-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLSTMModel.py
118 lines (98 loc) · 4.03 KB
/
LSTMModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
class LSTMModel:
def __init__(self,
num_input,
timesteps,
num_hidden,
layers,
optimizer,
learning_rate,
momentum,
batch_size):
self.num_input = num_input
self.timesteps = timesteps
self.num_hidden = num_hidden
self.layers = layers
self.optimizer = optimizer
self.learning_rate = learning_rate
self.momentum = momentum
self.batch_size = batch_size
# To avoid future errors initializing all the variables
# Inputs
self.X = None
self.Y_true = None
self.VAD = None
self.n_db_mag_X_0 = None
self.X_real = None
self.X_imag = None
self.X_complex = None
def build(self):
""" Creates the model """
self.def_input()
self.def_params()
self.def_model()
self.def_output()
self.def_loss()
self.def_optimizer()
self.def_metrics()
self.add_summaries()
def def_input(self):
""" Defines inputs """
with tf.name_scope('input'):
self.X = tf.placeholder("float", [None, self.timesteps, self.num_input * 2])
self.Y_true = tf.placeholder("float", [None, self.timesteps, self.num_input, self.sources])
self.VAD = tf.placeholder("float", [None, self.timesteps, self.num_input])
# normalized in decibels, audio signal magnitud - TF
self.n_db_mag_X_0 = tf.placeholder("float", [None, self.timesteps, self.num_input])
# audio signal in TF
self.X_real = tf.placeholder("float", [None, self.timesteps, self.num_input])
self.X_imag = tf.placeholder("float", [None, self.timesteps, self.num_input])
self.X_complex = tf.complex(self.X_real, self.X_imag)
# hacemos un reshape al vad, o ocuparemos más adelante
#####################################batch_size * self.timesteps * self.num_input
self.VAD_rs = tf.reshape(self.VAD, shape=[-1])
def def_params(self):
""" Defines model parameters """
def def_model(self):
""" Defines the model """
self.y_pred = tf.placeholder("float", [None, self.timesteps, self.num_input, self.sources])
def def_output(self):
""" Defines model output """
def def_loss(self):
""" Defines loss function """
self.loss = tf.constant(0);
def def_optimizer(self):
if self.optimizer == "Adam":
self.train_op = tf.train.AdamOptimizer(
learning_rate=self.learning_rate
).minimize(self.loss)
elif self.optimizer == "RMSProp":
self.train_op = tf.train.RMSPropOptimizer(
learning_rate=self.learning_rate,
momentum=self.momentum
).minimize(self.loss)
elif self.optimizer == "GradientDescent":
self.train_op = tf.train.GradientDescentOptimizer(
learning_rate=self.learning_rate,
momentum=self.momentum
).minimize(self.loss)
elif self.optimizer == "MomentumOptimizer":
self.train_op = tf.train.MomentumOptimizer(
learning_rate=self.learning_rate,
momentum=self.momentum
).minimize(self.loss)
def def_metrics(self):
""" Adds metrics """
with tf.name_scope('metrics'):
# [-1, self.timesteps * self.num_input , self.sources]
is_correct = tf.equal(tf.argmax(self.y_pred_vad, axis=2), tf.argmax(self.Y_true_vad, axis=2))
self.accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
def add_summaries(self):
""" Adds summaries for Tensorboard """
with tf.name_scope('summaries'):
tf.summary.scalar('loss', self.loss)
tf.summary.scalar('accuracy', self.accuracy)
self.summary = tf.summary.merge_all()