-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlocal_color_change.py
130 lines (96 loc) · 5.09 KB
/
local_color_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import cv2
import numpy as np
import scipy.sparse.linalg
from PIL import Image
import matplotlib.pyplot as plt
from argparse import ArgumentParser
import utils
class PoissonColorChanger:
def __init__(self, dataset_root, solver, scale):
self.mask = utils.read_image(f"{dataset_root}", "mask", scale=scale, gray=True)
self.src_rgb = utils.read_image(f"{dataset_root}", "source", scale=scale, gray=False)
self.solver = getattr(scipy.sparse.linalg, solver)
self.img_h, self.img_w = self.mask.shape
_, self.mask = cv2.threshold(self.mask, 0.5, 1, cv2.THRESH_BINARY) # fix here
self.inner_mask, self.boundary_mask = utils.process_mask(self.mask)
self.pixel_ids = utils.get_pixel_ids(self.mask)
self.inner_ids = utils.get_masked_values(self.pixel_ids, self.inner_mask).flatten()
self.boundary_ids = utils.get_masked_values(self.pixel_ids, self.boundary_mask).flatten()
self.mask_ids = utils.get_masked_values(self.pixel_ids, self.mask).flatten() # boundary + inner
self.inner_pos = np.searchsorted(self.mask_ids, self.inner_ids)
self.boundary_pos = np.searchsorted(self.mask_ids, self.boundary_ids)
self.mask_pos = np.searchsorted(self.pixel_ids.flatten(), self.mask_ids)
def construct_A_matrix(self):
A = scipy.sparse.lil_matrix((len(self.mask_ids), len(self.mask_ids)))
n1_pos = np.searchsorted(self.mask_ids, self.inner_ids - 1)
n2_pos = np.searchsorted(self.mask_ids, self.inner_ids + 1)
n3_pos = np.searchsorted(self.mask_ids, self.inner_ids - self.img_w )
n4_pos = np.searchsorted(self.mask_ids, self.inner_ids + self.img_w)
A[self.inner_pos, n1_pos] = 1
A[self.inner_pos, n2_pos] = 1
A[self.inner_pos, n3_pos] = 1
A[self.inner_pos, n4_pos] = 1
A[self.inner_pos, self.inner_pos] = -4
A[self.boundary_pos, self.boundary_pos] = 1
return A.tocsr()
def construct_b(self, inner_gradient_values, boundary_pixel_values):
b = np.zeros(len(self.mask_ids))
b[self.inner_pos] = inner_gradient_values
b[self.boundary_pos] = boundary_pixel_values
return b
def compute_gradients(self, src):
return utils.compute_laplacian(src)
def poisson_color_change_channel(self, src, target):
gradients = self.compute_gradients(src)
boundary_pixel_values = utils.get_masked_values(target, self.boundary_mask).flatten()
inner_gradient_values = utils.get_masked_values(gradients, self.inner_mask).flatten()
# Construct b
b = self.construct_b(inner_gradient_values, boundary_pixel_values)
# Solve Ax = b
x = self.solver(self.A, b)
if isinstance(x, tuple): # solvers other than spsolve
x = x[0]
new_src = np.zeros_like(src).flatten()
new_src[self.mask_pos] = x
new_src = new_src.reshape(src.shape)
img = utils.get_alpha_blended_img(new_src, target, self.mask)
img = np.clip(img, 0, 1)
return img
def poisson_background_gray(self):
self.A = self.construct_A_matrix()
src_gray = utils.rgb2gray(self.src_rgb)
poisson_color_changed_img_rgb = []
for i in range(self.src_rgb.shape[-1]):
poisson_color_changed_img_rgb.append(
self.poisson_color_change_channel(self.src_rgb[..., i], src_gray)
)
return np.dstack(poisson_color_changed_img_rgb)
def poisson_color_change(self, val):
self.A = self.construct_A_matrix()
src_hsv = cv2.cvtColor((self.src_rgb * 255).astype(np.uint8), cv2.COLOR_RGB2HSV)
new_hue = src_hsv[:, :, 0] + val
src_hsv[:, :, 0] = np.where(new_hue > 180, new_hue - 180, new_hue)
src_changed = cv2.cvtColor(src_hsv, cv2.COLOR_HSV2RGB).astype(np.float64) / 255
poisson_color_changed_img_rgb = []
for i in range(self.src_rgb.shape[-1]):
poisson_color_changed_img_rgb.append(
self.poisson_color_change_channel(src_changed[..., i], self.src_rgb[..., i])
)
return np.dstack(poisson_color_changed_img_rgb)
if __name__ == "__main__":
import time
parser = ArgumentParser()
parser.add_argument("--data_dir", type=str, required=True, help="Folder of mask, source, and target image files.")
parser.add_argument("--scale", type=float, default=1.0, help="Image scaling.")
parser.add_argument("--mode", type=str, help="Color change mode.")
parser.add_argument("--solver", type=str, default="spsolve", help="Linear system solver.")
parser.add_argument("--change_hue", default=0, type=float, help="Added hue value.")
args = parser.parse_args()
changer = PoissonColorChanger(args.data_dir, args.solver, args.scale)
if args.mode == "gray_background":
img = changer.poisson_background_gray()
elif args.mode == "color_change":
img = changer.poisson_color_change(args.change_hue)
img = (img * 255).astype(np.uint8)
Image.fromarray(img).save(os.path.join(args.data_dir, f"result_{args.mode}_{args.change_hue}.png"))