(instance['candidate_id'])):
if len(instance['candidate_id'][i]) > max_len:
cur_id = instance['candidate_id'][i][:(max_len - 1)]
cur_id += self.sep_id
else:
cur_id = instance['candidate_id'][i]
candidate_id.append(cur_id)
return candidate_id
print('Start loading datasets !!!')
start = time()
# load datasets
datasets = {}
for name in paths:
print(paths[name])
datasets[name] = self._load(paths[name])
if name == 'train':
datasets[name].apply(lambda ins: truncate_candidate_id(ins, self.max_len), new_field_name='candidate_id')
# set input and target
datasets[name].set_input('text_id', 'candidate_id', 'summary_id')
# set padding value
if self.encoder == 'bert':
pad_id = 0
elif self.encoder == 'kobert':
pad_id = 1
else:
pad_id = 1 # for RoBERTa
datasets[name].set_pad_val('text_id', pad_id)
datasets[name].set_pad_val('candidate_id', pad_id)
datasets[name].set_pad_val('summary_id', pad_id)
print('Finished in {}'.format(timedelta(seconds=time()-start)))
return DataBundle(datasets=datasets)
class MatchSumPipe(Pipe):
def __init__(self, candidate_num, encoder):
super(MatchSumPipe, self).__init__()
self.candidate_num = candidate_num
self.encoder = encoder
def process(self, data_bundle):
return data_bundle
def process_from_file(self, paths):
data_bundle = MatchSumLoader(self.candidate_num, self.encoder).load(paths)
return self.process(data_bundle)