-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandDetector.py
104 lines (86 loc) · 4.07 KB
/
handDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import cv2
import mediapipe as mp
from time import time
# def detectPose(frame, pose_model, display=True):
# modified_frame = frame.copy()
# frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# results = pose_model.process(frame_rgb)
# height, width, _ = frame.shape
# landmarks = []
# if results.pose_landmarks:
# for landmark in results.pose_landmarks.landmark:
# landmarks.append((landmark.x * width, landmark.y * height))
# connections = mp.solutions.pose.POSE_CONNECTIONS
# for connection in connections:
# start_point = connection[0]
# end_point = connection[1]
# cv2.line(modified_frame, (int(landmarks[start_point][0]), int(landmarks[start_point][1])),
# (int(landmarks[end_point][0]), int(landmarks[end_point][1])), (0, 255, 0), 3)
# else:
# return None, None
# if display:
# cv2.imshow('Pose Landmarks', modified_frame)
# return modified_frame, landmarks
# def detect_fall(previous_height, previous_width, current_height, current_width, height_threshold=30):
# if previous_height is None or previous_width is None:
# return False # Return false if any previous value is null
# # Check if the change in height is significant
# height_change = previous_height - current_height
# if height_change > height_threshold:
# return True # Fall detected if height decreases significantly
# return False
# pose_video = mp.solutions.pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=2)
# video = cv2.VideoCapture(0)
# time1 = 0
# frame_count = 0
# previous_height = None
# previous_width = None
# while video.isOpened():
# ret, frame = video.read()
# if not ret:
# break
# # Detect pose and landmarks
# modified_frame, landmarks = detectPose(frame, pose_video, display=True)
# frame_count += 1
# # Calculate height and width every 20 frames
# if frame_count % 20 == 0:
# current_height = landmarks[0][1] - landmarks[11][1] # Distance between eye and toe
# current_width = abs(landmarks[12][0] - landmarks[11][0]) # Distance between hips
# if detect_fall(previous_height, previous_width, current_height, current_width):
# cv2.putText(modified_frame, 'Fall detected!', (10, 60), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 255), 3)
# previous_height = current_height
# previous_width = current_width
# # Measure frames per second
# time2 = time()
# if (time2 - time1) > 0:
# frames_per_second = 1.0 / (time2 - time1)
# cv2.putText(modified_frame, 'FPS: {}'.format(int(frames_per_second)), (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 3)
# time1 = time2
# # Display the frame
# cv2.imshow('Pose Detection', modified_frame)
# # Check for exit key
# k = cv2.waitKey(1) & 0xFF
# if k == 27:
# break
# # Release video capture and close OpenCV windows
# video.release()
# cv2.destroyAllWindows()
mphands=mp.solutions.hands
mpdraw=mp.solutions.drawing_utils
class handdetector:
def __init__(self,max_num_hands=2,min_detection_confidence=0.5,min_tracking_confidence=0.5):
self.hands=mphands.Hands(max_num_hands=max_num_hands,min_detection_confidence=min_detection_confidence,min_tracking_confidence=min_tracking_confidence)
def findHandLandMarks(self,image,handnumber=0,draw=False):
originalimg=image
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result=self.hands.process(image)
landMarkList = []
if result.multi_hand_landmarks:
hand=result.multi_hand_landmarks[handnumber]
for id,landmar in enumerate(hand.landmark):
imgh,imgw,imgc=originalimg.shape
xPos,yPos=int(landmar.x *imgw), int(landmar.y*imgh)
landMarkList.append([id,xPos,yPos])
if draw:
mpdraw.draw_landmarks(originalimg,hand,mphands.HAND_CONNECTIONS)
return landMarkList