Skip to content

Latest commit

 

History

History
395 lines (306 loc) · 13.8 KB

INSTALL.md

File metadata and controls

395 lines (306 loc) · 13.8 KB

Installing Icinga 2

The recommended way of installing Icinga 2 is to use packages. The Icinga project provides both release and development packages for a number of operating systems.

Please check the documentation in the doc/ directory for a current list of available packages and detailed installation instructions.

The online documentation is available on icinga.com/docs and will guide you step by step.

There are a number of known caveats when installing from source such as incorrect directory and file permissions. So even if you're planning to not use the official packages it is advisable to build your own Debian or RPM packages.

Disclaimer

This information is intended for developers and packagers. It might be incomplete or unclear in some cases. Make also sure to check our packaging scripts on GitHub!

Build Requirements

The following requirements need to be fulfilled in order to build the application using a dist tarball (including notes for distributions):

  • cmake >= 2.6
  • GNU make (make) or ninja-build
  • C++ compiler which supports C++11
    • RHEL/Fedora/SUSE: gcc-c++ >= 4.7 (extra Developer Tools on RHEL5/6 see below)
    • Debian/Ubuntu: build-essential
    • Alpine: build-base
    • you can also use clang++
  • pkg-config
  • OpenSSL library and header files >= 1.0.1
    • RHEL/Fedora: openssl-devel
    • SUSE: libopenssl-devel (for SLES 11: libopenssl1-devel)
    • Debian/Ubuntu: libssl-dev
    • Alpine: libressl-dev
  • Boost library and header files >= 1.48.0
    • RHEL/Fedora: boost148-devel
    • Debian/Ubuntu: libboost-all-dev
    • Alpine: boost-dev
  • GNU bison (bison)
  • GNU flex (flex) >= 2.5.35
  • Systemd headers
    • Only required when using Systemd
    • Debian/Ubuntu: libsystemd-dev
    • RHEL/Fedora: systemd-devel

Optional features

  • MySQL (disable with CMake variable ICINGA2_WITH_MYSQL to OFF)
    • RHEL/Fedora: mysql-devel
    • SUSE: libmysqlclient-devel
    • Debian/Ubuntu: default-libmysqlclient-dev | libmysqlclient-dev
    • Alpine: mariadb-dev
  • PostgreSQL (disable with CMake variable ICINGA2_WITH_PGSQL to OFF)
    • RHEL/Fedora: postgresql-devel
    • Debian/Ubuntu: libpq-dev
    • postgresql-dev on Alpine
  • YAJL (Faster JSON library)
    • RHEL/Fedora: yajl-devel
    • Debian: libyajl-dev
    • Alpine: yajl-dev
  • libedit (CLI console)
    • RHEL/Fedora: libedit-devel on CentOS (RHEL requires rhel-7-server-optional-rpms)
    • Debian/Ubuntu/Alpine: libedit-dev
  • Termcap (only required if libedit doesn't already link against termcap/ncurses)
    • RHEL/Fedora: libtermcap-devel
    • Debian/Ubuntu: (not necessary)

Special requirements

FreeBSD: libexecinfo (automatically used when Icinga 2 is installed via port or package)

RHEL5 ships an ancient flex version. Updated packages are available for example from the repoforge buildtools repository.

Runtime user environment

By default Icinga will run as user 'icinga' and group 'icinga'. Additionally the external command pipe and livestatus features require a dedicated command group 'icingacmd'. You can choose your own user/group names and pass them to CMake using the ICINGA2_USER, ICINGA2_GROUP and ICINGA2_COMMAND_GROUP variables.

# groupadd icinga
# groupadd icingacmd
# useradd -c "icinga" -s /sbin/nologin -G icingacmd -g icinga icinga

On Alpine (which uses ash busybox) you can run:

# addgroup -S icinga
# addgroup -S icingacmd
# adduser -S -D -H -h /var/spool/icinga2 -s /sbin/nologin -G icinga -g icinga icinga
# adduser icinga icingacmd

Add the web server user to the icingacmd group in order to grant it write permissions to the external command pipe and livestatus socket:

# usermod -a -G icingacmd www-data

Make sure to replace "www-data" with the name of the user your web server is running as.

Building Icinga 2

Once you have installed all the necessary build requirements you can build Icinga 2 using the following commands:

$ mkdir build && cd build
$ cmake ..
$ make
$ make install

You can specify an alternative installation prefix using -DCMAKE_INSTALL_PREFIX:

$ cmake .. -DCMAKE_INSTALL_PREFIX=/tmp/icinga2

CMake Variables

In addition to CMAKE_INSTALL_PREFIX here are most of the supported Icinga-specific cmake variables.

System Environment

  • ICINGA2_GIT_VERSION_INFO: Whether to use Git to determine the version number; defaults to ON
  • ICINGA2_USER: The user Icinga 2 should run as; defaults to icinga
  • ICINGA2_GROUP: The group Icinga 2 should run as; defaults to icinga
  • ICINGA2_COMMAND_GROUP: The command group Icinga 2 should use; defaults to icingacmd
  • ICINGA2_RUNDIR: The location of the "run" directory; defaults to CMAKE_INSTALL_LOCALSTATEDIR/run
  • CMAKE_INSTALL_SYSCONFDIR: The configuration directory; defaults to CMAKE_INSTALL_PREFIX/etc
  • ICINGA2_SYSCONFIGFILE: Where to put the config file the initscript/systemd pulls it's dirs from; defaults to CMAKE_INSTALL_PREFIX/etc/sysconfig/icinga2
  • CMAKE_INSTALL_LOCALSTATEDIR: The state directory; defaults to CMAKE_INSTALL_PREFIX/var
  • ICINGA2_PLUGINDIR: The path for the Monitoring Plugins project binaries; defaults to /usr/lib/nagios/plugins

Build Optimization

  • ICINGA2_UNITY_BUILD: Whether to perform a unity build; defaults to ON
  • ICINGA2_LTO_BUILD: Whether to use link time optimization (LTO); defaults to OFF

Init System

  • USE_SYSTEMD=ON|OFF: Use systemd or a classic SysV initscript; defaults to OFF
  • INSTALL_SYSTEMD_SERVICE_AND_INITSCRIPT=ON|OFF Force install both the systemd service definition file and the SysV initscript in parallel, regardless of how USE_SYSTEMD is set. Only use this for special packaging purposes and if you know what you are doing. Defaults to OFF.

Features:

  • ICINGA2_WITH_CHECKER: Determines whether the checker module is built; defaults to ON
  • ICINGA2_WITH_COMPAT: Determines whether the compat module is built; defaults to ON
  • ICINGA2_WITH_DEMO: Determines whether the demo module is built; defaults to OFF
  • ICINGA2_WITH_HELLO: Determines whether the hello module is built; defaults to OFF
  • ICINGA2_WITH_LIVESTATUS: Determines whether the Livestatus module is built; defaults to ON
  • ICINGA2_WITH_NOTIFICATION: Determines whether the notification module is built; defaults to ON
  • ICINGA2_WITH_PERFDATA: Determines whether the perfdata module is built; defaults to ON
  • ICINGA2_WITH_TESTS: Determines whether the unit tests are built; defaults to ON

MySQL or MariaDB:

The following settings can be tuned for the MySQL / MariaDB IDO feature.

  • ICINGA2_WITH_MYSQL: Determines whether the MySQL IDO module is built; defaults to ON
  • MYSQL_CLIENT_LIBS: Client implementation used (mysqlclient / mariadbclient); defaults searches for mysqlclient and mariadbclient
  • MYSQL_INCLUDE_DIR: Directory containing include files for the mysqlclient; default empty - checking multiple paths like /usr/include/mysql

See FindMySQL.cmake for the implementation.

PostgreSQL:

The following settings can be tuned for the PostgreSQL IDO feature.

  • ICINGA2_WITH_PGSQL: Determines whether the PostgreSQL IDO module is built; defaults to ON
  • PostgreSQL_INCLUDE_DIR: Top-level directory containing the PostgreSQL include directories
  • PostgreSQL_LIBRARY_DIR: Top-level directory containing the PostgreSQL libraries

See FindMySQL.cmake for the implementation.

Version detection:

CMake determines the Icinga 2 version number using git describe if the source directory is contained in a Git repository. Otherwise the version number is extracted from the VERSION file. This behavior can be overridden by creating a file called icinga-version.h.force in the source directory. Alternatively the -DICINGA2_GIT_VERSION_INFO=OFF option for CMake can be used to disable the usage of git describe.

Building packages

WARNING: Some of this information is outdated!

Building RPMs

Build Environment on RHEL, CentOS, Fedora, Amazon Linux

Setup your build environment:

yum -y install rpmdevtools

Build Environment on SuSE/SLES

SLES:

zypper addrepo http://download.opensuse.org/repositories/devel:tools/SLE_12_SP2/devel:tools.repo
zypper refresh
zypper install rpmdevtools spectool

OpenSuSE:

zypper addrepo http://download.opensuse.org/repositories/devel:tools/openSUSE_Leap_42.3/devel:tools.repo
zypper refresh
zypper install rpmdevtools spectool

Package Builds

Prepare the rpmbuild directory tree:

cd $HOME
rpmdev-setuptree

Copy the icinga2.spec file to rpmbuild/SPEC or fetch the latest version:

curl https://raw.githubusercontent.com/Icinga/rpm-icinga2/master/icinga2.spec -o $HOME/rpmbuild/SPECS/icinga2.spec

Copy the tarball to rpmbuild/SOURCES e.g. by using the spectool binary provided with rpmdevtools:

cd $HOME/rpmbuild/SOURCES
spectool -g ../SPECS/icinga2.spec

cd $HOME/rpmbuild

Install the build dependencies. Example for CentOS 7:

yum -y install libedit-devel ncurses-devel gcc-c++ libstdc++-devel openssl-devel \
cmake flex bison boost-devel systemd mysql-devel postgresql-devel httpd \
selinux-policy-devel checkpolicy selinux-policy selinux-policy-doc

Note: If you are using Amazon Linux, systemd is not required.

A shorter way is available using the yum-builddep command on RHEL based systems:

yum-builddep SPECS/icinga2.spec

Build the RPM:

rpmbuild -ba SPECS/icinga2.spec

Additional Hints

SELinux policy module

The following packages are required to build the SELinux policy module:

  • checkpolicy
  • selinux-policy (selinux-policy on CentOS 6, selinux-policy-devel on CentOS 7)
  • selinux-policy-doc

RHEL/CentOS 5 and 6

The RedHat Developer Toolset is required for building Icinga 2 beforehand. This contains a modern version of flex and a C++ compiler which supports C++11 features.

cat >/etc/yum.repos.d/devtools-2.repo <<REPO
[testing-devtools-2-centos-\$releasever]
name=testing 2 devtools for CentOS $releasever
baseurl=https://people.centos.org/tru/devtools-2/\$releasever/\$basearch/RPMS
gpgcheck=0
REPO

Dependencies to devtools-2 are used in the RPM SPEC, so the correct tools should be used for building.

As an alternative, you can use newer Boost packages provided on packages.icinga.com.

cat >$HOME/.rpmmacros <<MACROS
%build_icinga_org 1
MACROS

Amazon Linux

If you prefer to build packages offline, a suitable Vagrant box is located here.

SLES 11

The Icinga repository provides the required boost package version and must be added before building.

Build Debian/Ubuntu packages

WARNING: This information is outdated!

Setup your build environment on Debian/Ubuntu, copy the 'debian' directory from the Debian packaging Git repository (https://github.com/Icinga/pkg-icinga2-debian) into your source tree and run the following command:

$ dpkg-buildpackage -uc -us

Build Alpine Linux packages

A simple way to setup a build environment is installing Alpine in a chroot. In this way, you can set up an Alpine build environment in a chroot under a different Linux distro. There is a script that simplifies these steps with just two commands, and can be found here.

Once the build environment is installed, you can setup the system to build the packages by following this document.

Build Post Install Tasks

After building Icinga 2 yourself, your package build system should at least run the following post install requirements:

  • enable the checker, notification and mainlog feature by default
  • run 'icinga2 api setup' in order to enable the api feature and generate SSL certificates for the node

Run Icinga 2

Icinga 2 comes with a binary that takes care of loading all the relevant components (e.g. for check execution, notifications, etc.):

# icinga2 daemon
[2016-12-08 16:44:24 +0100] information/cli: Icinga application loader (version: v2.5.4-231-gb10a6b7; debug)
[2016-12-08 16:44:24 +0100] information/cli: Loading configuration file(s).
[2016-12-08 16:44:25 +0100] information/ConfigItem: Committing config item(s).
...

Init Script

Icinga 2 can be started as a daemon using the provided init script:

# /etc/init.d/icinga2
Usage: /etc/init.d/icinga2 {start|stop|restart|reload|checkconfig|status}

Systemd

If your distribution uses Systemd:

# systemctl {start|stop|reload|status|enable|disable} icinga2

In case the distribution is running Systemd >227, you'll also need to package and install the etc/initsystem/icinga2.service.limits.conf file into /etc/systemd/system/icinga2.service.d.

openrc

Or if your distribution uses openrc (like Alpine):

# rc-service icinga2
Usage: /etc/init.d/icinga2 {start|stop|restart|reload|checkconfig|status}

Note: the openrc's init.d is not shipped by default. A working init.d with openrc can be found here: (https://git.alpinelinux.org/cgit/aports/plain/community/icinga2/icinga2.initd). If you have customized some path, edit the file and adjust it according with your setup. Those few steps can be followed:

# wget https://git.alpinelinux.org/cgit/aports/plain/community/icinga2/icinga2.initd
# mv icinga2.initd /etc/init.d/icinga2
# chmod +x /etc/init.d/icinga2

Icinga 2 reads a single configuration file which is used to specify all configuration settings (global settings, hosts, services, etc.). The configuration format is explained in detail in the doc/ directory.

By default make install installs example configuration files in /usr/local/etc/icinga2 unless you have specified a different prefix or sysconfdir.