forked from VumBleBot/odqa_baseline_code
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtester.py
90 lines (74 loc) · 3.36 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import random
import unittest
import wandb
from transformers import set_seed, DataCollatorWithPadding
from utils.tools import get_args
from utils.tools import update_args, run_test
from utils.trainer_qa import QuestionAnsweringTrainer
from utils.prepare import prepare_dataset, preprocess_dataset, get_reader_model, compute_metrics
args = get_args()
strategies = args.strategies
SEED = random.choice(args.seeds) # fix run_cnt 1
@run_test
class TestReader(unittest.TestCase):
def test_strategy_is_not_none(self, args=args):
self.assertIsNotNone(strategies, "전달받은 전략이 없습니다.")
def test_valid_strategy(self, args=args):
for strategy in strategies:
try:
update_args(args, strategy)
except FileNotFoundError:
assert False, "전략명이 맞는지 확인해주세요. "
def test_valid_dataset(self, args=args):
for seed, strategy in [(SEED, strategy) for strategy in strategies]:
args = update_args(args, strategy)
args.strategy, args.seed = strategy, seed
set_seed(seed)
try:
prepare_dataset(args, is_train=True)
except KeyError:
assert False, "존재하지 않는 dataset입니다. "
def test_valid_model(self, args=args):
for seed, strategy in [(SEED, strategy) for strategy in strategies]:
args = update_args(args, strategy)
args.strategy, args.seed = strategy, seed
set_seed(seed)
try:
get_reader_model(args)
except Exception:
assert False, "hugging face에 존재하지 않는 model 혹은 잘못된 경로입니다. "
def test_strategies_with_dataset(self, args=args):
"""
(Constraint)
- num_train_epoch 1
- random seed 1
- dataset fragment (rows : 100)
(Caution)
ERROR가 표시된다면, 상위 단위 테스트 결과를 확인하세요.
"""
for seed, strategy in [(SEED, strategy) for strategy in strategies]:
wandb.init(project="p-stage-3-test", reinit=True)
args = update_args(args, strategy)
args.strategy, args.seed = strategy, seed
set_seed(seed)
datasets = prepare_dataset(args, is_train=True)
model, tokenizer = get_reader_model(args)
train_dataset, post_processing_function = preprocess_dataset(args, datasets, tokenizer, is_train=True)
train_dataset = train_dataset.select(range(100)) # select 100
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if args.train.fp16 else None)
args.train.do_train = True
args.train.run_name = "_".join([strategy, args.alias, str(seed), "test"])
wandb.run.name = args.train.run_name
# TRAIN MRC
args.train.num_train_epochs = 1.0 # fix epoch 1
trainer = QuestionAnsweringTrainer(
model=model,
args=args.train, # training_args
custom_args=args,
train_dataset=train_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
post_process_function=post_processing_function,
compute_metrics=compute_metrics,
)
trainer.train()