-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathakt.py
360 lines (306 loc) · 14.1 KB
/
akt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
from torch import nn
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import math
import torch.nn.functional as F
from enum import IntEnum
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Dim(IntEnum):
batch = 0
seq = 1
feature = 2
class AKT(nn.Module):
def __init__(self, n_question, n_pid, d_model, n_blocks,
kq_same, dropout, model_type, final_fc_dim=512, n_heads=8, d_ff=2048, l2=1e-5, separate_qa=False):
super().__init__()
"""
Input:
d_model: dimension of attention block
final_fc_dim: dimension of final fully connected net before prediction
n_heads: number of heads in multi-headed attention
d_ff : dimension for fully conntected net inside the basic block
"""
self.n_question = n_question
self.dropout = dropout
self.kq_same = kq_same
self.n_pid = n_pid
self.l2 = l2
self.model_type = model_type
self.separate_qa = separate_qa
embed_l = d_model
if self.n_pid > 0:
self.difficult_param = nn.Embedding(self.n_pid+1, 1)
self.q_embed_diff = nn.Embedding(self.n_question+1, embed_l)
self.qa_embed_diff = nn.Embedding(2 * self.n_question + 1, embed_l)
# n_question+1 ,d_model
self.q_embed = nn.Embedding(self.n_question+1, embed_l)
if self.separate_qa:
self.qa_embed = nn.Embedding(2*self.n_question+1, embed_l)
else:
self.qa_embed = nn.Embedding(2, embed_l)
# Architecture Object. It contains stack of attention block
self.model = Architecture(n_question=n_question, n_blocks=n_blocks, n_heads=n_heads, dropout=dropout,
d_model=d_model, d_feature=d_model / n_heads, d_ff=d_ff, kq_same=self.kq_same, model_type=self.model_type)
self.out = nn.Sequential(
nn.Linear(d_model + embed_l,
final_fc_dim), nn.ReLU(), nn.Dropout(self.dropout),
nn.Linear(final_fc_dim, 256), nn.ReLU(
), nn.Dropout(self.dropout),
nn.Linear(256, 1)
)
self.reset()
def reset(self):
for p in self.parameters():
if p.size(0) == self.n_pid+1 and self.n_pid > 0:
torch.nn.init.constant_(p, 0.)
def forward(self, q_data, qa_data, target, pid_data=None):
# Batch First
q_embed_data = self.q_embed(q_data) # BS, seqlen, d_model# c_ct
if self.separate_qa:
# BS, seqlen, d_model #f_(ct,rt)
qa_embed_data = self.qa_embed(qa_data)
else:
qa_data = (qa_data-q_data)//self.n_question # rt
# BS, seqlen, d_model # c_ct+ g_rt =e_(ct,rt)
qa_embed_data = self.qa_embed(qa_data)+q_embed_data
if self.n_pid > 0:
q_embed_diff_data = self.q_embed_diff(q_data) # d_ct
pid_embed_data = self.difficult_param(pid_data) # uq
q_embed_data = q_embed_data + pid_embed_data * \
q_embed_diff_data # uq *d_ct + c_ct
qa_embed_diff_data = self.qa_embed_diff(
qa_data) # f_(ct,rt) or #h_rt
if self.separate_qa:
qa_embed_data = qa_embed_data + pid_embed_data * \
qa_embed_diff_data # uq* f_(ct,rt) + e_(ct,rt)
else:
qa_embed_data = qa_embed_data + pid_embed_data * \
(qa_embed_diff_data+q_embed_diff_data) # + uq *(h_rt+d_ct)
c_reg_loss = (pid_embed_data ** 2.).sum() * self.l2
else:
c_reg_loss = 0.
# BS.seqlen,d_model
# Pass to the decoder
# output shape BS,seqlen,d_model or d_model//2
d_output = self.model(q_embed_data, qa_embed_data) # 211x512
concat_q = torch.cat([d_output, q_embed_data], dim=-1)
output = self.out(concat_q)
labels = target.reshape(-1)
m = nn.Sigmoid()
preds = (output.reshape(-1)) # logit
mask = labels > -0.9
masked_labels = labels[mask].float()
masked_preds = preds[mask]
loss = nn.BCEWithLogitsLoss(reduction='none')
output = loss(masked_preds, masked_labels)
return output.sum()+c_reg_loss, m(preds), mask.sum()
class Architecture(nn.Module):
def __init__(self, n_question, n_blocks, d_model, d_feature,
d_ff, n_heads, dropout, kq_same, model_type):
super().__init__()
"""
n_block : number of stacked blocks in the attention
d_model : dimension of attention input/output
d_feature : dimension of input in each of the multi-head attention part.
n_head : number of heads. n_heads*d_feature = d_model
"""
self.d_model = d_model
self.model_type = model_type
if model_type in {'akt'}:
self.blocks_1 = nn.ModuleList([
TransformerLayer(d_model=d_model, d_feature=d_model // n_heads,
d_ff=d_ff, dropout=dropout, n_heads=n_heads, kq_same=kq_same)
for _ in range(n_blocks)
])
self.blocks_2 = nn.ModuleList([
TransformerLayer(d_model=d_model, d_feature=d_model // n_heads,
d_ff=d_ff, dropout=dropout, n_heads=n_heads, kq_same=kq_same)
for _ in range(n_blocks*2)
])
def forward(self, q_embed_data, qa_embed_data):
# target shape bs, seqlen
seqlen, batch_size = q_embed_data.size(1), q_embed_data.size(0)
qa_pos_embed = qa_embed_data
q_pos_embed = q_embed_data
y = qa_pos_embed
seqlen, batch_size = y.size(1), y.size(0)
x = q_pos_embed
# encoder
for block in self.blocks_1: # encode qas
y = block(mask=1, query=y, key=y, values=y)
flag_first = True
for block in self.blocks_2:
if flag_first: # peek current question
x = block(mask=1, query=x, key=x,
values=x, apply_pos=False)
flag_first = False
else: # dont peek current response
x = block(mask=0, query=x, key=x, values=y, apply_pos=True)
flag_first = True
return x
class TransformerLayer(nn.Module):
def __init__(self, d_model, d_feature,
d_ff, n_heads, dropout, kq_same):
super().__init__()
"""
This is a Basic Block of Transformer paper. It containts one Multi-head attention object. Followed by layer norm and postion wise feedforward net and dropout layer.
"""
kq_same = kq_same == 1
# Multi-Head Attention Block
self.masked_attn_head = MultiHeadAttention(
d_model, d_feature, n_heads, dropout, kq_same=kq_same)
# Two layer norm layer and two droput layer
self.layer_norm1 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.linear1 = nn.Linear(d_model, d_ff)
self.activation = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ff, d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.dropout2 = nn.Dropout(dropout)
def forward(self, mask, query, key, values, apply_pos=True):
"""
Input:
block : object of type BasicBlock(nn.Module). It contains masked_attn_head objects which is of type MultiHeadAttention(nn.Module).
mask : 0 means, it can peek only past values. 1 means, block can peek only current and pas values
query : Query. In transformer paper it is the input for both encoder and decoder
key : Keys. In transformer paper it is the input for both encoder and decoder
Values. In transformer paper it is the input for encoder and encoded output for decoder (in masked attention part)
Output:
query: Input gets changed over the layer and returned.
"""
seqlen, batch_size = query.size(1), query.size(0)
nopeek_mask = np.triu(
np.ones((1, 1, seqlen, seqlen)), k=mask).astype('uint8')
src_mask = (torch.from_numpy(nopeek_mask) == 0).to(device)
if mask == 0: # If 0, zero-padding is needed.
# Calls block.masked_attn_head.forward() method
query2 = self.masked_attn_head(
query, key, values, mask=src_mask, zero_pad=True)
else:
# Calls block.masked_attn_head.forward() method
query2 = self.masked_attn_head(
query, key, values, mask=src_mask, zero_pad=False)
query = query + self.dropout1((query2))
query = self.layer_norm1(query)
if apply_pos:
query2 = self.linear2(self.dropout(
self.activation(self.linear1(query))))
query = query + self.dropout2((query2))
query = self.layer_norm2(query)
return query
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_feature, n_heads, dropout, kq_same, bias=True):
super().__init__()
"""
It has projection layer for getting keys, queries and values. Followed by attention and a connected layer.
"""
self.d_model = d_model
self.d_k = d_feature
self.h = n_heads
self.kq_same = kq_same
self.v_linear = nn.Linear(d_model, d_model, bias=bias)
self.k_linear = nn.Linear(d_model, d_model, bias=bias)
if kq_same is False:
self.q_linear = nn.Linear(d_model, d_model, bias=bias)
self.dropout = nn.Dropout(dropout)
self.proj_bias = bias
self.out_proj = nn.Linear(d_model, d_model, bias=bias)
self.gammas = nn.Parameter(torch.zeros(n_heads, 1, 1))
torch.nn.init.xavier_uniform_(self.gammas)
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.k_linear.weight)
xavier_uniform_(self.v_linear.weight)
if self.kq_same is False:
xavier_uniform_(self.q_linear.weight)
if self.proj_bias:
constant_(self.k_linear.bias, 0.)
constant_(self.v_linear.bias, 0.)
if self.kq_same is False:
constant_(self.q_linear.bias, 0.)
constant_(self.out_proj.bias, 0.)
def forward(self, q, k, v, mask, zero_pad):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
if self.kq_same is False:
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
else:
q = self.k_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention using function we will define next
gammas = self.gammas
scores = attention(q, k, v, self.d_k,
mask, self.dropout, zero_pad, gammas)
# concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous()\
.view(bs, -1, self.d_model)
output = self.out_proj(concat)
return output
def attention(q, k, v, d_k, mask, dropout, zero_pad, gamma=None):
"""
This is called by Multi-head atention object to find the values.
"""
scores = torch.matmul(q, k.transpose(-2, -1)) / \
math.sqrt(d_k) # BS, 8, seqlen, seqlen
bs, head, seqlen = scores.size(0), scores.size(1), scores.size(2)
x1 = torch.arange(seqlen).expand(seqlen, -1).to(device)
x2 = x1.transpose(0, 1).contiguous()
with torch.no_grad():
scores_ = scores.masked_fill(mask == 0, -1e32)
scores_ = F.softmax(scores_, dim=-1) # BS,8,seqlen,seqlen
scores_ = scores_ * mask.float().to(device)
distcum_scores = torch.cumsum(scores_, dim=-1) # bs, 8, sl, sl
disttotal_scores = torch.sum(
scores_, dim=-1, keepdim=True) # bs, 8, sl, 1
position_effect = torch.abs(
x1-x2)[None, None, :, :].type(torch.FloatTensor).to(device) # 1, 1, seqlen, seqlen
# bs, 8, sl, sl positive distance
dist_scores = torch.clamp(
(disttotal_scores-distcum_scores)*position_effect, min=0.)
dist_scores = dist_scores.sqrt().detach()
m = nn.Softplus()
gamma = -1. * m(gamma).unsqueeze(0) # 1,8,1,1
# Now after do exp(gamma*distance) and then clamp to 1e-5 to 1e5
total_effect = torch.clamp(torch.clamp(
(dist_scores*gamma).exp(), min=1e-5), max=1e5)
scores = scores * total_effect
scores.masked_fill_(mask == 0, -1e32)
scores = F.softmax(scores, dim=-1) # BS,8,seqlen,seqlen
if zero_pad:
pad_zero = torch.zeros(bs, head, 1, seqlen).to(device)
scores = torch.cat([pad_zero, scores[:, :, 1:, :]], dim=2)
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class LearnablePositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
# Compute the positional encodings once in log space.
pe = 0.1 * torch.randn(max_len, d_model)
pe = pe.unsqueeze(0)
self.weight = nn.Parameter(pe, requires_grad=True)
def forward(self, x):
return self.weight[:, :x.size(Dim.seq), :] # ( 1,seq, Feature)
class CosinePositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
# Compute the positional encodings once in log space.
pe = 0.1 * torch.randn(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.weight = nn.Parameter(pe, requires_grad=False)
def forward(self, x):
return self.weight[:, :x.size(Dim.seq), :] # ( 1,seq, Feature)