-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
102 lines (91 loc) · 5.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
from experiments import *
from compressors import *
from utils import *
from data import *
class ToInt:
def __call__(self, pic):
return pic * 255
class Permute:
def __call__(self, pic):
return pic.permute(1,2,0)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='mnist', help='Choices are: `mnist`, `fashionmnist`, `cifar`')
parser.add_argument('--data_dir', default='data')
parser.add_argument('--shot', default=10)
parser.add_argument('--compressor', default='gzip')
parser.add_argument('--distance', default='NCD')
parser.add_argument('--online', default=False, action='store_true')
parser.add_argument('--replicate', default=False, action='store_true')
parser.add_argument('--c_train_dir', help='Directory includes compressed training files')
parser.add_argument('--c_test_dir', help='Directory includes compressed test files')
parser.add_argument('--c_combined_dir', help='Directory includes compressed aggregated files')
args = parser.parse_args()
if args.dataset == 'mnist':
transform_ops = transforms.Compose([transforms.Pad(2), transforms.ToTensor(), ToInt()])
train_dataset = datasets.MNIST(root=args.data_dir, train=True, transform=transform_ops, download=True)
test_dataset = datasets.MNIST(root=args.data_dir, train=False, transform=transform_ops, download=True)
k = 2
elif args.dataset == 'fashionmnist':
transform_ops = transforms.Compose([transforms.Pad(2), transforms.ToTensor(), ToInt()])
train_dataset = datasets.FashionMNIST(root=args.data_dir, train=True, transform=transform_ops, download=True)
test_dataset = datasets.FashionMNIST(root=args.data_dir, train=False, transform=transform_ops, download=True)
k = 2
elif args.dataset == 'cifar':
if args.online and args.compressor in ['bbans', 'bb-ans', 'bitswap', 'bit-swap']:
transform_ops = transforms.Compose([transforms.ToTensor(), ToInt()])
else:
transform_ops = transforms.Compose([transforms.ToTensor(), ToInt(), Permute()])
train_dataset = datasets.CIFAR10(root=args.data_dir, train=True, transform=transform_ops, download=True)
test_dataset = datasets.CIFAR10(root=args.data_dir, train=False, transform=transform_ops, download=True)
k = 3
else:
raise ValueError("Dataset not supported.")
if args.compressor in ['bbans', 'bb-ans', 'bitswap', 'bit-swap']:
if args.online:
compressor = BitSwapOnlineCompressor(args.dataset, 2, args.compressor in ['bitswap', 'bit-swap'])
compressed_provided = False
else:
assert args.c_train_dir is not None and args.c_test_dir is not None and args.c_combined_dir is not None, \
"Compressed files dir need to be provided. Otherwise, use --online option. "
compressor = BitSwapCompressor(args.c_train_dir, args.c_test_dir, args.c_combined_dir)
compressed_provided = True
else:
compressor = ImageCompressor(args.compressor)
compressed_provided = False
knn_exp_img = KnnExpImg(agg_by_avg, compressor, eval(args.distance), args.dataset, args.data_dir, transform_ops)
shot_num = int(args.shot)
# For replication
train_idx_fn = 'input/{}/trainperclass100_idx.npy'.format(args.dataset)
test_idx_fn = 'input/{}/testperclass100_idx.npy'.format(args.dataset)
if args.replicate and os.path.exists(train_idx_fn) and os.path.exists(test_idx_fn):
# Assume index files are provided and compressed files are provided
train_idx = np.load(train_idx_fn)
train_labels = read_img_label(train_dataset, train_idx)
test_idx = np.load(test_idx_fn)
test_labels = read_img_label(test_dataset, test_idx)
num_per_class = 100
if shot_num < 100:
few_shot_train_argidx = np.array([], dtype=np.uint8)
few_shot_train_idx = np.array([], dtype=np.uint8)
for i in range(0, len(train_idx), num_per_class):
selected_train_argidx = np.random.choice(range(i, i + num_per_class), shot_num, replace=False)
selected_train_idx = train_idx[selected_train_argidx]
few_shot_train_argidx = np.append(few_shot_train_argidx, selected_train_argidx)
few_shot_train_idx = np.append(few_shot_train_idx, selected_train_idx)
few_shot_train_label = read_img_label(train_dataset, few_shot_train_idx)
knn_exp_img.calc_dis(test_idx, few_shot_train_idx, compressed_provided)
knn_exp_img.calc_acc(k, test_labels, train_label=few_shot_train_label)
elif shot_num == 100:
knn_exp_img.calc_dis(test_idx, train_idx, compressed_provided)
knn_exp_img.calc_acc(k, test_labels, train_label=train_labels)
else:
raise ValueError()
# For more "freestyle
else:
# No compressed files are provided
test_data, test_labels, test_idx = pick_n_sample_from_each_class_img(test_dataset, 10)
few_shot_train_data, few_shot_train_label, few_shot_train_idx = pick_n_sample_from_each_class_img(train_dataset, shot_num)
knn_exp_img.calc_dis(test_idx, few_shot_train_idx, compressed_provided)
knn_exp_img.calc_acc(k, test_labels, train_label=few_shot_train_label)